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A Tour of the Smallest

Projective Space

Remember our dear colleague the Rev. Thomas P.
Kirkman, best known for the following classical problem
in combinatorics?

Kirkman’s Schoolgirls Problem
Fifteen schoolgirls walk each day in five groups of
three. Arrange the girls’ walks for a week so that, in
that time, each pair of girls walks together in a group
Jjust once.

Recently, I received a letter from Thomas which I feel
obliged to share with you. It contains the reasons why
Thomas decided to flee our world, a pictorial solution to
his problem, and a lot of illustrations which cannot be
found in any textbook. It also contains some of Thomas’s
most recent insights into the nature of his problem, and
some sinister implications of his results of which I think
all of you should be aware.

The Nightmare

Dear friend, . . . For many years I had a suspicion that there
is something fundamentally wrong with our—that is,
your—universe. In 1851 I finally figured out what! I woke
up in the middle of the night and the only thing I could re-
member was this nightmare of me falling into some kind
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of bottomless pit (Fig. 1). Sounds familiar? As usual, I had
fallen asleep thinking about geometry. Probably it was be-
cause of this that I woke up in a mathematical frame of
mind, thinking, “Let us assume that I am a flatlander and I
wake up from the flat equivalent of my falling nightmare.
Then the last picture from my dream that I remember will
look like this.”

At this point, it dawned on me that the fact that paral-
lel lines do not meet is the reason for my flat counterpart
having this terrible dream. Similarly, it is because there are
parallel planes that I keep waking up in the middle of the
night. I had heard rumours of certain projective spaces in
which two planes always intersect in a line, and I realized
that I had to travel to one of these distant worlds to escape
the terrible nightmare. As you know, my journey was suc-
cessful, and I have been living a carefree life in the small-
est projective space; a life dedicated to research in com-
binatorial mathematics. That is, carefree until 2 weeks ago,
when I woke up from a nightmare again! Not the same as
before. It all has to do with my research connected with
the problem which is named after me. Let me explain.

The Smallest Projective Plane
Remember that a projective plane is a point-line geometry
that satisfies the following axioms.
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Figure 1. The dream.

¢ Two distinct points are contained in a unique line.

¢ Two distinct lines intersect in a unique point.

¢ Every point is contained in at least three lines and every
line contains at least three points.

Associated with every field K is a classical projective
plane whose points and lines can be identified with the 1-
and 2-dimensional subspaces of the 3-dimensional vector
space over the field K. In these classical projective planes,
the three axioms are easily verified. For example, the first
axiom corresponds to the fact that two 1-dimensional sub-
spaces of a 3-dimensional vector space are contained in ex-
actly one 2-dimensional subspace.

For completeness’s sake, I should remark that there are
nonclassical projective planes.

The smallest projective plane is the Fano plane, that is,
the projective plane associated with the field Zy. It has
seven points and seven lines. Every line contains exactly
three points and every point is contained in exactly three
lines. Figure 2 is a well-known picture of this plane. In fact,
it seems to be the only picture of this fundamental geom-
etry of which most people are aware. Remember that the
“circle” counts as a line.

£

Figure 2. The traditional picture of the Fano plane.
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Figure 3. A stereogram of the Fano plane.

I have to admit that it is a nice picture, but is it really
the only picture worth drawing, and is it even the best
model of this plane? Well, all the planes in the world that
I am living in are Fano planes, and I have to show you at
least two more beautiful pictures with which you are prob-
ably not familiar.

The stereogram in Figure 3 shows a spatial model of the
Fano plane. The stereogram can be viewed with either the
parallel or the cross-eyed technique; that is, one of the tech-
niques that you had to master a couple of years ago to be
able to view random-dot stereograms that were in fashion
in your world. You can think of this model as being inscribed
in the tetrahedron as follows. The points are the centers of
the six edges of the tetrahedron plus the center of the tetra-
hedron. The lines are the three line segments connecting
the centers of opposite edges plus the circles inscribed in
the four sides of the tetrahedron. Every symmetry of the
tetrahedron translates into an automorphism of the geom-
etry. The symmetry group of the tetrahedron has order 24.

The picture of the Fano plane in Figure 4 shows that
none of the points of the plane is distinguished among the
points and that no line is distinguished among the lines. In
fact, the rotation through 360/7 degrees around the center
of the diagram corresponds to an automorphism of order
7, which generates a cyclic group of automorphisms act-
ing transitively on the point and line sets of the plane.

Together with an automorphism of order 7 like the one
underlying Figure 4, the 24 automorphisms apparent in the
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Figure 4. The Fano plane: all points are equal!
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Figure 5. The smallest projective space.

spatial model generate the full automorphism group of the
Fano plane. It has order 24 X 7 = 168.

The Smallest Perfect Universe

Associated with every field K is a (3-dimensional) projec-
tive space whose points, lines, and planes can be identified
with the 1-, 2-, and 3-dimensional subspaces of the 4-di-
mensional vector space over the field K. Of course, there
is also a set of axioms for projective spaces. I will not
bother reminding you of these axioms, as, essentially, there
are no examples of projective spaces apart from the clas-
sical ones associated with fields.

The smallest projective space over the field Z; has 15
points, 35 lines, and 15 planes. Each of the 15 planes con-
tains 7 points and 7 lines; as geometries, they are isomor-
phic to the Fano plane. Every point is contained in 7 lines
and every line contains three points. Furthermore, two dis-

Figure 6. Hall’s magical labelling.
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tinct points are contained in exactly one line and two
planes intersect in exactly one line.

The diagram on the left in Figure 5 is a partial picture
of this space. It shows all 15 points and 7 “generator lines.”
The other lines are the images of these generator lines un-
der four successive rotations of the diagram through 360/5
degrees. Given a point p and a line [ not through this point,
form the union of all points of the lines connecting p with
points of 1. This union is the point set of one of the planes
of the space. All planes are generated in this way. The di-
agram on the right shows one such plane. Note that all lines
connecting different points in such a plane are fully con-
tained in the plane. As a point-line geometry, every such
plane is really a Fano plane.

Hall’'s Magical Labelling

Figure 6 is a construction of the smallest projective space
due to my friend Hall. Let SEVEN and EIGHT be the sets
{1,2,...,7}and {1, 2,. .., 8}, respectively. Label the points
of the Fano plane with the numbers in SEVEN in all pos-
sible ways. Remember that the automorphism group of the
Fano plane has order 168. This means that there are
71/168 = 30 essentially different such labellings. On close
inspection, it turns out that 2 among these 30 labellings
have either 0, 1, or 3 lines (=triples of labels) in common.
There is a unique partition of the 30 labelled Fano planes
into 2 sets X and Y of 15 each such that any 2 Fano planes
in 1 of the sets have exactly 1 line in common. Now, the
15 points of the projective space can be identified with the
15 labelled Fano planes in either X or Y, and the lines with



Figure 7. Generalized quadrangle and spread.

the (%) = 35 triples of distinct numbers in SEVEN. A point
(=labelled Fano plane) is contained in a line (=triple) if
the triple is a line in the labelled Fano plane. Figure 6 is a
labelling of the above model of the projective space with
labelled Fano planes. The highlighted line corresponds to
the triple 237.

Generalized Quadrangles

Fix a number 7 in SEVEN. Then, there are () = 15 triples
containing this number and 2 of the remaining 6 numbers
in SEVEN. The 15 points of the projective space together
with these 15 lines make a so-called generalized quad-
rangle; that is, a geometry satisfying the following axioms:

¢ Two points are contained in at most one line.
¢ Given a point p and a line [ that does not contain p, there
is a unique line &k through p which intersects .

For example, the generalized quadrangle which corre-
sponds to the number 7 is the geometry depicted in Figure
7 on the left. Note that an ordinary quadrangle with its four
vertices considered as the points and its four edges con-
sidered as the lines of a point-line geometry is a general-
ized quadrangle. Furthermore, just as in this prototype, the
smallest n for which an n-gon can be drawn in a general-
ized quadrangle using only lines of the geometry is 4.

The Nightmare Continues

A spread of a geometry is a partition of its point set into
disjoint lines or planes. Two parallel lines are quite scary,
but the mere thought of a spread makes me want to hide
somewhere. Fortunately, there are no spreads of planes in

Figure 8. Packing.

this world, and I can handle the fact that there are disjoint
lines in this space. Still, I discovered that there are 56
spreads of lines!

Fix two of the elements of SEVEN. Then, there are five
triples containing these two numbers. Every such set of
five triples corresponds to a spread in the space. For ex-
ample, the numbers 1 and 7 correspond to the spread in
Figure 7. We can construct (3) = 21 of the 56 spreads con-
tained in our space in this way.

Here is a natural identification of the 56 spreads in our
space with the (§) = 56 triples of numbers contained in the
set EIGHT. Let xy8 be such a triple. Then, the spread as-
sociated with it is the spread associated with the two num-
bersx and y. Let xyz be a triple in SEVEN. Then, the spread
associated with it consists of xyz itself plus the four triples
in SEVEN which are disjoint from xyz.

Packings—Solutions to Kirkman’s

Schoolgirls Problem

Now consider any labelling of the Fano plane with elements
of EIGHT. Then the seven spreads corresponding to the
seven lines (=triples in EIGHT) of the Fano plane are pair-
wise disjoint. In fact, every line in the projective space is
contained in exactly one of these seven spreads. Any set
of seven spreads of our space which has this property is
called a packing of the space and is, oh horror of horrors,
just a “spread of spreads.” Because every packing of the
space corresponds to such a labelling of the Fano plane,
there are 8!/168 = 240 packings of our space. Figure 8
shows one packing and the labelled Fano plane associated
with it.

Ironically, every packing corresponds to a solution of
the problem which is named after me. Just identify the 15
girls with the 15 points, the “groups of 3” occurring during
a week with the lines of the space, and the 7 walks with
the 7 spreads of a packing. For a long time I thought that
things cannot get any worse. I was mistaken.

Hyperpackings—the One-Point Extension

of the Fano Plane

Let us play the following game. Remove the 7 spreads cor-
responding to a packing from the 56 spreads of our space.
Try to find a packing among the remaining 49 spreads. If
you find one, put it aside and try to find yet another one
among the remaining 42 spreads, and so on until no more
packings can be found. If this happens when no spread is
left, you have constructed a hyperpacking; that is, a parti-
tion of the 56 spreads into 8 disjoint packings. What a hor-
ror! Clearly, every hyperpacking corresponds to a set of

Figure 9. One-point extension of the Fano plane.
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eight labelled Fano planes whose labels are contained in
EIGHT and which are pairwise line-disjoint. Figure 9 is one
way to construct such a set of labelled Fano planes.

The one-point extension of the Fano plane has eight
points; the seven points of the Fano plane plus one addi-
tional point. It has 14 lines containing 4 points each. These
are the complements of the lines of the Fano plane in its
points set, plus the lines of the Fano plane which have all
been extended by the additional point. Note that any 3 dis-
tinct points of the geometry are contained in exactly 1 of
the 14 lines. The points of the one-point extension can be
identified with the eight vertices of the cube such that the
lines turn into the following sets:

¢ The vertex sets of the regular two tetrahedrons inscribed
in the cube.

e The vertex sets of the six faces of the cube.

¢ The vertex sets of the six “diagonal rectangles.”

The points of the derived geometry at a point p of the
one-point extension are the seven points different from p.
The lines are the lines of the one-point extension contain-
ing p which have been punctured in p. Clearly, every such
derived plane is a Fano plane. Label the one-point exten-
sion with the elements of EIGHT. This labelling induces a
labelling of the eight derived Fano planes, and it is easy to
see that any such set of eight labelled Fano planes derived
like this has the “desired” property. Figure 10 shows the
eight packings of a hyperpacking which corresponds to the
labelling of the cube in the middle of the diagram. The de-

Figure 10. Hyperpacking.
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rived Fano planes at the points 1, 2, . .. correspond to the
packings in the upper left corner, in the middle above, and
so on in the clockwise direction. Up to automorphisms,
there are 30 different labellings of the one-point extension
corresponding to the 30 essentially different labellings of
the Fano plane. Unfortunately, not all hyperpackings can
be constructed like this. In fact, there are 27,360 different
hyperpackings!

Hyperhyperpackings

Let us play another game. Remove the 8 packings corre-
sponding to a hyperpacking from the 240 packings of our
space. Try to find a hyperpacking among the remaining 232
packings. If you find one, put it aside and try to find yet
another one among the remaining 224 packings, and so on
until no more hyperpackings can be found. If this happens
when no packing is left, you have constructed a hyperhy-
perpacking, that is, a partition of the 240 packings into 30
disjoint hyperpackings. Unfortunately, these hyperhyper-
packings do exist. In fact, the 30 hyperpackings corre-
sponding to the essentially different labellings of the one-
point extension form a hyperhyperpacking.

Hyperhyperhyperpackings?

I do not know what other monsters are lurking in the shad-
ows. Conceivably, it might be possible to construct hyper-
hyperhyperpackings, hyperhyperhyperhyperpackings, and
so on ad infinitum. I do not know, and I do not dare to
investigate any further. I think it is time to flee again. I just
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Figure 11. Inversive plane—the sign of the devil.

found out that other projective spaces also contain spreads
and packings. So, I think I will try to turn myself into a flat-
lander and move to a projective plane.

Wish me luck that no other nightmares are waiting for
me there.

Yours, apprehensively,
Thomas

P.S.:. YEA WHY TRY HER RAW WET HAT! I just discov-
ered the sign of the devil right in the middle of this uni-
verse while investigating the counterpart of the geometry
of circles on the sphere in this space. A sphere in this world
is a set of five points such that any line of the space inter-
sects the set in one or two points. Every point of a sphere
is contained in exactly one tangent plane. Hence there are
five planes intersecting the sphere only in one point. The
remaining 10 planes intersect the sphere in 3 points each.
The sets of points of the three nested regular pentagons of
points visible in our model of the space are three such
spheres. The points of the geometry of circles associated
with such a sphere are the points of the sphere. Its circles
are the intersections with the sphere of all those planes
that intersect the sphere in three points. Just like the one-
point extension of the Fano plane, this geometry has the
property that three distinct points are contained in exactly
one circle. If you draw the circles of the geometry associ-
ated with the inner pentagon, you arrive at the following
picture. (See Figure 11.) Ominous.

Acknowledgements, Further Readings,

and Some Remarks

I would like to thank Gordon Royle for conducting an ex-
haustive computer search to calculate the numbers of the
different hyperpackings and for suggesting the names for
these new structures. By the way, Gordon and his colleague
Rudi Mathon have classified a large number of nonclassi-
cal projective planes. If you are interested in investing in
real estate in one of these planes, or if you want to have
one named after you, get in touch with them. Thanks are
due to Keith Hannabuss for the title of this article.

For an accessible introduction to combinatorics related
to Kirkman’s schoolgirls problem, see [2]. For more infor-
mation about the smallest projective space, see [1-7]. In
constructing Figure 6, I used the different labellings in [5].

The identification of the different packings with the dif-
ferent labellings of the Fano plane with elements of EIGHT
can be found in [3] and [7]. The diagram of the generalized
quadrangle in Figure 7 is called the doily and is due to
Payne. Lots of stereograms and other pictures of spatial
and plane models of the smallest projective space and
many other finite and topological geometries can be found
in [6].

Finally, I should acknowledge that Kirkman is not
known to have fled our world in horror.
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