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sharing a common ‘separating set’. We also investigate similar constructions for sets of functions
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Introduction

A set of continuous functions over a fixed interval solves the Lagrange interpola-
tion problem of order n if any n points in ‘general position’ over the interval are
interpolated by exactly one function in the set. The set of polynomials of degree
at most n — 1 is an example of such a set and sets like this are some of the most
fundamental objects in classical interpolation and approximation theory. At the
same time, most types of topological geometries on surfaces have interpretations
in terms of such sets. Flat affine planes like the Fuclidean plane, for example,
correspond to special sets of interpolating functions of order two over the reals.
A large number of ways to combine different interpolating sets into new inter-
polating sets and other interesting sets of functions have been investigated. One of
the most natural approaches seems to be to try and merge interpolating sets over
two adjacent intervals into a special set over the union of both intervals. Start
with two interpolating sets of order n and try to glue them together like this such
that the resulting set is special in the sense that it is also an interpolating set of
order n. It turns out that this is not always possible and that, in the cases where
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it is possible, great care has to be taken when we pair up the functions in the
two sets (see [KZ]). Similarly, the method for constructing spline spaces that are
widely used in approximation theory is based on the same gluing principle (see
[Sc]). As before the constructions of these special kinds of sets involve a lot of
‘glue’, that is, are rather complicated.

In this paper we deal with gluing constructions which require no glue. These
constructions are based on separating sets of functions. The most basic kind of
a separating set in an interpolating set cuts the interpolating set into an ‘upper’
and a ‘lower’ part. Given two interpolating sets which share the same separating
set, the union of the separating set, the lower part of the first and the upper part
of the second interpolating set is also an interpolating set.

These gluing constructions translate into gluing constructions of the geometries
on surfaces associated with interpolating sets and generalize some of the construc-
tions considered in [PS1] and [PS2]. These gluing constructions are some of the
most powerful tools for constructing geometries on surfaces and are especially im-
portant when it comes to constructing rigid geometries, that is, geometries which
do not admit any automorphisms.

This paper is organized as follows. In Section 1 we collect some results about
sets of functions which solve the Lagrange interpolation problem and functions
which are convex with respect to such sets. In Section 2 we show that in such a
set, subsets which solve that Lagrange interpolation problem of order n — 1, as
well as the subsets of functions interpolating a fixed point, are separating sets. In
Section 3 we discover that the separating sets in Section 2 have counterparts in
sets of functions that solve the Hermite interpolation problem. Section 4 deals
with separating sets in sets of periodic and half-periodic functions which solve the
Lagrange or Hermite interpolation problems. In a final section we investigate some
more complicated separating sets in sets of functions which solve the Lagrange
interpolation problem of order 3.

1. N-unisolvent sets of functions and convexity

Let n > 1 be an integer, let I C R be an interval, and let F' be a set of continuous
functions I — R. Then F is called an n-unisolvent set (of functions on I) if
for any set of distinct points z1,z2,...,2Zn, € I and any set of n real numbers
Y1,Y2,- .. ,Yn there is a uniquely determined f € I’ such that

f(a:i):yi, 221, y 1.

Note that two distinct elements of F cannot be equal at more than n — 1 distinct
points. We will also say that f interpolates the points (z;,y;) € IXR,i =1,... ,n.
For a set of functions to be an mn-unisolvent set just means that it solves the
Lagrange interpolation problem of order n.
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Following Moldovan [Mol] and Kemperman [Ke], the above unique function f
will be denoted as

F(21,22,...,Zn;Y1, Y2, - - ,Yn|T).

We further write

F($1,$2,... :$n7g!$) :F($19m27-~- 7$n;g(x1)ag(m2)>'-- ,g(ﬂfn)liﬂ),

where ¢ is any function I — R

Simple examples of n-unisolvent sets are the set of all polynomials of degree at
most n — 1 on any interval, the linear span of the set {1,sinz,sin 2z,sin 3z, ...,
sin(n — 1)z} on the half-open interval [0, ), and, in general, the linear span of any
Chebyshev system {u1(z),u2(z),... ,un(z)} of continuous functions u; : I — R,
i=1,2,...,n. A well-known example of a non-linear 2-unisolvent set on R is the
set that contains all linear functions az + b, a,b € R, a < 0 and the functions
et 4+ d, ¢,d € R [To].

In everything that follows, all intervals of R we will be dealing with are supposed
to be open (unless otherwise specified).

A function g : I = R is said to be convez (concave) relative to F if

(—=1)"Hg(z) — F(z1,22,... ,3n;g|z)) > 0(<0) for z; < ¢ < 2441,i=0,1,...,n

whenever the n + 2 points z; € I are chosen such that 2o < z1 < ... < z,41. The
function g is strictly conver (concave) relative to F' if all the above inequalities are
strict.

In the case where n = 2 and the 2-unisolvent system under discussion is the set
of all linear functions over any interval, a function is (strictly) convex in our sense
if and only if it is (strictly) convex in the usual sense. Our notion of convexity
coincides with some of the generalized notions of convexity investigated in the
papers by Kemperman, Moldovan, Tornheim and Umamaheswaram listed in the
References.

Let J be a subinterval of I, and let g be a function defined on I. Then g7 will
denote the restriction of g to J and F; will denote the set of all restrictions of
functions in ¥ to J. Clearly, if g is (strictly) convex or concave relative to F, then
gy is (strictly) convex or concave relative to F; (F is, of course, an n-unisolvent
set on J.)

The following first result is an immediate consequence of the definition of con-
vexity (see also [Mo2, Lemme 3]).

Proposition 1 (Transitivity of convexity). Let Hy and Hy be be two n-unisolvent
sets on I.

If all elements of Hy are conver with respect to Hy and f : I — R is a con-
tinuous function that is (strictly) convex with respect to Hy, then f is (strictly)
convex with respect to Hy.
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If all elements of Hy are concave with respect to Hj and f : I — R is a
continuous function that is (strictly) concave with respect to Hy, then f is (strictly)
concave with respect to Ho.

In the following we make frequent use of the following lemmas which are due
to Tornheim [To, Theorems 3 and 5] (see also [Ke, 3.1, 3.2]).

Lemma 1. Let F be an n-unisolvent set on the interval I and let f,g € F' be
distinct. If f and g are equal in n— 1 distinct points of I, then the function f — g
has ezactly n — 1 zeros and changes signs at every single one of these zeros.

Lemma 2. Let F be an n-unisolvent set. Then F(x1,22, ... ,Tn,Y1,Y25- -+ »Yn|T)
is jointly continuous in the 2n + 1 variables £1,%2,... ,Tn; Y1, Y2, -« »Yn, T-

Here the domain of F(21,22, . »Tn, Y1,¥2, - - > YnlT), considered as a function
in 2n + 1 variables, may be defined by z; € I, z1 < @2 < ... < Iy, and y; € R
Using these lemmas it is no problem to prove

Proposition 2. Let F be an n-unisolvent set, n > 2, on the interval I and let
H be an (n — 1)-unisolvent subset of F'. Then every function g € F\ H is either
strictly convex or strictly concave relative to H.

We have to remark that this proposition is also an easy consequence of results
in [Mol].

Proof. As a consequence of Lemma 2, the function

g(lL‘) —H(ZEl,.’Eg,..‘ awn—l;glm)

is jointly continuous in the n variables z1,22,...,%Zn-1,% Futhermore, by Lem-
ma 1, as a function of z alone this function has exactly n — 1 zeros (the z;’s) and
changes signs at every single one of these zeros. Clearly, as we continuously vary
the points 1,22, .. ;Tn—1,%n such that at all times we have 1 < 29 < ... <
ZTp_1 < Tp the sign of

glzn) — H(z1,22,. -, Tn-1;9%n)

will not change. Hence, as a consequence of Lemma 1, if this sign is positive
(negative), then g is strictly convex (concave) with respect to H. O

In the following, whenever we are dealing with a situation like this let F'T (H)
(F~(H)) denote the set of all strictly convex (concave) functions relative to H in
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Corollary 1. Let F' be an n-unisolvent set, n > 2, on the interval I and let H
be an (n — 1)-unisolvent subset of F'. Then F is the disjoint union of the sets H,
FT(H), and F~(H).

We say that two n-unisolvent sets F, F, defined on intervals I1, o, respective-
ly, are topologically equivalent if there exists a homeomorphism I; x R = I5 x R
that maps the set of vertical lines in I3 X R to the set of vertical lines in I x R
and that maps the graphs of the functions in Iy to the graphs of the functions
in F5. It is easy to prove that topological equivalence is an equivalence relation.
Clearly, two 1-unisolvent sets F} and Fy are topologically equivalent since I; and
I3 are both supposed to be open. We remark that our example of a non-linear
2-unisolvent set on R (above) is not topologically equivalent to the set of linear
functions on any interval.

N-unisolvent sets, or even more general, varisolvent sets form the topological
foundation for classical interpolation and approximation theory [Ril], [Ri2]. They
can also be interpreted in terms of geometries on surfaces: the point-line geome-
try, or incidence geometry, associated with a set of functions over the interval I
has point set I x R and a line set that consists of all graphs of functions in the
set. The 2-unisolvent sets and the 3-unisolvent sets are of particular interest to
geometers, as point-line geometries such as flat affine planes [Sa] and Laguerre
planes [St], respectively, can be represented in terms of such sets. The point-line
geometry associated with the linear functions, for example, is the FEuclidean plane
(minus the verticals), that is, the classical example for a flat affine plane. Many
2- and 3-unisolvent sets that are essentially non-linear, that is, not topologically
equivalent to 2- and 3-unisolvent sets that arise from Chebyshev systems have
been constructed and classified by topological geometers. Incidence geometries
corresponding to m-unisolvent sets with n > 3 are investigated in [Po3] (see also
[HK]).

Most of the results in this paper deal with combining two or more n-unisolvent
sets into new n-unisolvent sets. All these results can also be stated in terms of
combining geometries on surfaces into new such geometries.

For more information about n-unisolvent sets of functions the reader is referred
to [Cu], [Mor], [Pol], [Ril], [Ri2] and [To]. See [KS], [Sc] and [Zi] for information
about Chebyshev systems.

2. Separating sets in n-unisolvent sets

Given n distinct fixed points z; < 9 < ... < z, in the interval I, it is possible
to identify an n-unisolvent set £ on I with R™ by mapping the function f € F
to the point (f(z1), f(22),..., f(zn)) € R*. Under this identification an (n — 1)-
unisolvent subset H of F' corresponds to a closed subset of R” homeomorphic to
R*~1 that separates R into two open components. These two open components
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correspond to F¥(H) and F~(H). This separating property of H goes even deeper
as we can see from the following

Theorem 1. Let Fy and Fy be n-unisolvent sets, n > 2, on the interval I and let
H be a common (n — 1)-unisolvent subset of F1 and Fy. Then both H U Fl"'(H) U

Fy(H) and HUF[ (H) U F3(H) are n-unisolvent sets.

Proof. As an immediate consequence of Lemma 1, we know that for any choice
of distinct points z1,%32,...,Zn € I with 1 <22 < ... < Zn and real numbers
Y1,Y2,--- ,Un the sign of

Yn — H(iL‘l,ZQ, ey Tp—1,Y1,Y2; - - - ayn~llwn)
alone determines whether Fi (21, T2, . . ,Tn, Y1, Y2, - - - ,Yn|2) is strictly convex with
respect to H, belongs to H or is strictly concave with respect to H. |

Example 1. Let F;=span{l,z,2%,... 2" 2, fi(z)}, i=1,2 such that fi: R—=R
is m — 1 times differentiable and its n — st derivative is a positive function. Then
F; is an n-unisolvent set on R and H = span{l,z,z2,... ,z" 2} is an (n — 1)-
unisolvent set contained in both Fy and Fp. Using Theorem 1, we can combine
these two sets into an n-unisolvent set that is no longer linear. See [LP] for further
information about the case n = 3.

We are interested in constructing (n — 1)-unisolvent subsets of an n-unisolvent
set I and other subsets of F' that separate F' in a similar way. A separating set
like this can then be used to construct a new n-unisolvent set from two given
n-unisolvent sets that share this subset, as demonstrated above.

Let F be an n-unisolvent set on I, and let p = (s,t) be a point in I X R. Let
F(p), F*(p), F~(p) denote the set of all functions f € F such that t = f(s),
t < f(s) and ¢ > f(s), respectively.

The following obvious result gives one way of finding (n —1)-unisolvent subsets
of n-unisolvent sets.

Proposition 3. Let F' be an n-unisolvent set, n > 2, on I, let J be a proper
subinterval of I, and let p = (s,t) € (I\ J) x R Then F(p)s is an (n = 1)-
unisolvent subset of Fy. Furthermore, if s is greater than all elements of I, then
FHF®)) = FH(p)y, and Fy (F(p)s) = F~(p)s. If s is less than all elements of
I and n is odd (even), then F (F(p)s) = F¥(p)s (= F~(p)s) and Fy (F(p)s) =
F=(p)s (= FF(p)J).

So, given an n-unisolvent set, we first try to embed it in a larger n-unisolvent
set and then concentrate on the functions that interpolate a point p € (I'\ J) X R.
This will provide us with a separating set. It is not known whether all n-unisolvent
sets can be embedded into larger n-unisolvent sets in this way. Examples of n-
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unisolvent sets on half-open intervals that cannot be extended are known for any
n > 2 (see [Pol, 2.8.1]).

What if we concentrate on points p € J x R, that is, what happens if we move
the point from the ‘outside’ (I'\ J) x R to the ‘inside’ J x R?

Theorem 2. Let Fy and Fy be n-unisolvent sets, n > 2, on the interval I, and let
p=(s,t) € I x R. Furthermore, let F1(p) = Fy(p). Then Fi(p) U F; (p)U F5 (p)
and Fy(p) U F5 (p) U F[ (p) are n-unisolvent sets.

Proof. Let zg,21,%9,... 2,41 be n + 2 distinct points in I such that zg < z1 <

. < Zpy1 and such that zp < s < z,41. We have to show that for any n-
unisolvent set ' on I with F(p) = Fi(p) = Fa(p) we can tell by just looking at F(p)
what the sign of t — F(z1,29,... ,Zn,y1,Y2,-.. ,Yn|s) is going to be. If s is one of
the z;’s, this is certainly the case. We may therefore assume that z; < s < z;41
for some j. Let f(z) = F(s,22,23,... ,%n,t,¥2,¥3,.-,Ynlz) if 5 < 1, and let
f(@) = F(xa,... ,25,8,Z401,. ., &0, Y2, - -« ,Yj by Yjt1s- - s YnlT) if § > 1; hence
f € F(p). Furthermore, let sig be the sign of y; — f(z1). If sig = 0, then
F(z1,22,... ,%n,¥1,Y2,- - ,Yn|T) = f(z) belongs to F(p). We may therefore as-
sume that sig # 0. By Lemma 1, the function F(21,%2,... ,%n, Y1,¥2, - - - »,Yn|T) —
f(z) has exactly n—1 zeros (22,23, ... ,z,) and changes signs at every single one of
these zeros. Therefore, we know that if j=0, then F(z1,z2, ..., Zn, Y1, Y2, ., Un|z)
is contained in F¥(p), F~(p) if and only if sig = 1, or sig = —1, respectively. If
J > 1, then F(z1,29,...,%n,Y1,¥2,- .- ,Yn|z) is contained in FT(p), F~(p) if and
only if sig(—1)7~! = 1, or sig(—1)9~1 = —1, respectively. O

Corollary 2. Let Fy and Fy be n-unisolvent sets, n > 2, on the interval I, and
let p1 = (s,t1) and py = (s,t3) be two distinct points in I x R such that p; lies
above po, that is, t1 > ty. Furthermore, let Fi(p1,p2) be the set of all f € F; such

that to < f(s) < t1. If Fi(p1,p2) = Fa(p1,p2), then FiH(p1) U Fy(p1,p2) U Fy (po)
1s an n-unisolvent set.

Of course, this result does not tell us anything really new since, in this case,
F"(p1) U Fi(p1,p2) U Fy (p2) = Fif (p2) U Fi(p2) U Fy (p). Still, it shows that
separating sets can be much “thicker” than the separating sets considered in The-
orems 1 and 2; the set Fy(py,p2) “separates” the n-unisolvent set F like F(p2).
This suggests

Corollary 3. Let F1 and F» be n-unisolvent sets, n > 2, on the interval I and
let H and K be (n — 1)-unisolvent common subsets of both F| and Fy such that
all elements of H are strictly convezx with respect to K. Furthermore, let [H, K];
denote the set of all f € F; such that f is convex with respect to K and concave
with respect to H. If [H K|y = [H,K]a, then F1+(H) U[H, K]y UFy(K) is an
n-unisolvent set.
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Again this result does not say anything new since, as a consequence of Propo-
sition 1, we find that Fi"(H) U [H, K]; U Fy (K) = Fi" (K) U K U F5 (K).

3. Separating sets in unrestricted n-unisolvent sets

In this section we show that if we substitute the word ‘n-unisolvent’ in Theorems
1 and 2 by ‘unrestricted n-unisolvent’, then both theorems are still true.

Let I be an interval. A SIC (set of initial conditions) S of order m € Non I is
an ordered triple (X,A,Y) where X = {1, 22,... ,2} is a set of distinct points
in I, A = {dg;, Aogs- -+ > Ag, } 18 @ set of positive integers such that Ay, + Agy +

Az, —1
X, =mand Y = {Yy,Vay,... , Ya, } where Yo, = {yge),yg),... ,yg(“ i )},
i=1,2,...,k is a set of real numbers. We abbreviate all this by writing S =

{Z1, T Aeyy - ,,\wk|y§fi), e ,yﬁi”k_”}. A function f: I — R satisfies S if

FD @y =y, =12,k =01 A — L.
Here f©) = £ and f(), j > 1 denotes the jth derivative of f.

Following Hartman [Ha], we call a set F' of n —1 times continuously dif-
ferentiable functions on I an wunrestricted n-unisolvent set if every SIC of or-
der n on I is satisfied by exactly one f € F. Note that an unrestricted n-
unisolvent set is automatically an n-unisolvent set since a function satisfying a SIC
of the form {z1,...,za|1,1,... ,1|y£?),y£g), . ,ygi)} interpolates the n points

@1,959), (22,480, -, (@, ys).

The geometries on surfaces associated with unrestricted n-unisolvent sets form
an important class of nested orthogonal arrays (see [Pol]). For F to be an un-
restricted n-unisolvent set just means that it solves the Hermite interpolation
problem of order n [LJR].

The Chebyshev systems that give rise to unrestricted n-unisolvent sets of func-
tions are called eztended Chebyshev systems [KS]. The set (1,z,4%,... 2" 1} is
the classical example for such a Chebyshev system.

A set G of n — 1 times continuously differentiable functions on the interval
I is said to have the property of unique n nitial values if all SICs of the form

{mllnlyg(g?),yg(ull), e ,yg';“l)} on I are satisfied by exactly one f € G.

The following important result is due to Hartman [Ha]
Lemma 3. A set of n— 1 times continuously differentiable functions on an open
interval is an unrestricted n-unisolvent set if and only if it is an n-unisolvent set

and it has the property of unique n initial values.

We need one more
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Lemma 4. Let F' be an unrestricted n-unisolvent set, n > 2 on I, let H be an
unrestricted (n — 1)-unisolvent subset of I, and let K be the set of all functions in
F that satisfy a given SIC {m1|n|yg(;?),ya(cll), . ,yg?q)} of order n—1 on I. Then
K has the following properties:
(1) Every point (s,t) € I x R, s # x1 is interpolated by ezactly one element in
K.
(2) There is exactly one element h € H that is contained in K.
(3) A function f € K\ {h} is contained in F*(H) (F~(H)) if and only if
f(x) — h(z) is positive (negative) for any (and therefore all) z > z.
(4) If f e FY(H)N K and = < 21, then f(z) — h(z) is positive (negative) if n
is odd (even).
(5) If fe F-(H)NK and z < z1, then f(z) — h(z) is negative (positive) if n
is odd (even).

Proof. (1) and (2) follow immediately from the definition of complete unisolvence.
(3), (4), and (5) are corollaries of [Ma3, Corollary 1 and the remark following this
corollary]. O

Theorem 1*. Let Fy and Fy be unrestricted n-unisolvent sets, n > 2, on the
interval I and let H be a common unrestricted (n — 1)-unisolvent subset of Fy and
Fy. Then both HU F{t (H) U Fy (H) and HU F(H) U FyF(H) are unrestricted
n-unisolvent sets.

Proof. Theorem 1 and the Lemma 3 show that we only have to demonstrate the
following: Given any SIC S = {x1|n|y£?),y£i), . ,yg(;ll_l)} of order n, and any
unrestricted n-unisolvent set F' that contains H, looking at H alone suffices to
determine whether the uniquely determined function f € F satisfying S will be
contained in F¥(H), H, or F~(H).

Let h € H be the uniquely determined function that satisfies the SIC § =
{z1|n — lly_g?),yg(gll), e ,y_Sc?fw?)} of order n — 1. Both y,(ff—l) — h"=U(z) and
f(z) — h(z), © > 1 have the same sign. Hence, by the previous lemma, f will
belong to FT(H), H, or F~(H) if and only if yé’f*l) — h{"=1)(z1) is positive, zero,
or negative. W]

We do not know whether or not an (n—1)-unisolvent subset of an unrestricted n-
unisolvent set is always an unrestricted (n — 1)-unisolvent set. The set span{1,z3}
is a (n — 2)-unisolvent subset of the unrestricted 4-unisolvent set span{1, z, 2,3}
that is not unrestricted 2-unisolvent since the SIC {0]2[0, 1} is not satisfied by any
function in the set.

The sets F£j, ¢ = 1,2 in Example 1 are actually unrestricted 3-unisolvent and
their common subset is unrestricted 2-unisolvent. Hence Example 1 is actually an
example of what happens in Theorem 1*.
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Theorem 2*. Let Fy and Fy be unrestricted n-unisolvent sets, n > 2, on the
interval I, and let p = (s,t) € I x R. Furthermore, let Fi(p) = Fy(p). Then
Fi(p) U F{"(p) U Fy (p) and F1(p) U F5"(p) U Fy (p) are unrestricted n-unisolvent
sets.

Proof. As in the proof of Theorem 1* we have to prove: Given any SIC S =
{x1|n|yg(£),y£11), . ,ygf_l)} of order n, and any unrestricted n-unisolvent set F'
that contains F(p), looking at F(p) alone suffices to determine whether the unique-
ly determined function f € F satisfying S will be contained in FT(p), F(p), or
F=(p).

Ifs=uz1 andt> y.g?), t= y.»(c?), ort < yg(g?), then, clearly, f € F(p), f € F(p),
or f € F~(p), respectively. Let z; < s and let b be the uniquely determined
function in F(p) that satisfies the SIC S = {$1|n|y£?),y§;11), e ,yg(,,?_2)} of order
n — 1. Then f will be contained in F¥(p), F(p), or F~(p) depending on whether
yé’;‘” — w1 () is positive, zero or negative. In the case s < z1 a similar
argument applies. a

There are many more shades of unisolvence and corresponding notions of con-
vexity in between n-unisolvence and unrestricted n-unisolvence; see, for example,
the papers by Mathsen and Umamaheswaram. For many of these it should be
possible to generalize the results in this paper. Also, by restricting ourselves to
open intervals, we have been able to avoid a lot of messy notation and proofs.
By giving a counterexample, Mathsen [Mal] showed that Lemma 3, which made
the proof of Theorem 2* so easy, cannot be generalized to the case of unrestricted
n-unisolvent sets on closed intervals.

4. Periodic and half-periodic n-unisolvent sets

In this section a periodic function f is a continuous function [~m, 7] = R such
that f(—m) = f(m). A half-periodic (or antiperiodic) function f is a function
[—7, 7] — R such that f(—7) = —f(7). A (half-)periodic function f : [, 7] = R
is continuously differentiable if its restriction to (—m, ) is differentiable, the left
and right derivatives at —m and 7, respectively, exist, and the derivative of f is a
continuous (half-)periodic function.

A set F of (half-)periodic functions is called a (half-)periodic n-unisolvent set
if the restriction of F' to the half-open interval [—m,7) is an n-unisolvent set.

A set F of n — 1 times differentiable (half-)periodic functions is called a (half-)
periodic unrestricted n-unisolvent setif the restriction of F to the half-open interval
[, m) is an unrestricted n-unisolvent set.

It turns out that periodic n-unisolvent sets exist only if n is odd, half-periodic n-
unisolvent sets exist only if n is even (see [Pol, Proposition 2.6}, see also [Cu, Corol-
lary on p. 1016] for the periodic case). This implies, of course, that periodic (or
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half-periodic) n-unisolvent set cannot have (n — 1)-unisolvent subsets. So, separat-
ing subsets of the first kind do not exist in this case. The classical example of an un-
restricted periodic (2k + 1)-unisolvent set is span{1, sin z, cos z, sin 2z, cos 2z, .. . ,
sinkz,coskz} (see [Jo]), and an example of an unrestricted half-periodic (2k)-
unisolvent set is span{sin §,cos §,sin3%,cos3%,sin5%,cos 5%, ... ,sin(2k — 1§
cos(2k — 1)5} (see [Pol]).

Separating sets of the second kind exist, and Theorems 2 and 2* have obvious
counterparts in the periodic and half-periodic case which are actually corollaries
of these two theorems. We just state the results.

3

Theorem 2°. Let Fy and Fy be (half-)periodic n-unisolvent sets, n > 2, and let
p=(s,t) € [-m,7] x R. Furthermore, let F1(p) = Fy(p). Then Fy(p) U F; (p)u
Fy (p) and Fy(p) U Fyf (p) U F[ (p) are (half-)periodic n-unisolvent sets.

Theorem 2*’. Let I\ and Fy be unrestricted (half-)periodic n-unisolvent sets,
n > 2, and let p = (s,t) € [—m, 7] x R. Furthermore, let Fy(p) = Fs(p). Then
Fy(p) UFS (p) UFy (p) and F1(p) UF (p) UL (p) are unrestricted (half-)periodic
n-unisolvent sets.

The proofs of both theorems rely on the fact that we can argue over open
subintervals of [—m,7]. Whenever in an argument we are dealing with a points
on the boundary of [—m, 7] x R we can shift our point of view by a ‘rotation’ to
a (half-) periodic n-unisolvent set that is topologically equivalent to the set we
started out with and in which these boundary points are moved into the interior
of the strip. We skip the details.

5. Separating sets derived from points in 3-space and separating
sets of a third and fourth kind in 3-unisolvent sets

Let B = {1, g2(%), g3(z)} be a Chebyshev set of order 3 on the interval I, that is,
the real linear span of B is a 3-unisolvent set on I. Then the function I — R? :
z + (g2(z), g3(x)) is injective and its graph K is a strictly convex curve in RZ?.
Let Zp = {(92(z), 93(z),y)|z € I,y € R} be the cylinder in R? with base Kz in
R?. The graph of the function I — R : z — a1 + agga(z) + asgs(z) (a function
in F) can be interpreted as the intersection of the affine hyperplane in R3 that is
defined by the equation y = a1 + ag29 + agzs with the cylinder Zg. So, the set of
intersections of the non-vertical hyperplanes in R? is in 1-1 correspondence with
the set I7. We call these intersections lines and call two distinct points on the
cylinder parallel if they are contained in the same vertical. Then the fact that F
is 3-unisolvent can be expressed like this: For any 3 distinct, pairwise non-parallel
points on the cylinder there exists a unique line that contains all of them. Let p
be any point in R? and let proj(p) be its projection onto R2, and let F(p) be the
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subset of F' that corresponds to the non-vertical hyperplanes in R3 that contain p.
A look at (1) and (2), below, shows that we just extended the definition of F(g),
g € I x R that we introduced in Section 2. Essentially, three different things can
happen:

proj(p)

proj(p)

proj(p)
Figure 1 Figure 2 Figure 3

(1) The point proj(p) is contained in K, or equivalently, p is contained in Zp
(see Figure 1). In this case F(p) is one of the separating sets of the second kind
that we considered before. So, no new separating sets can be constructed in this
way.

(2) All lines through proj(p) intersect Kp in at most one point (see Figure 2).
In this case we get a separating set of the first kind. This choice of p can yield new
such separating sets. It does not have to though: assume that our cylinder can be
extended to a larger cylinder that still gives rise to a Chebyshev space and that p
is contained in this cylinder, that is, the base curve can be extended to a strictly
convex curve that passes through proj(p) (see the extension of Kp in Figure 2 by
the dotted line). The larger cylinder then corresponds to an n-unisolvent set F
that contains F' defined on a larger interval J, the point p corresponds to a point
gin (J\I) x R and F(p) really is the same as F'(¢g);. On the other hand, it is easy
to come up with strictly convex curves in R? that cannot be extended to larger
strictly convex curves; take, for example, one branch of a hyperbola. Of course,
this just says that in this particular model F' cannot be extended. In other models
this might still be possible.

(3) Some lines through proj(p) intersect Kp in two points (see Figure 3). For
the sake of simplicity, let us assume that Kp can be extended to a strictly convex
simply closed curve K that contains Kp (see the extension of Kp by the dotted
line in Figure 3). It is easy to see that Kp does not contain proj (p). This means
that our original Chebyshev space can be extended to a periodic Chebyshev space
F and the prospective separating set extends to a prospective separating set in this
periodic Chebyshev space. The point p corresponds to a natural involutory home-
omorphism of the cylinder over K g to itself that exchanges points of intersection
of lines through p with the cylinder. This involution will be orientation-preserving
if p is situated inside the cylinder and orientation-reversing if p is situated outside
the cylinder. Furthermore, our prospective separating set can be described com-
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pletely by this involution as the set of all functions in F that interpolate pairs of
distinct points on the cylinder that get exchanged by the involution.

We want to translate all this into the incidence geometric setting that we al-
ready mentioned before. First of all, we identify the interval [m, 7) with the circle
S!in a natural way. Now a periodic n-unisolvent set (¢ can be seen to correspond
to the incidence structure Iy = (S x R,C) whose point set is the cylinder S* x R
and whose circles, that is, the elements of the circle set C, are the graphs of the
continuous periodic functions in G. Following [Pol], we call such an incidence
structure a periodic 3-OA (OA stands for orthogonal array). It is clear that every
circle in C is homeomorphic to S1. Let G be a periodic 3-OA and let v be an
involutory homeomorphism of S x R to itself that is not the identity and that has
the following properties:

(1) it maps verticals on this cylinder to verticals; and

(2) for all p € S! x R for which p # v(p), every circle through p and ~(p) is

(globally) fixed by .

Following [PS2], we call v a pre-inversion of G if v is fixed-point-free and
orientation-preserving. We call it pre-reflection if its fixed point set consists of two
distinct verticals IT1g and Il... In this case let H1 and Hy denote the two connected
components of (S' x R)\ (Ilg UTI.). In both cases C., denotes the set of all circles
fixed by -y (this is going to be our new “separating set”). From [PS2, Lemma 2]
we know:

(1) If v is a pre-inversion and ¢ is a circle that is not fixed by =, then cny(c) = 0.

(2) If v is a pre-reflection and c is a circle that is not fixed by «, then cN~y(c) =

cN (T U TTe).

Let v be a pre-inversion of G. Let C.+ (C,-) be the set of all circles ¢ € C
such that on the cylinder ¢ lies above (below) y(¢). In the case of a pre-reflection
let C,+ (C,-) be the set of all circles ¢ € C such that c lies above (below) 7(c) on
Hj. In both cases C is the disjoint union of C,, C.,+ and C,-. This corresponds to
Corollary 1.

The following result shows that the fixed-circle sets of pre-inversions and pre-
reflections correspond to separating sets of a third and fourth kind. Examples of
such separating sets arise naturally as in (3) above.

Theorem 3. Let Ip, = (S' xR, C) and Ip, = (S' xR,C*) be two periodic 3-OAs.
Suppose both periodic 8-OAs admit the pre-inversion (or pre-reflection) v and that
Cy=C:. Then (S'x R,C, UC,+ UCA_) is a periodic 3-OA.

The proof of this result is a straight-forward variation of the proof of Propo-
sitions 2* and 3* in [PS2] (see also [PS1]) and will be omitted here. Actually,
by using the language in [Pol] we can turn Theorem 3 into a statement that is
equivalent to Propositions 2* and 3* in [PS2] by adding the word ‘nested’ in front
of every ‘periodic’ in Theorem 3.
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It is clear that the circle set C, U C 4+ U C3_ of the new periodic 3-OA in
Theorem 3 corresponds to a periodic 3-unisolvent set.

For more details about this general incidence theoretic setting the reader is
referred to the three papers we just mentioned.
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