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Abstract

The generalized triangle, quadrangle, and hexagons of order 2 are small point-line geometries
that play a role in the theory of generalized polygons and buildings that is comparable to that
of the Fano plane in the theory of projective planes. Virtually everybody working in discrete
mathematics is familiar with the generalized triangle of order 2 aka the Fano plane, the smallest
projective plane, PG(2,2), or the unique symmetric block design with parameters 2—(7,3,1), and
its elementary representation as the geometrical configuration of an equilateral triangle together
with its three medians and inscribed circle. The main purpose of this paper is to derive an
elementary representation of the generalized hexagons of order 2 which extends naturally to a
special representation of the projective space PG(5,2). Along the way, we also derive a similar
representation of the generalized quadrangle of order 2 which turns out to be equivalent to the
well-known representation of the quadrangle in terms of synthems and duads and which extends
naturally to a representation of PG(3,2).
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1. Introduction

To make a pot on a pottery wheel the potter slaps a homogeneous lump of clay in the
middle of a turning pottery wheel, centers the clay and shapes it into a pot. Finally, he
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decorates the pot while the wheel is still turning. A number of construction techniques
in finite geometry are very reminiscent of this process. Instead of a lump of clay we
use a finite point-line geometry and instead of the pottery wheel we use a cyclic group
of automorphisms to ‘center’ the geometry. Now we ‘decorate’ this centered geometry
by emphasizing some orbits of interesting substructures of the geometry under the
cyclic group. Often, interesting properties of the geometry are easily discerned once a
geometry is centered and decorated in this way. Finite pottery also proves to be very
useful when it comes to constructing appealing pictures and models of finite geometries;

see [12] for many examples of such pictures and models. The finite pottery in this paper

falls in the last category.

We center the projective spaces PG(3,2) and PG(5,2) using automorphisms of or-
ders 5 and 7, respectively. Right in the middle of these centered projective spaces
we find a centered generalized quadrangle of order 2 and one of the two generalized
hexagons of order 2. Translating these centered generalized polygons into sets of dia-
grams, we arrive at very compact, elementary descriptions of these geometries. We also
identify a number of important properties, substructures and interconnections of these
geometries.

2. Generalized polygons

In the following a (point-line) geometry will consist of a nonempty set of points
and a nonempty set of subsets of the point set called /ines. Every point is contained
in at least two lines and every line contains at least two points.

Two geometries are isomorphic if and only if there is a bijection between the point
sets of the two geometries that induces a bijection between their line sets.

Every graph can be interpreted as a geometry. Here the vertices of the graph are the
points, and associated with every edge is.a line consisting of the two vertices contained
in this edge. In particular, an ordinary n-gon is a geometry that is isomorphic to the
geometry of vertices and edges of a regular n-gon in the plane.

The incidence graph of a geometry is the graph whose vertices are the points and
lines of the geometry. Two vertices are connected by an edge if and only if they
correspond to a point and a line such that the point is contained in the line.

Let 4 be a geometry with point set P and line set L. A geometry ¥’ is contained

"in %, if its point set P’ is a subset of P and all its lines are intersections of lines in
L with P’

The dual of ¥ is constructed by interchanging the roles of points and lines in 4.
More precisely, its points are the lines of %, and to every point of ¥ corresponds a
line of the dual consisting of all lines in ¥ containing this point. A geometry is called
self-dual if it is isomorphic to its dual.

A generalized n-gon 9,n>=2, is a geometry which satisfies the following two axioms:

(Ql) ¢ does not contain any ordinary k-gons for 2<k <n.
(Q2) Given two points, two lines, or a point and a line, there is at least one ordinary
n-gon in ¥ that contains both objects.

[
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Generalized n-gons were introduced by Tits [15]. Generalized 2-gons, 3-gons,
4-gons, etc., are also called generalized digons, triangles, quadrangles, etc., respec-
tively. Similarly, generalized n-gons are also referred to as generalized polygons.

A generalized polygon is called thick if every point is contained in at least 3 lines
and every line contains at least 3 points. An ordinary n-gon is not thick. From the
above definition it is clear that the dual of a (thick) generalized n-gon is also a (thick)
generalized n-gon.

By Axiom QIl, a generalized n-gon, n>2, does not contain any digons. This just
means that two of its points are comnected by at most one line and that two of its
lines intersect in at most one point. This observation plus Axiom Q2 imply that in a
generalized triangle two points are contained in exactly one line and two lines inter-
sect in exactly one point. This shows that the thick generalized triangles are just the
projective planes.

A generalized n-gon is finite if its point set is a finite set. A finite generalized
n-gon 4 is of order (s,1),s,t>=1, if every line contains s+ 1 points and every point is
contained in ¢ + 1 lines. If s =¢, we also say that & is of order s. The ordinary n-gon
is the unique generalized n-gon of order 1. If % is not an ordinary n-gon, and if it has
an order, then n=3,4,6,8, or 12, and, if n=12, then % is not thick; see [5].

The projective planes of order s are exactly the thick generalized triangles of order s.
In particular, the Fano plane is the unique generalized triangle of order 2. The incidence
graph of a generalized n-gon of order ¢ is a generalized 2n-gon of order (1,¢).

There is a unique generalized triangle of order 2 and a unique generalized quadrangle
of order 2. Both are self-dual geometries; see [8]. There are two generalized hexagons
of order 2. These are the so-called split Cayley hexagon #(2) and its dual; see {3]. In
the following, we will refer to the Fano plane, the generalized quadrangle of order 2,
and the generalized hexagon #(2) as the TRIANGLE, the QUADRANGLE, and the
HEXAGON, respectively. For these and other information about generalized polygons
see [14] or [16].

3. The Fano plane and its incidence graph

In this section we recall an elementary representation of the Fano plane on a regular
7-gon and derive a labelling of the incidence graph of this projective plane that we
will need in Section 6 of this paper.

In [12] we used finite pottery to model small geometries that admit automorphisms
of order n on regular n-gons. Fig. 1 shows two possible pictures of the Fano plane, or
equivalently the TRIANGLE, that we arrive at by centering the plane using a Singer
cycle (a Singer cycle of a projective plane is a cyclic group of automorphisms of the
plane that acts sharply transitively on the point set of the plane). Its points are the
7 points of the 7-gon and its lines are the images of one of the two triangles under
successive rotations through 360/7° degrees around the center of the 7-gon. Of course,
one Singer cycle of this plane corresponds to the cyclic group of order 7 of rotations
around the center of the 7-gon. One more Fano plane is hiding in this picture. Its
points are the lines of the left Fano plane and its lines are the lines of the right Fano
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Fig. 2. The incidence graph of the Fano plane.

plane. Here a point is incident with a line if and only if the corresponding triangles
have exactly one point in common. Fig. 2 shows the incidence graph of the Fano plane
whose vertices have been labelled with the two different kinds of triangles. It is easily
verified that this incidence graph is a generalized hexagon of order (1,2). In fact, it is
very easy to draw ordinary hexagons in this geometry.

We remark only that in Fig. 1 the triangle on the right is an oval in the Fano plane
generated by the triangle on the left, and vice versa. Maybe you are interested in the
following more general setting: ‘Two projective planes are defined on the same point
set such that lines of one are ovals in the other, and vice versa, and such that a third
projective plane can be defined using the lines of both given planes as above’. If so,
then have a look at [7,10,11].
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4. Centering of projective spaces

In this section we summarize some results about projective spaces that we will use
to center the QUADRANGLE and the HEXAGON. Most of the facts mentioned are
common knowledge; see also [6,9].

4.1. Centering PG(n,2) via the shift map

Consider the nonzero points of the affine space AG(n + 1,2) as the points of the
projective space PG(#n,2). Then, given two points in PG(n,2), the third point on the
unique connecting line of the two points is the sum of the two points. Every permutation
of the standard basis elements of AG(n + 1,2) corresponds in a unique way to an
automorphism of the associated projective space. In particular, the cyclic shift to the
right

0, AG(n,2) = AG(n,2) : (ap, a1, ., 1) — (@n—1,00,01, ..., Ay—2)

is induced by a cyclic permutation of the standard basis vectors. Note that the only
fixed point of PG(n,2) under the cyclic shift 6,4, is the point

pe=(11,...,1).

4.2. PG(n,2) as a geometry of subsets of an (n+1)-gon

Let O, be a regular n-gon in the plane, one of whose symmetry axes is a vertical,
and whose uppermost vertex is situated on this vertical axis. Label this uppermost
vertex by 0, and label the remaining vertices from 1 to » — 1 by proceeding in the
clockwise direction. Given a point p in PG(n,2), we identify it with the subset of
0,1 consisting of all those vertices i such that the entry x; of p is 1. In this way,
it is possible to represent PG(n,2) as a subset geometry on n + 1 vertices. Note that
in this representation the points of the geometry are the nonempty subsets of vertices
of O,,1 and that the shift ¢, translates into a rotation of O,;; through 360/(n+ 1)
degrees around its center.

4.3. The quotient space

Let » be a fixed even number. Consider the quotient space of PG(n,2) with respect
to the point p.. This space is isomorphic to PG(n — 1,2). The points and lines of
this space are the lines and planes in PG(n,2) containing p.. Given a point p in
PG(n,2), let C(p) be its complement, that is, p 4+ p., the unique third point on the
line connecting p and p..

We identify the points of PG(n—1,2) in the natural way with the points of PG(#,2)
having at most »n/2 entries that are 1’s. Here the point { p, C(p), p} in PG(n — 1,2)
(this is a line in PG(n,2)) gets identified with p if p has at most n/2 entries that are
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1’s, and with C(p) otherwise. With this identification in place, the following map is
an endomorphism of geometries.

Tpi1 - PG, 2\ {p+} = PG(n — 1,2):

L if at most n/2 entries of p are 1’s
P C(p) otherwise.

The shift map o,,; is also an automorphism of PG(n — 1,2) and commutes with
g1

4.4. PG(n — 1,2) as a geometry of subsets of an (n+ 1)-gon

Keeping all this in mind, it is clear when »n is even how to represent PG(n—1,2) as
a subset geometry on the regular (n + 1)-gon O,.;. The points in this representation
are the nonempty subsets of vertices of 0,.; containing no more than r/2 elements.

5. Centering the QUADRANGLE

The QUADRANGLE has 15 points and 15 lines and that 15 is also the number of
points in PG(3,2). Every one of the lines of the QUADRANGLE contains 3 points
and every point is contained in 3 lines.

The following quadric contained in PG(4,2) is globally fixed by the shift o%:

2= (o, xn,x0.%3,%) | > xx;=0

0<i<j<4

A point in PG(4,2) is contained in 2 if and only if either 3 or 4 of its components
are 1’s. The quadric 2 contains the following 3 points and the 3 lines and their images
under powers of 5. To be more precise, if xy is one of the points or lines below, then
X = O’lsc(xO), k= {1,2,3,4}.

ap=(0,1,1,1,1), A= (ao,c1,¢4),
b():(lao;la]-ao)a BOZ(aOabOaCO)’
co=(1,1,0,0,1), Co={(ap,bs,b3).

The geometry of points and lines of 2 is isomorphic to the QUADRANGLE; see [8].
The map 7s maps the points of this geometry bijectively onto the points of PG(3,2) (as
described in the previous section) and gives a representation of the QUADRANGLE
right in the center of this projective space. We consider PG(3,2) and this subgeometry
as subset geometries of the regular 5-gon. Then there are essentially 3 different points
corresponding to ag, by, and ¢y, above, as indicated by the diagrams in Fig. 3. Every
single one of the diagrams stands for 5 different points.

Furthermore, there are essentially 3 different lines corresponding to Ay, By and Cy,
above, as indicated by the diagrams in Fig. 4. Again, every single diagram stands for
5 lines.
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Fig. 3. The points of PG(3,2) and the QUADRANGLE.
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Fig. 4. The lines of the QUADRANGLE.
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Fig. 5. The remaining lines of PG(3,2).

The 20 lines in PG(3,2) that are not contained in the quadrangle correspond to the
4 diagrams in Fig. 5.

Using the rotated images of the diagrams in Fig. 3 as labels, it is possible to construct
the appealing picture of the QUADRANGLE in Fig. 6. This picture is called the doily
and is due to Payne. Use the diagrams in Fig. 5 to complete Fig. 6 to a picture of
the projective space. For a detailed discussion of the resulting model of PG(3,2), see
Chapter 5 of the ‘Geometrical Picture Book’ [12].

5.1. Rules for remembering the QUADRANGLE

Of course, the above representation of the QUADRANGLE can also be worded as
follows:

The QUADRANGLE defined on 5 points
Given a set § of 5 elements, the points of the QUADRANGLE
are the nonempty subsets of S containing 1 or 2 elements, The
lines are partitions of .S into 3 points of the QUADRANGLE.

If we extend S by one extra element e to a set T containing 6 elements, replace every
point of the QUADRANGLE corresponding to a one-clement set {v} by {v,e}, and
every line {{v},{w,x}, {».z}} by {{v,e},{w,x},{y,z}}, we arrive at the following
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Fig. 6. A picture of the QUADRANGLE.

well-known description of our geometry in terms of duads (sets of two elements) and
synthems (partitions into duads); see [8, p. 122].

The QUADRANGLE defined on 6 points
Given a set T of 6 elements, the points of the QUADRANGLE are
the subsets of T containing 2 elements. The lines are partitions
of § into 3 points of the QUADRANGLE.

This also gives a way to go back and forth between the above construction of the
doily and the construction of the doily in {12, Chapter 4].

5.2. An ovoid, a spread, some pentagons, and the Desargues configuration

The set of 5 points corresponding to the first diagram in Fig. 3 is an ovoid of the
QUADRANGLE. This means that every line of the QUADRANGLE has exactly one
point in common with this set. In PG(3,2) this set is an elliptic quadric. Also the lines
of the QUADRANGLE are just the tangent lines of the quadric, that is, the lines in
PG(3,2) that intersect this quadric in exactly one point.

The set of 5 lines corresponding to the diagram in the middle of Fig. 4 is a spread in
the QUADRANGLE. This means that every point of the QUADRANGLE is contained
in exactly one line in this set.

The sets of 5 lines each corresponding to the first and last of the diagrams in Fig. 4
are ordinary pentagons.

The Desargues configuration can be defined on a set S of 5 elements. It is the
geometry whose points are the subsets of size 2 of § and its lines are all sets of
points of the form {{x,y},{y,z},{x,z}}. This means that there is a nice picture of
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this configuration hiding right in the middle of the above representation of PG(3,2).
Its points correspond to the last two diagrams in Fig. 3 and its lines to the last two
diagrams in Fig. 5.

6. Centering the HEXAGON

In this section we derive an elementary representation of the HEXAGON on a regular
7-gon which parallels the representation of the QUADRANGLE on a regular 5-gon
derived in the previous section. We also identify a number of prominent substructures
of the HEXAGON.

The HEXAGON has 63 points and 63 lines and that 63 is also the number of points
of PG(5,2). Every one of the lines of the HEXAGON contains 3 points and every
point is contained in 3 lines.

The following quadric contained in PG(6,2) is globally fixed by the shift o3:

H = S (X0,%1,%2,X3,X4,X5,X6) E xix; =0

0<i<j<6

The quadric # contains the 9 points and the 9 lines in Table 1 and their images
under powers of ¢7. To be more precise, if xy is one of the points or lines in Table 1,
then x; = 6%(x0), k£ ={1,2,3,4,5,6}. Note that a point is contained in # if and only if
exactly 1,4 or 5 of its components are 1’s. The geometry defined by these 63 points
and 63 lines of # is isomorphic to the HEXAGON.

The best way to check that all this is true is to have a look at Schroth’s paper [13].
In this paper some finite pottery based on a cyclic automorphism of order 7 is used
to construct fantastic pictures of the HEXAGON and its dual. The notation in Table 1
coincides with the notation adopted in Schroth’s paper except for one coordinate trans-
formation which takes the basis {go, 91,92, 93, g4, gs. g6} in Schroth’s paper to the stan-
dard basis of the vector space AG(7,2) (note that in Table 1 the point gy is the first
one of the standard basis vectors).

The map 77 maps the 63 points of the quadric bijectively onto the points of PG(5,2)
and gives a representation of the HEXAGON right in the center of this protective space.

Table 1
The points and lines of the HEXAGON

av=(1,1,0,1,1,0,1) Ao =1(as,aq,by),
b():(oy 19170’0> 1>1) B():(Clo,fo,g()),
c=1(1,1,1,0,0,1,1) Co=(c1,¢6,dp),
d():(0,0,l,l,l,l,O) DOZ(bo,CQ,go),
e=(1,0,1,1,1,1,0) Ep={(ea,es; fo),
f():(o’l:o:lsl;oal) Foz(d(),e()»go)’
do :(1,0, 0, O, O, 0,0) G() = (bo,h5,i2),
hy=1(0,1,0,0,1,1,1) Hy = (dy, hy,1p),
in=1(0,1,1,1,0,0,1) Iy =(fo,h4,13),
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We consider PG(5,2) and this subgeometry as subset geometries of the regular 7-gon.
Then there are essentially 9 different points and lines, as indicated by the diagrams
in Fig. 7, and every single one of the diagrams stands for 7 different objects. The
labelling of the diagrams establishes the correspondence between these diagrams and
the points and lines in Table 1.

6.1. Rules for remembering the HEXAGON

Note that there are four different types of points: vertices (1), edges (3), isosceles
triangles (3 ), and Fano triangles (2) (it is because of Fig. 1 that we call the nonisosceles
triangles in Fig. 7 Fano triangles). Associated with every isosceles triangle there are
three different lines of the HEXAGON:

e A line that is a partition of the 7 vertices into two edges and the triangle, where the
length of both edges coincides with the length of the two sides of equal length of
the triangle. In Fig. 7 the lines Cy, Ey, and Ay are of this type.

e A line consisting of the triangle, its apex, and its base. In Fig. 7 the lines Fy, By,
and Dy are of this type.

e A line consisting of the isosceles triangle itself, plus two Fano triangles having
different orientations, such that the tip of the isosceles triangle is contained in both
Fano triangles and each of the other 6 vertices is contained in exactly one of the
three triangles. In Fig. 7 the lines Hy, Iy, and Gy are of this type.

6.2. Incidence graph of the Fano plane

Consider the geometry whose points are the 14 Fano triangles and whose lines are the
lines corresponding to the diagrams at the bottom of Fig. 7. This geometry is isomorphic
to the incidence graph of the Fano plane which, remember, is a generalized hexagon
of order (1,2). If we draw a picture of the incidence graph, we end up drawing the
picture in Fig. 2 again. Note also that the 7 lines corresponding to one of the diagrams
at the bottom of Fig. 7 form a spread of lines in the incidence graph. This means
that every point of the incidence graph is contained in exactly one of these 7 lines.
Consequently, the three diagrams at the bottom of Fig. 7 correspond to a partition of
the line set of the incidence graph into spreads.

6.3. PG(5,2) and pictures

As in the case of the QUADRANGLE, Fig. 7 can be completed to a representation of
PG(5,2) that corresponds to the special representation of PG(5,2) as a subset geometry
(as described above). This is done by adding 84 more diagrams of lines to the 9
diagrams in Fig. 7. (Note that PG(5,2) contains 651 lines. This means that we need a
total of 651/7 =93 diagrams to describe all of them.)

A picture of the HEXAGON would be an analog of Fig. 6. In fact, it is clear
from the way we constructed the diagrams that this picture will be Schroth’s
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Fig. 7. The points and lines of the HEXAGON.
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Fig. 9. A special path in the QUADRANGLE.

picture of this geometry in [13, Fig. 8] (see also the color pictures on his homepage
at (http://fbl.math.nat.tu-bs.de/ top/aschroth)).

6.4. The incidence graph of the HEXAGON

The incidence graph of the HEXAGON is the unique generalized 12-gon of order
(1,2). Consider the path in the hexagon depicted in Fig. 8. It contains the different
kinds of points and lines in Fig. 7 exactly once, except for its beginning and its end
which are two points of the same kind. If we fit together the 7 images of this path
under the cyclic group generated by g7, we arrive at a path that contains every point
and line of the HEXAGON exactly once and is invariant under ¢;. This enables us
to draw a picture of the incidence graph such that the vertices of the graph are the
vertices of a regular 126-gon, two adjacent vertices of the 126-gon are connected by
an edge, and rotations through 360/7° around the center of the 126-gon leave the
incidence graph invariant. See [12, Section 13.5] for a picture of the incidence graph
that has been constructed in this way.

Fig. 9 shows a similar path in the QUADRANGLE which can be used to model the
incidence graph of this geometry on a regular 30-gon such that two adjacent vertices of
the 30-gon are connected by an edge, and rotations through 360/5° around the center
of the 30-gon leave the incidence graph invariant. See [12, Section 13.4] for a picture
of the incidence graph that has been constructed in this way.
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6.5. A distance-2-ovoid, some 7-gons, the Coxeter graph, the Petersen graph, an
extra involution, and PG(3,2)

The set of points consisting of all isosceles triangles is a so-called distance-2-ovoid of
the HEXAGON. This means that every line in the geometry contains exactly one point
of this set. Note that this definition of a distance-2-ovoid coincides with the definition
of an ovoid in the QUADRANGLE that we introduced in the previous section. Ovoids
in generalized hexagons are defined in a different way and we only remark that the
HEXAGON does not contain any ovoids; see [16] for details.

In the fourth row of diagrams in Fig. 7, each of the three diagrams 4y, C,, and
Eq corresponds to a set of 7 lines that form an ordinary 7-gon. These are the 3
distinguished (mutually disjoint) 7-gons in Schroth’s picture of the HEXAGON.

If we remove the distance-2-ovoid above from the HEXAGON, we are left with the
union of two graphs. One is the incidence graph of the Fano plane described above. The
other one is the so-called Coxeter graph. It contains the 3 disjoint 7-gons. Apart from
the vertices and edges contained in these 7-gons, it also contains the one-element points
of the HEXAGON and the 3 sets of 7 edges each corresponding to the 3 diagrams
in the fifth row of diagrams in Fig. 7. Drawing a picture of this graph based on the
7-gons yields exactly the picture in [4, Fig. 2]. Removing the distinguished ovoid in
the QUADRANGLE leaves us with the Petersen graph, a graph which is closely related
to the Coxeter graph; see [1].

We also remark that our special distance-2-ovoid is an example of a so-called geo-
metric hyperplane, and that removing a geometric hyperplane from a finite generalized
polygon usually gives a connected geometry and not two connected geometries as noted
above; see [2]. ‘

Note that a reflection of the regular 7-gon that our HEXAGON is modelled on
translates into an automorphism of this geometry. This means that the HEXAGON
admits the dihedral group of degree 7 as a group of automorphisms; see also the
respective remark in [13].

There are exactly 35 points of the HEXAGON which are represented by triangles.
These points are the points of a Klein quadric in PG(5,2). We remark that this special
set of points can be identified in a natural way with the 35 lines of the projective
space PG(3,2); see [9] or [6, Section 15.4] for details.
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