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Based on the gospel of GENERALITY as proclaimed by the POLYGONS

that extends our two-dimensional FLATLAND by a third di-
mension. Of course nobody, not even I, his grandson (a hexa-
gon), believed in his story until, on the eve of the new mil-
lennium, I myself was abducted to GENERALIZED FLATLAND. I
discovered that this world extends our flat world and the
worlds of graphs and projective planes in a completely nat-
ural manner. As our world is populated by polygons such as
triangles, quadrangles/squares, pentagons, etc., this exten-
sion of our world contains generalized polygons, both us sim-
ple ones and much more complicated ones of breathtaking
abstract beauty. I also found that GENERALIZED FLATLAND CO-
incides with the land of mathematical buildings of rank 2 as
conceived by one of our foremost mathematicians J. Tits.
This means that all non-trivial mathematical buildings are
made up of natives of this mysterious land.

Preface
I will tell you my story and, as evidence of my claims, show
you drawings of my abductors, the four smallest natives of

ost of my readers will be familiar with the sad story of my grand-
Jather, an honourable square and eminent mathematician of FLAT-
LAND who was condemned to lifelong imprisonment for claiming to

have been abducted to SPACELAND, a world somewhere “out there”

proper GENERALIZED FLATLAND. These drawings are exten-
sions of beautiful renderings of closely related highly ho-
mogeneous graphs such as the complete graph on four ver-
tices, the Petersen graph, and the Coxeter graph (Fig. 1).
In fact, closer inspection discloses that my abductors share
many of the remarkable properties of these graphs and are
even more symmetric than the graphs they extend. I hope
that the overwhelming evidence I have compiled will con-
vince even the most sceptical among you that there is re-
ally life “out there” beyond FLATLAND, and that we are able,
and have an obligation, to claim our rightful place in full
GENERALITY.

A Painting in the Sand

It was the last day of our 2000th year. I spent this all-im-
portant day at the site of some recently discovered ruins
in the desert of OZ. After unearthing some mysterious
mathematical writings and drawings in the ruins they were
excavating at the time, the archaeologists in charge had in-

*Dedicated to my dear grandfather Edwin E. Abbot (1838-1926), the author of the infamous Flatland—a Romance in Many Dimensions [1].
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Figure 1. The complete graph on 4 vertices, the Petersen graph, and the Coxeter graph.

vited me to join their expedition as mathematical adviser.
Ihad gladly accepted their offer and on that very day started
deciphering the mathematical inscriptions that covered all
the walls and floors. It soon became clear to me that what
had been discovered here were some of the writings of the
famous mathematical prophet J. Tits, in which he claims
that there is a world he refers to as GENERALIZED FLATLAND
that extends our world. Of course every child knows that
these writings had been condemned as heresy and de-
stroyed a long time ago. I was afraid to reveal my discov-
ery to my colleagues in fear that they might destroy what
turned out to be of true mathematical beauty, even though
not referring to some real world as claimed by the prophet.
My colleagues had already retired to their tents while I was
still trying to unravel the mysteries of a pentagonal paint-
ing (Fig. 2) that occupied the interior of one of the rooms.
After several hours of work, I summarized in mathemati-
cal language what I had learned so far from the inscriptions
about GENERALIZED FLATLAND and its natives.

The geometry of GENERALIZED FLATLAND. Remember that a
(point-line) geometry consists of a nonempty set of poinis

and a nonempty set of subsets of the point set called lines,
such that every point is contained in at least two lines and
every line contains at least two points. Two geometries are
isomorphic if and only if there is a bijection between the
point sets of the two geometries that extends to a bijection
between their line sets.

Every graph can be interpreted as a geometry. Here the
vertices of the graph are the points, and associated with
every edge is a line consisting of the two vertices contained
in this edge. In particular, an ordinary n-gon is a geom-
etry that is isomorphic to the geometry of vertices and
edges of a regular n-gon in the plane, that is, one of the na-
tives of FLATLAND.

Just as a graph can have multiple edges, that is, two or
more edges that connect the same two vertices, a geom-
etry can have multiple lines that cannot be distinguished
by just looking at the points contained in them.

Let %9 be a geometry with point set P and line set L. A
geometry 9’ with point set P’ and line set L’ is contained
in 4, if the following three conditions are satisfied: (1) P’ C
P; (2) every line in L' is contained in a line in ; and (3) no
two lines of L’ are contained in one line of L.

Axioms for Generalized n-Gons of order (s, )
(Q1) In a generalized n-gon G of order (s,?) every line contains s + 1
points and every point is contained in ¢ + 1 lines.
(Q2) % does not contain any ordinary k-gons for 2 < k <n.

(Q3) Given two points, two lines, or a point and a line, there is at
least one ordinary n-gon in % that contains both objects.
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The natives of GENERALIZED FLATLAND are the generalized
polygons. Every generalized polygon is a generalized n-gon
for some n = 2 and has an order (s, 1), 1 =< s, t.

Generalized 2-gons, 3-gons, 4-gons, etc., are also called
generalized digons, triangles, quadrangles, etc., respec-
tively. Furthermore, an ordinary digon is just a graph con-
sisting of two vertices that are connected by two edges. If
a generalized polygon is of order (s, t), s = t, we also say
that it is of order s. A generalized n-gon is finite if it con-
tains only finitely many points and lines.

How | came to GENERALIZED FLATLAND and what | saw there
Although I did not fully understand these words, everything

that I had learned in university seemed to suggest that we
ordinary n-gons are the only generalized polygons and that
therefore GENERALIZED FLATLAND = FLATLAND. At the same
time I felt an irresistible urge to study the drawing (Fig. 2)
further. At that point only a few grains of sand in the hour-
glass separated us from the new millennium.

Clearly, this drawing was supposed to be a picture of
some geometry with 15 points and 15 lines (the 5 sides of
the pentagon plus the 5 medians plus 5 circle segments),
each point contained in 3 lines and each line containing 3
points. The overall shape seemed to suggest that this was
a generalized pentagon, but I quickly discovered a number
of quadrangles in the picture, no digons and no triangles,

Figure 2. A sandpainting of the QUADRANGLE.
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though. A true generalized quadrangle of order 2? Every-
thing in me revolted against the mere idea and I exclaimed
aloud: “GENERALIZED FLATLAND, what nonsense!”

Straightaway I became conscious of a presence and
someone whispering, “Nonsense, is it indeed?” At the same
time the painting on the floor seemed to come alive and
right in front of my eyes first turned into a square, then into
a pentagon, and then it took on ever-increasing “gonalities”
until, finally, it consolidated into a 15-gon.

STRANGER: “What kind of mathematician are you not to be-
lieve in axioms and proofs that your own mind supplies to
you? Do you really have to see to believe? Behold, then, as
I am the generalized quadrangle whose shadow you have
been staring at for such a long time.”

I “Pardon me, my Lord, but although you seem to have
many gonalities they all seem to be distinct and uncon-
nected, and at the moment I only see a 15-gon.”

STRANGER: “Why, of course this is because I am thick—that
is, a generalized polygon that has at least 3 points to every
line and at least 3 lines through every point. One of us thick
ones just does not fit into FLATLAND, and a thin generalized
polygon like you can only see one of my ordinary n-gons at
a time. Ah, I can see it in your eyes, you still don’t believe
me. Stay!” [I was inching my way towards the entrance of
the room.] “I will prove to you that GENERALIZED FLATLAND #
FLATLAND. Let me first tell you about the generalized digons,
the simplest generalized polygons. In a generalized digon
there is a line that contains all the points of the geometry,
and all lines are just copies of this line. Of course this also
implies that every point is contained in all lines. Q. E.D.”

I: “Dear Sir, with all due respect, but, being just a collec-
tion of identical copies of a line (which most certainly lives
in FLATLAND), I cannot but think of these geometries as lines
who pretend to be more than what they really are. If this
is the only evidence you can muster, I have to say that I am
not convinced.”

STRANGER: “Of course you are right, but how can you be so
hasty? Following good mathematical practice, I started by cov-
ering all those examples that, although not really having a life
of their own at first sight, still fit the axioms. Now, listen fur-
ther. The next step up from you ordinary polygons are the
slim generalized polygons. Being neither thin nor thick, they
are lost inanimate souls caught between your world and mine,
present in both yet not belonging to either. For example, the
simple square grids are examples of slim generalized quad-
rangles. Mistaking these pitiable beings as natural features,
you have built your cities based on their underlying structure.”

As he said this the stranger pointed to a drawing of a
grid in one of the corners of the room (see Figure 3).

I: “Hmm, again these beings can still be considered as be-
longing to FLATLAND, and as you said yourself, they are re-
ally quite dead and amount to nothing special.”

STRANGER: “Ah, you are really very hard to please. How shall
I convince you? Well, all good things come in three, so let
us move on to the generalized triangles. By Axiom Q2, a
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Figure 3. A grid and its dual, two slim generalized quadrangles. The
black and gray lines in the grid correspond to the points of the cor-
responding colour in the graph. (The dual makes its appearance later
in the story.)

generalized n-gon, n > 2, does not contain any digons. This
just means that 2 of its points are connected by at most 1
line and that 2 of its lines intersect in at most 1 point. This
observation and Axiom Q3 imply that in a generalized tri-
angle 2 points are contained in exactly 1 line and 2 lines in-
tersect in exactly 1 point.”

I “Wait, that sounds very familiar! Doesn’t this mean that
the thick generalized triangles are just the projective
planes?”

STRANGER: “Finally, you are beginning to understand. Gen-
eralized triangles are something your mathematicians have
known for a long time, only not by their rightful name.”

I: “Oh yes, I see. But still, projective planes, or generalized
triangles, are just abstract mathematical structures. They
do not really exist.”

STRANGER: “That does it! Deeds are called for and not words.
I will introduce you to the members of my family: the POLY-
GONS consisting of the DIGON, the TRIANGLE (also known as the
smallest projective plane or the Fano plane), the QUADRANGLE
(myself), and the Siamese twins the HEXAGON and its dual. We
are the only generalized polygons with exactly 3 points on
every line and 3 lines through every point. As our names sug-
gest, we are generalized digon, triangle, quadrangle, and hexa-
gon, respectively. As a family we occupy as prominent a po-
sition in GENERALIZED FLATLAND as my brother the TRIANGLE does
among the projective planes. Now, out of your plane you go!”

At this moment an unspeakable horror seized me and I
was no longer “in” the room with the painting. Neverthe-
less, I was still able to see it in a strange way that reminded
me very much of the account of SPACELAND that my grand-
father had given. I noticed that the painting had changed,
as now a small drawing of a hexagon was visible at the spot
where I had stood just a moment ago. I turned “around”
and for the first time I beheld the QUADRANGLE in all his glory
and realized that just as the painting was his shadow, the
addition to the painting was my own. Before I had been
separated from FLATLAND I must have uttered a loud cry, be-
cause some of the archaeologists were running towards the
very spot I had occupied just a moment earlier.

The TRIANGLE
QUADRANGLE: “Now listen, you need to learn as much as you
can about us if, on your return, you don’t want to share



\
Figure 4. The most famous shadow of the TRIANGLE.

your grandfather’s fate. Meet my brother the TRIANGLE, the
smallest projective plane!”

The 7-Gonality of the TrianaLe He vanished, and his place
was taken by a stranger who introduced himself as the
TRIANGLE. I noticed that my friends the archaeologists were
frantically gesturing at the painting on the floor, which had
also changed its shape. Clearly, this was the shadow of the
TRIANGLE (see Figure 4 for a reconstruction of what my
friends saw). As one person, my companions were seized
by a great fear, and first fled the room, then the excavation
site, and finally the desert itself, never to return.

TRIANGLE: “Although being very small and easily understood,
I hold the key to a full understanding of my more compli-
cated brothers the HEXAGONS and the QUADRANGLE! To illus-
trate what I mean by this, I need to show you a very spe-
cial shadow of myself on a regular 7-gon and derive a neat
labelling of my points and lines that will prove extremely
useful in understanding the HEXAGONS. If you count care-
fully, you will find that I and my shadows have exactly 7
points and 7 lines.”

While he was saying this he was turning inside out in a
completely unexplainable manner and his shadow took on
a 7-gonal appearance. Then he made a sudden movement
that resulted in the mirror image of this 7-gonal shadow
(Fig. 5).

In both cases the points of the shadow were the 7 points
of the underlying 7-gon, and its lines were the images of

Figure 5. The TRIANGLE in terms of positive and negative Fano trian-
gles.

one of the two triangles under successive rotations through
360/7 degrees around the center of the 7-gon.

I: “How marvellous! Who would have guessed by just look-
ing at your initial shadow, which only exhibited symme-
tries of orders 2 and 3, that you also have a symmetry of
order 7. By combining all these symmetries we arrive at a
total of 2 - 3 - 7 = 42 symmetries. Your brother mentioned
that you are also an incarnation of the smallest projective
plane. As such you should have even more symmetries, is
that not so?”

TRIANGLE: “That is true indeed. In fact, just as your shadow
does not capture your full being, our shadows only capture
part of our complex structure. I trust that you are familiar
with the concept of a symmetry group of a geometry? Well
then, just remember that for me and my brothers our
symmetry groups act sharply transitively on the ordered
(n + 1)-gons contained in us, where n is our gonality. This
means that the orders of these groups coincide with the
number of ordered (n + 1)-gons contained in us.”

I “Wait, bear with me while I am trying to understand what
you just said. You are a generalized triangle, therefore your
gonality is 3. From what you just said it is clear that the or-
dered quadrangles contained in you are very important to
you.”

TRIANGLE: “So far your reasoning is flawless, but can you
deduce how many such ordered quadrangles are contained
in me?”

I “I will try. You contain 7 points from which to choose the
first vertex p of an ordered quadrangle. Any of the re-
maining 6 points can be chosen as the second vertex q. The
connecting line of p and ¢ contains one further point that
cannot be chosen as the third vertex . This means that
there are only 4 points left to choose this vertex from. The
lines connecting p and q, p and 7, and ¢ and » contain a to-
tal of 6 points. This means that the last vertex s in the quad-
rangle is the remaining 7th point. This implies that you con-
tain a total of 7 - 6 - 4 = 168 quadrangles! This means that
your symmetry group has order 168. You are truly sym-
metric!”

TRIANGLE: “Very good. You really think that I am very sym-
metric? Wait until you encounter the QUADRANGLE and the
HEXAGONS. Their symmetry groups have orders 720 and
6196, respectively!”

. “Fantastic, but what about the DIGON?”

TRIANGLE: “Well spotted. Its symmetry group has order 36,
and I am sure you will be able to verify this for yourself
once you think about it for a moment. But enough of this.
We do not have much time. Let us again consider my 7-go-
nal shadows. I call the lines in the shadow that correspond
to the left and right diagrams positive and negative Fano
triangles. One more model of me is hiding in this picture.
Its points are the left Fano triangles and its lines are the
right Fano triangles. Here a point is abstractly contained in
a line if and only if the corresponding triangles have ex-
actly one vertex of the underlying 7-gon in common. You
will understand what I mean by this after you have been
instructed in the mysteries of doubling.”
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The punishment of doubling

TRIANGLE: “The double (also incidence graph) of a point-line
geometry is the graph whose vertices are the points and
lines of the geometry. Two vertices are connected by an
edge if and only if they correspond to a point and a line
such that the point is contained in the line. Note that all
the information about a geometry is contained in its dou-
ble, which means that you don’t really die when you are
doubled. On the other hand, since doubles also get
squashed into your FLATLAND, it is generally believed that
we lose all awareness of ourselves after having been dou-
bled. In fact, traditionally the worst punishment for a thick
generalized polygon is to be doubled, and this is exactly
what is going to happen to us POLYGONS if the other thick
generalized polygons find out about us talking to you.”

I “If I understand you correctly, then the double of one of
us ordinary n-gons should be an ordinary 2n-gon and, since
we live in FLATLAND to start with and our status is directly
dependent on our gonality, doubling should be just about
the best thing that can happen to one of us.”

TRIANGLE: “You are very quick; but, unlike you thin ones,
most thick generalized polygons cease to be generalized
polygons after being doubled, and their gonality is irre-
trievably lost in the process of doubling.”

I “But why? After all, any ordinary k-gon in a geometry be-
comes an ordinary 2k-gon in its double and any ordinary (-
gon in the double comes from an ordinary l/2-gon in the
original geometry. So, any doubled geometry contains only
ordinary n-gons with even n. Also, if the original geometry
contains no ordinary k-gons with £ <m, then the double
contains no ordinary k-gons with & < 2n. Doesn’t this im-
ply that the double of a generalized polygon is just another
generalized polygon?”

TRIANGLE: “You forgot about Axiom Q1. Your arguments only
take care of Axioms Q2 and Q3. In fact, it is exactly the gen-
eralized n-gons of order ¢ that turn into slim generalized 2n-
gons after doubling. This means that, for example, we the
POLYGONS are still generalized polygons after having been dou-
bled. Using this revolutionary insight, my brothers and I dis-
covered we could deliberately double ourselves, live in this
state in FLATLAND for extended periods of time, and revert to
our usual states whenever it pleased us. It was during those
visits that we took a liking to your kind and decided to help
you claim your rightful place in GENERALIZED FLATLAND.”

He proceeded to demonstrate what he meant by dou-
bling himself, a process too awful to describe in detail, at
the end of which he (or his double) coincided with his
shadow. Figure 6 shows the double of the TRIANGLE whose
vertices have been labelled with the two different kinds of
Fano triangles. It is clear that this double is a slim gener-
alized hexagon.

The HEXAGONS

TRIANGLE: “So far it seems that we have found in you a fit
apostle for the gospel of GENERALITY. But let us see how you
fare in the presence of the HEXAGONS.”
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Figure 6. The double of the TRIANGLE. Vertices are connected by an

edge if the triangles in their labels share exactly one point of the un-
derlying 7-gon.

A narrow escape With a laugh he vanished and his place
was taken by a being so glorious in appearance and
complexity that at first I was too dazzled to pay any
attention to what the being was saying. But even when I
had recovered enough to pay attention to the noise
emanating from it, I could not make out any words. Also,
the being seemed to flicker between two completely
different states. As I watched, it became more and more
agitated and started making threatening moves towards me.
Finally, something clicked into place in my mind, and
flicking open a certain page in my notebook I reread a
passage that I had translated earlier on and that had made
no sense to me at that time.

The dual of a geometry %4 is constructed by interchang-
ing the roles of points and lines in . More precisely, its
points are the lines of %, and to every point of 4 corre-
sponds a line of the dual consisting of all lines in % con-
taining this point. A geometry is called self-dual if it is
isomorphic to its dual, and an isomorphism between a
geometry and its dual is called a duality.

Clearly, I thought to myself, if all this is true, then we
ordinary n-gons are self-dual; the dual of a grid is a com-
plete bipartite graph; and, come to think of it, there was
such a graph drawn right next to the grid that the QUAD-
RANGLE had pointed out to me (see again Figure 3). Also,
since the TRIANGLE and the QUADRANGLE are the only small-
est thick generalized triangle and quadrangle, they must
both be self-dual, that is, coincide with their duals. In fact,
the self-duality of the TRIANGLE follows immediately from
its description in terms of Fano triangles, and a duality cor-



responds to a reflection of Figure 6 through its vertical sym-
metry axis. On the other hand, the HEXAGONS must be two
separate geometries that are forever intertwined by a du-
ality; what I was witnessing here was the two HEXAGONS
speaking to me at the same time. Time was running out,
and if I didn’t want to be squashed under the weight of the
HEXAGONS, I had to find a way to communicate with them.
I started blinking my eyes and ears in unison with the flick-
ering of the HEXAGONS and, lo and behold, I was able to see
and hear only one of them.

HEXAGON: “Congratulations. One moment longer, and we
would have doubled you (and your intelligence).”

Here he laughed a mischievous laugh, and it occurred
to me in a flash that I had just missed a unique opportunity
to raise my gonality from 6 to 12.

A simple numbers test

HEXAGON: “But then again, doubling is a fairly painful
process and you might not have enjoyed it. Anyway, please
refer to me as the (Cayley) HEXAGON. I will speak for both
myself and my dual. In the future you may encounter other
geometries who will pretend to be one of us POLYGONS and
try to dissuade you from lighting the fire of GENERALITY in
FLATLAND. Therefore, let us start by deducing some basic
properties of us HEXAGONS, such as the number of our points
and lines, and a simple test that will allow you to distin-
guish us from any impostor.

“You have seen that points and lines play similar roles.
So let us refer to the points and lines of a geometry jointly
as its vertices, and inductively define a distance between
the vertices. The vertices at distance 1 from a point are
the lines through this point, and the vertices at distance
1 from a line are the points on this line. Given a vertex e,
the only vertex at distance 0 from e is e itself. A vertex is
at distance n > 1 from e if it is not at distance m < n and
if it is at distance 1 from a vertex at distance » — 1 from
e. The diameter of a geometry is the maximum distance
between two of its vertices. As an immediate consequence
of Axiom Q3 we see that a generalized n-gon has diame-
ter n.”

. “Does this mean that if e is a point, then all vertices at
odd and even distances from e are lines and points, re-
spectively?”

HEXAGON: “That is correct. Given one of our vertices e, we
can now count the number Df, of vertices at distance 7 from
e using the axioms, the inductive definition above, and the
fact that there are exactly 3 vertices at distance 1 from e.
We conclude that D§ =1, D{ =3, Dy, =2D;,_{for2=n =
5. If e is a point, then a line is at distance 1, 3, or 5. This
means that there is a total of 3 + 12 + 48 = 63 lines. The
dual argument yields that there are also 63 points. Conse-
quently, Dg = 63 — (1 + 6 + 24) = 32.

“Simple counting arguments also show that a geometry
with 63 points and 63 lines is one of us HEXAGONS if and only
if, for all n with 1 =n = 5 and vertices e, the numbers D,
coincide with the corresponding ones in us HEXAGONS. Us-

ing similar arguments, simple counting criteria can be de-
duced for any finite generalized polygon.”

I “Of course. In fact, I can see immediately that a geome-
try with 7 points and 7 lines is your brother the TRIANGLE if
and only if Df = 3 and D$ = 6 for all its vertices.”

From TRIANGLE to HEXAGON

HEXAGON: “Very good. Now behold my shadow (Fig. 7).
Pretty, isn’t it, . . . but I am sure you would not be able to
remember it, if I didn’t tell you a little bit more about the
way I am built. In the following I will describe my vertices
in terms of the vertices of my brother the TRIANGLE. To avoid
confusion, I will refer to vertices of the TRIANGLE as T-ver-
tices and vertices of me the HEXAGON as H-vertices. A point-
line pair {p, L} of a geometry is called a flag or anti-flag if
p is or is not contained in L, respectively.

“Look at me closely. Can you see that I have 4 different

kinds of H-points? These are the T-points (7), T-lines (7),
flags (7 T-points - 3 T-lines through a T-point = 21 flags)
and anti-flags (7 T-points - 4 T-lines not through a T-point =
28 anti-flags) of the TRIANGLE. This gives a total of 7 + 7 +
21 + 28 = 63 H-points. There are two different kinds of H-
lines containing 3 H-points each. H-lines of the first kind
are sets of the form {p, L, {p, L}}, where {p, L} is a flag of
the TRIANGLE. Clearly there are as many H-lines of this type
as there are flags of the TRIANGLE; that is, there are 21 such
H-lines. An H-line of the second kind is of the form {{p, L},
{q, M}, {r, N}}, where (1) {p, L} is a flag; (2) p, ¢q, and r are
the 3 T-points contained in L; (3) L, M, and N are the 3 T-
lines through p. This implies that both {q, M} and {r, N} are
anti-flags. It is clear that there are two such H-lines asso-
ciated with every flag of the TRIANGLE, that is, there are 42
such H-lines. This gives a total of 21 + 42 = 63 H-lines.”
I “Wait, wait, let me check this using the numbers test.
Hmm, from what the TRIANGLE has told me about itself I
know that its symmetry group acts transitively on its sets
of points, lines, flags, and anti-flags. This means that none
of these objects is distinguished in any way, and it suffices
to check that the numbers D;, pan out for the four essen-
tially different kinds of H-points and the two essentially dif-
ferent kinds of H-lines. Now, if we take . ..”

A magic labelling of H-points and H-lines
HEXAGON: “Correct, correct, but the rest is just trivial book-
keeping. I am afraid we don’t have the time for this right
now. Instead, let us draw my shadow based on the above
description. We start with the model of the TRIANGLE whose
points and lines are positive and negative Fano triangles,
as in Figure 6. With respect to this model there are 9 es-
sentially different H-points of the HEXAGON as illustrated by
the first row of labels in Figure 8. The remaining (labels of)
H-points are the images of these 9 labels under successive
rotations through 360/7 degrees around the center of the
uhderlying 7-gon.

“We replace every label by a simpler label as indicated
by the second row in Figure 8. Rotated labels get replaced
by new labels that have been rotated in a corresponding

VOLUME 23, NUMBER 4, 2001 39



The POLYGONS

~_ (QUADRANGLE ] _

Figure 7. The poLYGoNs. The points and lines of the QUADRANGLE (HEXAGON)
correspond to the subsets of size 1, 2, (and 3) of a 5-gon (7-gon). To avoid
a crowded appearance of the HExaGoN, the 1-element subsets of the 7-gon
are represented by (small) solid blue points. The lines in the QUADRANGLE
correspond to partitions of the 5-gon into 1- and 2-element subsets; see
Figure 10. For the lines of the HExaGON in terms of the labels of its points
see Figure 9. Highlighted in the diagrams are the points of geometric hyper-

planes—purple (TRIANGLE and QUADRANGLE) and green (HEXAGON). After removing

these geometric hyperplanes from these geometries, we are left with models

of some of the most homogeneous graphs—the complete graph on four vertices
TRIANGLE

in the case of the TRIANGLE, the Petersen graph in the case of the QuADRANGLE, and the
disjoint union of the Coxeter graph (blue points and blue and green lines) and the

Heawood graph (yellow points and lines) in the case of the HExaGoN. Note that every
point of the picon forms a geometric hyperplane.
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Figure 8. Labels for the points of the HEXAGON.

manner. Note that the new labels correspond in a natural
way to all 1-, 2-, and 3-element subsets of the set consist-
ing of the 7 vertices of the underlying 7-gon. In terms of the
new labels there are 9 essentially different kinds of lines of
the HEXAGON; see Figure 9.

“It is clear that every symmetry and duality of the TRI-

ANGLE induces a symmetry of the HEXAGON. Encoded in the
labels is an order 7 symmetry of the TRIANGLE and an order
2 symmetry that corresponds to a duality of the TRIANGLE.
Using the labels, it is easy to reconstruct my shadow; see
Figure 7.”
I “I understand all this. Except for the step where you re-
place the original labels by new labels. It seems that the
new label associated with a label containing two Fano tri-
angles is either the symmetric difference of the two trian-
gles or the complement of this difference.”

Strength in projective spaces

HEXAGON: “Ah, yes that is correct. In fact, the main source
of our power can be explained using the mathematical op-
eration that corresponds to this ‘step.’” Let S be a set with
an odd number ‘S\ > 1 of elements, and let Sy be the set
of all nonempty subsets of S with fewer than \Si/2 elements.
If A, BE Sy, A # B, let D be the symmetric difference of
A and B and define A ® B to be D if D € S5 or S\ D oth-
erwise. We define a geometry %(S) whose point set is S and
whose lines are the sets {A, B, A © B} where A and B are
distinct elements of S. Every line in this geometry contains
3 points. Furthermore, given two points P and ¢ on a line,
the third point on the line is always P ® Q. This implies
that any two points in the geometry are contained in ex-
actly one line. Closer inspection reveals that the geometry
is isomorphic to the projective space of dimension |S| — 2

over the field with two elements, for short PG(\S\ -2, 2).
See [10] and [8] for more details about this representation
of PG(|S| — 2, 2).

“As you have already observed, the rule that assigns a
new label to one of the original labels can also be stated in
terms of the operation €. Here S consists of the vertices
of the underlying 7-gon, and if a label consists of two Fano
triangles A and B (sets of three vertices), then the new la-
bel is A & B.

“With the above remarks it should be clear to you that
my H-points coincide with the points of the 5-dimensional
projective space PG(5, 2). Furthermore, . . .”

I “I think I know what you are getting at. Your lines are
also . . . wait, let me double-check this . . . Yes, any two H-
points on any of your H-lines @-add up to the third H-point
on this H-line.”

HEXAGON: “Exactly! This means that I am a subgeometry
right at the center of this projective space, which is an im-
portant source of power for me.”

I “So there really are beings that live in spaces of a di-
mension greater than two, just as my grandfather claimed
(although this dimension is quite different from the ‘tangi-
ble’ dimensions he had in mind!).”

Hyperplanes, Heawood graph, and Coxeter graph

I “How miraculously all this fits together! But I am sure
that there is much more beauty hiding in your shadow. For
example, I just noticed that every one of the H-line labels
in Figure 9 contains exactly one isosceles triangle. This
seems to suggest that the H-points that correspond to these
labels form a very special set of points.”

HEXAGON: “We have indeed made the right choice in select-
ing you to be our messenger! Your remark reminds me of

21 point/line/flags

48 flag/anti-flag/anti-flags

DI

DEDHOS

o o

Figure 9. Labels for the lines of the HEXAGON.
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something else we should talk about. By now you will prob-
ably have guessed that the kind of conversation we are hav-
ing is extremely dangerous. It is only possible during the
first hours of a new millennium, because at this time the
BUILDINGS we are part of are too busy celebrating to broad-
cast every word that is said to the rest of (thick) GENERAL-
IZED FLATLAND. To be able to communicate with us even af-
ter your return to FLATLAND, you have to know a little about
the flat subgeometries that my different kinds of H-points
and H-lines correspond to.

“A geometric hyperplane H of a geometry is a set of
points such that every line either contains exactly one point
of H or is completely contained in H. The set of all flag H-
points (isosceles triangles) is a special geometric hyper-
plane that intersects every H-line in exactly one point
(every one of the labels in Figure 9 contains exactly one
such triangle). Imagine that we remove the points of this
hyperplane from me and my H-lines. Then we are left with
two famous graphs: the Coxeter graph, and the double of
the TRIANGLE, which in FLATLAND is also known as the Hea-
wood graph.

“The vertices of the Heawood graph are the H-points that
correspond to points and lines of the TRIANGLE. The edges
of this graph are induced by the H-lines of the point/line/flag
type. The picture of the Heawood graph right in the mid-
dle of my shadow in Figure 7 corresponds to Figure 6.

“The vertices of the Coxeter graph are the H-points cor-
responding to the anti-flags of the TRIANGLE. The edges of
this graph are induced by the H-lines of the flag/anti-
flag/anti-flag type. This corresponds to a well-known rep-
resentation of the Coxeter graph; see [6]. Also, the picture
of this graph in the middle of Figure 7 corresponds, via
some obvious rearrangements, to the most famous repre-
sentation of this graph depicted in Figure 1 (three 7-gons
joined together via 7 extra points).

“By the way, the presence of a special hyperplane as
above distinguishes me from my dual. Also, after you are
back in FLATLAND I will keep these two graphs immersed in
FLATLAND so that you can communicate with me via either
one of them.”

Misfortune Strikes
At this moment the BUILDING we were hiding in started shak-
ing violently.

HEXAGON: “We are discovered! Dear friend, always remem-
ber what we have told you today, and no matter what hap-
pens now you should be able to find me and my brothers
again and finish what we have begun. Beware of the ocTa-
GON in the PENTAGON, because . . .~
THUNDERING VOICE: “HEXAGON, you and your brothers have
committed the heinous crime of communicating with the
thin ones. For this you will suffer the terrible fate of
doubling.”

At this moment the ceiling slammed down on my new
friend and me, and we were both squashed back into FLAT-
LAND. When I regained consciousness it was morning, and

I found myself in the very room where all this had started.
I automatically assumed that the night’s adventure had
been a dream induced by what I had read on the walls. But
then I discovered that all the writings had vanished and that
none of my companions was anywhere to be seen. I also
found, to my utter amazement, that my gonality had been
raised to 12—I had been doubled. Although still somewhat
shaken, I immediately started looking for the doubles of
the POLYGONS—to no avail. I realized that, using my doubled
1Q and the unprocessed notes in my notebook, I first had
to deduce as much as possible about the POLYGONS and their
doubles; then, to convince you my fellow flatlanders of
their existence, locate their whereabouts in FLATLAND, and
with their help claim our rightful place in full GENERALITY.

The euabRANGLE and the piGcoN

It was a long journey back home. I spent most of the time
organizing my notes and developing a mathematical theory
of GENERALIZED FLATLAND.

Following the procedures the HEXAGON had introduced
me to, it was easy to show that the QUADRANGLE has 15 points
and 15 lines, that its diameter is 4, that D§ = 1, D] = 3, D§ =
6, D§ = 12, D = 8 for all vertices of the QUADRANGLE, and
that these numbers suffice to recognize the QUADRANGLE
among geometries. I also found a geometric construction
of the QUADRANGLE as a derived geometry at a point of the
HEXAGON; see [3]. However, this construction is rather com-
plicated, and executing it within the shadow of the HEXA-
GON yields a model of the QUADRANGLE with only very few
symimetries. After two sleepless days and nights, I finally
succeeded in reconstructing the shadow that I first saw in
the ruins.

The Shadow of the auabrancLE revisited Let S be the set of
vertices of a regular pentagon. The points of the shadow
are all elements of S}, that is, all 1- and 2-element subsets
of S. The lines are the partitions of S into two 2-element
subsets and one l-element subset of S. Then there are
essentially 3 different kinds of points and 3 different kinds
of lines, as illustrated by the labels in Figure 10. Of course
this representation parallels the representation of the
HEXAGON as a subgeometry of the projective space PG(5, 2)
and identifies the QUADRANGLE as a subgeometry right in
the middle PG(3, 2). Using the labels, it is possible to
reconstruct the shadow of the QUADRANGLE as in Figure 7.

Geometric hyperplane and Petersen graph Just like the
HEXAGON, the QUADRANGLE also contains geometric hyper-
planes that intersect every line in exactly one point. One is
visible right in the centre of its shadow. It consists of the
five 1-point subsets of S. If we remove the points of this
hyperplane from the QUADRANGLE and its lines, we are left
with the famous Petersen graph. Also, the picture of
this graph in the diagram of the QUADRANGLE in Figure 7
corresponds to the most famous representation of this
graph depicted in Figure 1 (two 5-gons joined together). I
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Figure 10. The points and lines of the QUADRANGLE.

assume that the QUADRANGLE planned to stay in touch with
us in this form.

For completeness’ sake I remark that the lines of the TRI-
ANGLE are geometric hyperplanes. After deleting one of
these hyperplanes from the TRIANGLE, we are left with the
complete graph on four vertices. As you are probably
aware, this graph, the Petersen graph, and the Coxeter
graph are almost as homogeneous as the POLYGONS they are
contained in; see [2].

The derived geometry and from piGoN to QUADRANGLE YOu
are asking me where in all this the DIGON fits in? Although
I never had the honor of meeting the pIGON, I found it very
easy to reconstruct its shadow (see Fig. 7). Note that it
contains 3 points and 3 lines, and that every line contains
all the points. Your first reaction may be similar to mine
when the QUADRANGLE first introduced me to generalized
digons: “What’s the big deal?” Well, it turns out that there
is a labelling of the QUADRANGLE in terms of the DIGON that
is the direct equivalent of the labelling of the HEXAGON in
terms of the TRIANGLE: The points of the QUADRANGLE are the
points, lines, and flags of the pDIGON. There are two kinds of
lines. The lines of the first kind are of the form {p, L, {p, L}},
where {p, L} is a flag of the DIGON. The lines of the second
kind are of the form {{p, L}, {q, M}, {r, N}} such that {p, q, 7}
and {L, M, N} are the point and line sets of the DIGON.

The Doubles of the PoLYGONS
It seems obvious to me that the POLYGONS intended to be
present in FLATLAND in the form of some special graphs. Ac-
cording to their original plan they would be surveying
proper GENERALIZED FLATLAND by using only the points of one
of their special geometric hyperplanes, with the rest of their
bodies immersed in FLATLAND (in this form they are almost
invisible). If this is what they are doing, then to get in touch
with them we have to locate the graphs in Figure 1 and Fig-
ure 6. Of course it is also possible that even surveying just
using a geometric hyperplane is too risky at the moment
and they are existing only as their doubles and are fully im-
mersed in FLATLAND.

My investigations had confirmed my belief that the PoLY-
GONs had revealed their most symmetric shadows and sub-

geometries to me. I therefore proceeded to reconstruct the
most symmetric representations of their doubles.

I had already encountered an attractive picture of the
double of the TRIANGLE in Figure 6. Also, it turned out that
the double of the DIGON is the complete bipartite graph on
6 vertices in Figure 3. Of course this meant that, without
my realising it at the time, the DIGON had been present in
this form throughout my conversations with his brothers
right next to their shadows.

To construct the best picture of the double of the QUAD-
RANGLE, I considered the path in this geometry depicted in
Figure 11. Since this is a path, two of its adjacent vertices
correspond to a flag in the QUADRANGLE. Furthermore, this
path contains the different kinds of points and lines in Fig-
ure 10 exactly once, except for its beginning and its end,
which are two points of the same kind. If we fit together
the 5 images of this path under rotations of the 5-gon un-
derlying the labels, we arrive at a path that contains every
point and line of the QUADRANGLE exactly once and is in-
variant under the rotations. This enables us to draw a pic-
ture of the double such that the vertices of the graph are
the vertices of a 30-gon, two adjacent vertices of the 30-gon
are connected by an edge, and rotations through 360/5 de-
grees around the center of the 30-gon leave the double in-
variant. Figure 12 is a picture of the double that has been
constructed in this way. This also shows that the QUAD-
RANGLE contains 15-gons like the one I saw in the ruins and
that it is self-dual. Note that the reflection through the ver-
tical symmetry axis of the diagram corresponds to a dual-
ity of the QUADRANGLE.

Figure 13 shows a similar path in the HEXAGON which can
be used to model the double of this geometry on a regular
126-gon such that two adjacent vertices of this polygon are
connected by an edge, and rotations through 360/7 degrees
around the center of the polygon leave the double invari-
ant. See [9, Section 13.5] for a picture of the double that
has been constructed in this way.

Where to From Here?

When I finally arrived back in my hometown, I discovered
that in my absence I had been accused of high treason and
the police were looking for me everywhere. All this re-

Figure 11. A special path in the QUADRANGLE.
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Figure 12. The double of the QUADRANGLE, a generalized octagon.

minded me so much of what had happened to my grandfa-
ther. Of course I was only a boy when he first told me about
his abduction, and at that time his story sounded like the
ramblings of a madman to me. But now that I had been ab-
ducted myself and reconsidered what he had told me with
my doubled intellect, it all made perfect mathematical
sense. So, why had he been locked away for something that

our incredibly intelligent multigonal rulers should have rec-
ognized as the truth? And why were the authorities after
me all of a sudden? I needed time to think. Since the po-
lice were looking for a hexagon I did not have to fear too
much, of course.

But the HEXAGON had warned me to beware of the “ocTa-
GON in the PENTAGON.” What had he meant by this? A (gen-

Figure 13. A special path in the HExAGON.
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eralized) octagon in a (generalized) pentagon? There must
be infinitely many such combinations! On the other hand,
the way he had pronounced PENTAGON and OCTAGON was very
similar to the way he pronounced the names of his brothers.
Did this suggest that I had to look for the smallest thick gen-
eralized pentagons and octagons and that these were per-
haps somehow related to the PoLYGONS? I returned to my
studies, and after a couple of weeks of hard work I uncov-
ered some more fundamental properties of generalized poly-
gons that suggested an answer to my problem.

All generalized n-gons we have to worry about are fi-
nite, that is, both their point and line sets are finite sets.
Remember that by Axiom Q1 a generalized n-gon 4 is of
order (s, 1), s, t = 1, if every line contains s + 1 points and
every point is contained in ¢ + 1 lines. If s = ¢, we also say
that % is of order s. This means that the POLYGONS are the
generalized polygons of order 2. Also, we ordinary n-gons
are, up to isomorphism, the unique generalized n-gons of
order 1. A generalized polygon is slim if either it or its dual
is of order (2, m) for some m > 2. If ¢ is not an ordinary
n-gon, then, by a celebrated result of Feit and Higman [7]
(contemporaries of the prophet J. Tits), n =3, 4, 6, §, or
12, and, if » = 12, then % is slim.

The smallest slim generalized n-gons can be shown to
be unique up to isomorphisms and duality. These geome-
tries are the generalized 2-, 4-, 6-, 8-, and 12-gons of order
(1, 2) and their duals. The first (trivial) geometry is the
graph consisting of 2 vertices that are connected by 3 edges
(this is the DIGON minus one of its points, that is, minus one
of its geometric hyperplanes). The remaining four geome-
tries are the doubles of the POLYGONS. This means that all
smallest non-trivial generalized polygons are related to the
POLYGONS.

So, obviously, there are no non-ordinary generalized pen-
tagons. Hence the PENTAGON must refer to something em-
bedded in FLATLAND. Of course the shape of most of our build-
ings here in FLATLAND is that of a pentagon and the building
that houses the best-kept secrets of our government is THE
PENTAGON. Could that be it? Was the HEXAGON trying to warn
me of my own government? All of a sudden everything
seemed to make sense. Clearly, the 0CTAGON was a thick gen-
eralized octagon that had immersed one of its multigons into
FLATLAND and under the pretence of being a circle was rul-
ing our land. Further study revealed that this OCTAGON is most
probably a generalized octagon of order (2, 4) having 17565
points and 2925 lines. So far I have been able to show the
existence of only one such octagon. As I suspected it is a
distant relative of the PoLYGONS: Its derived geometry is the
unique generalized quadrangle of order (2, 4) which in turn
contains the QUADRANGLE. I believe that this generalized oc-
tagon is unique but have not yet been able to prove it.

Following this discovery I joined the mathematical un-
derground. Since governments are not interested in what
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mathematicians are writing and mathematicians are exactly
the audience able to appreciate this report for what it is, [
am submitting this account to a popular international math-
ematical journal, the perfect forum for subversive mathe-
matical writings.

For a more detailed exposition of the mathematical the-
ory of generalized polygons and the all-encompassing the-
ory of mathematical buildings, see the recently discovered
manuscripts [4], [12], [14], [16], and [17]. See [5], [9], [10],
[11], and [13] for further information about the POLYGONS.

Enough said, my dear fellow flatlanders. Go forth and
seek out the POLYGONS and then onwards to full GENERALITY!
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