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We want to prove that √2 is irrational. That is, we want to show that it is impossible to 
write √2 = N/M, with N/M whole numbers. First of all, if we square both sides and 
multiply by M2, then what we’re doing is showing that there is no positive whole 
number solution to the equation 

2M2 = N2. 
We’ll give two proofs of this, one geometric and one numerical. At the end, we give 
some references, for these and other proofs. 
 
 
Geometric Proof 

This proof uses what is called the impossibility of infinite descent. Suppose that we start 
with some positive whole number N, and then we have another positive whole number 
P, but with N > P. And then suppose we have Q, with N > P > Q, and so on. The 
impossibility of infinite descent says that this sequence cannot go on forever: since all 
the whole numbers are positive, we can only step down a finite number of times before 
we hit 1. 
 
Now, what we do is show that if we have a whole number solution to 2M2 = N2 then this 
will start off an infinite descending sequence of positive whole numbers. Since this is 
impossible, the fractional equation must also be impossible, and that means √2 is 
irrational.  
 
To begin, we think of the equation in terms of a triangle: 

 
By Pythagoras’ Theorem, solving 2M2 = N2 is the same as finding an isosceles right-
angled triangle with hypotenuse N and shorter sides M. What we do is show that any 
time we have such a triangle, with M and N whole numbers, then we can always 
construct a smaller isosceles right-angled triangle, still with whole number sides. So, we 
could repeat the construction to give a still smaller triangle, and a smaller triangle again, 
and so on. That gives us the infinite descent, which we know is impossible. And, since 
the chain of triangles is impossible, the chain could never have started: we can conclude 
that there could never have been the first triangle to begin with. 



 
So, supposing we have an isosceles right-angled triangle with whole number sides, we 
have to show how to construct the smaller triangle. To do this, consider the following 
diagram. The circular arc shows how to position the new edge so that the small triangle 
is right-angled. And, since a second angle is 45°, the third angle must be as well, and so 
the small triangle is isosceles. 

 

We just have to show that this small triangle has whole number sides. The circular arc 
shows that the smaller side has length N − M. To figure out the length of the hypotenuse, 
we just have to note that the three segments highlighted in the diagram below all have 
this same length N − M. 

 
So, the small triangle must have hypotenuse length M − (N−M), which equals 2M−N, 
definitely a whole number. 

 
 

There is also a purely numerical version of the above proof. The geometric proof 
amounts to showing that if √2 = N/M then also √2 = (2M − N)/(N − M). To show this 
new fractional representation directly, we can calculate 

 
 

 



Numerical Proof 

This proof uses the idea of writing whole numbers in base three instead of our usual base 
ten. As an illustration, the number fifteen is normally written as 15, amounting to 1 x 10 
+ 5 x 1. In base three, this same number would be written as 120, amounting to 1 x 9 + 2 
x 3 + 0 x 1. 

The important thing to note is: written in base three, the first non-zero digit of a square 
number is always a 1. For example, the square of fifteen is two hundred and twenty-five, 
which we would normally write as 152 = 225. However, in base three, this is written as 
1202 = 22100, with 22100 coming from 2 x 81 + 2 x 27 + 1 x 9 + 0 x 3 + 0 x 1. In this 
example, the 1 in the "nines place" is the first non-zero digit.  

This fact about squares written in base three follows easily from the base three products 
1 x 1 = 1 and 2 x 2 = 11, combined with the normal rules for multiplication. 

With that background, the proof is now really easy. We want to show that the equation 
N2 = 2M2 is impossible for whole numbers N and M. But suppose now that M and N are 
written in base three. Then M2 and N2 both end in a 1. That means 2M2 ends in a 2, and 
so can't possibly equal N2. 
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