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We prove here that e is not the root of a non-zero quadratic equation with integer coefficients.1 We begin
with the well known series

(1) ex = 1 + x +
x2

2!
+

x3

3!
+ · · · +

xm

m!
+ · · · .

Setting x = 1 then gives

(2) e = e1 = 1 + 1 +
1

2!
+

1

3!
+ · · · +

1

m!
+ · · · .

1 e is irrational

We’ll first use (2) to give the familiar proof that e is irrational. Assume, by way of contradiction, that e = a
b

with a and b positive integers. Using b to determine a cut-off, (2) gives

(3)


a

b
= e =

[
1 + 1 +

1

2!
+

1

3!
+ · · · +

1

b!

]
+

SMALL

b!
,

SMALL =
b!

(b + 1)!
+

b!

(b + 2)!
+

b!

(b + 3)!
+ · · · .

Clearly SMALL is positive, and cancelling out the b! with the denominators, we have

SMALL =
1

(b + 1)
+

1

(b + 1)(b + 2)
+

1

(b + 1)(b + 2)(b + 3)
+ · · · <

1

(b + 1)
+

1

(b + 1)2
+

1

(b + 1)3
+ · · · .

The latter sum is an infinite geometric series, which sums to 1
b+1/

(
1 − 1

b+1

)
= 1

b . So,

(4) 0 < SMALL <
1

b
6 1 .

Now, multiplying (3) by b!, we have

INTEGER = INTEGER + SMALL

But by (4), SMALL is strictly between 0 and 1, which is a contradiction.

1We’re fleshing out here the details of Conway’s and Guy’s sketch-proof in The Book of Numbers, p 253 (Copernicus, 1998).
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2 e is not a quadratic irrational

We’ll now show that e cannot solve the equation

(5) a− be + ce2 = 0

with a, b, c integers, not all 0. Rearranging, (5) implies

(6)
a

e
+ ce = b .

To show (6) is impossible, we’ll write e and 1
e as almost-fractions. For a positive integer m to be chosen

later, we first use (3) and (4) to write

(7)


e =

INTEGER

m!
+

SMALL

m!
,

0 < ·SMALL <
1

m
.

Next, we need a similar expression for 1
e , though in this case the small error will alternate in sign. This

expression comes from first setting x = −1 in (1), giving

(8)
1

e
= e−1 = 1 − 1 +

1

2!
− 1

3!
+ · · · +

(−1)m

m!
+ · · · .

Below we use a standard alternating series calculation to prove that (8) gives

(9)


1

e
=

INTEGER

m!
+

(−1)m+1small

m!
,

0 < ·small <
1

m + 1
.

Substituting (7) and (9) into (6), multiplying by m! we find

(10) INTEGER +
[
c · SMALL + (−1)m+1a · small

]
= INTEGER .

Clearly we can make the magnitude of the small stuff less than 1 by choosing m large. So, as long as all the
small stuff doesn’t cancel to 0, (10) gives a contradiction. But the non-cancellation is easy to ensure. First,
if one of a = 0 or c = 0 then the small stuff is automatically non-zero. Otherwise, we simply choose m odd
if a and c have the same sign, and m even if a and c have opposite signs.

Finally, we show how (8) leads to (9). Stopping the series at the mth term, (8) gives

1

e
=

[
1

2!
− 1

3!
+ · · · +

(−1)m

m!

]
+

(−1)m+1small

m!

where

small =
1

(m + 1)
− 1

(m + 1)(m + 2)
+

1

(m + 1)(m + 2)(m + 3)
− · · · .

Now we just have to note that the alternating terms in small are strictly decreasing in size. So, grouping in
pairs,

small >

[
1

(m + 1)
− 1

(m + 1)(m + 2)

]
+ [∗∗∗ − ∗∗∗∗] + · · · > 0 .

Similarly, splitting off the first term and then grouping in pairs,

small <
1

(m + 1)
−
[

1

(m + 1)(m + 2)
− 1

(m + 1)(m + 2)(m + 3)

]
− [∗∗∗∗ − ∗∗∗∗∗] + · · · <

1

(m + 1)
.

Done.
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