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The proofs below follow [1], [2] and [3].

1 e is transcendental

We start by assuming that e is the root of a non-zero integer-coefficient polynomial. Choosing such a
polynomial of lowest degree, we would then have

(1) ane
n + an−1e

n−1 + · · ·+ a0 = 0 , a0 6= 0.

In order to prove that this is impossible, we’ll show that we can write

(2) ek =
Nk + δk
N

, k = 1, · · · , n,

with N and the Nk integers, and the δk tiny. Substituting into (1) and multiplying by N , we will then have

(3) a0N + (a1N1 + · · ·+ anNn) + (a1δ1 + · · ·+ anδn) = 0 .

We shall construct the approximations so that the integer part of this expression is non-zero and the δ part
has magnitude less than 1. That will then be a contradiction, proving (1) is impossible.

The proof uses an integral relation between the function e−x and factorials. Specifically, with p a large prime
to be determined later, we have1

(4)
1

(p− 1)!

∞∫
0

e−xxj dx =
j!

(p− 1)!
=

 1, j = p− 1,

a multiple of p, j > p.

Note also that if f is any polynomial then, as long as the denominator is not zero, trivially

(5) ek =

∞∫
0

ek−xf(x) dx

∞∫
0

e−xf(x) dx

.

We now choose

(6) f(x) = xp−1(x− 1)p(x− 2)p · · · (x− n)p .

1This is a standard integration by parts exercise. See, for example, the Wikipedia page on the gamma function.
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For k = 1, · · · , n we then define 

N =
1

(p− 1)!

∞∫
0

e−xf(x) dx ,

Nk =
1

(p− 1)!

∞∫
k

ek−xf(x) dx ,

δk =
1

(p− 1)!

k∫
0

ek−xf(x) dx .

Noting that
f(x) = (−1)p(−2)p · · · (−n)pxp−1 + higher powers of x,

it follows from (4) that
N = (−1)np (n!)

p
+ a multiple of p.

So, N is an integer. Moreover, if we choose the prime p to be larger than n, then n! cannot be a multiple
of p, and so neither is N . In particular, N 6= 0 and (2) is now immediate from (5). If, further, we ensure
p > |a0| then, noting a0 6= 0, it follows that a0N also cannot be a multiple of p.

Next, we perform the substitution t = x− k in the integral for Nk, giving

Nk =
1

(p− 1)!

∞∫
0

e−tf(t+ k) dt .

Clearly f(t+ k) has a factor tp, and so from (4) again, Nk is an integral multiple of p. It follows that the N
part of (3) is a non-zero integer, as desired.

It remains to show that if p is large then δk is tiny, and this is just the standard business. We just have to
note that |x− k| 6 n on [0, n], and so on this interval

|f | 6 n(np+p−1) .

Applying this estimate, we see

δk 6
c · dp

(p− 1)!
,

with c = en and d = n(n+1). It follows that δk → 0 as p→∞, and we’re done.
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2 π is transcendental

By way of contradiction, we assume that π is the root of a non-zero polynomial p with integer coefficients,

p(π) = 0 .

This would imply that iπ is a root of the integer polynomial

q(x) = p(ix)p(−ix) .

We show that this latter equation leads to a contradiction. We first give the main argument, and in §2.2 we
fill in some details on the symmetric polynomials employed in the argument.

2.1 The Main Argument

Write

(7) q(x) = a(x− α1)(x− α2) · · · (x− αn) , a 6= 0.

with α1 = iπ and a ∈ Z. Then 1 + eα1 = 0, and so trivially

(8) (1 + eα1) (1 + eα2) · · · (1 + eαn) = 0 .

Expanding gives

(9) eβ1 + eβ2 + · · ·+ eβ2n = 0 ,

where βk ranges over all sums of distinct αj , including the empty sum. Letting β1, β2, · · · , βm be the non-zero
β, we then have the key identity

(10) r + eβ1 + eβ2 + · · ·+ eβm = 0 ,

where r = 2n −m. Note that r > 0, since at least the empty sum of α gives β = 0.

We can now mimic and adapt the proof that e is transcendental. To this end, for z complex define

(11) f(z) = zp−1gp ,

where p is a large prime to be determined later, and

(12) g(z) = am(z − β1)(z − β2) · · · (z − βm) .

We now define the N and δ quantities analogously to the definitions in the e proof, but in terms of complex
line integrals:2

N =
1

(p− 1)!

∞∫
0

e−zf(z) dz , (along the positive real axis),

Nk =
1

(p− 1)!

∞∫
βk

eβk−zf(z) dz , (along the horizontal line from βk to +∞),

δk =
1

(p− 1)!

βk∫
0

eβk−zf(z) dz , (along the radial path from 0 to βk).

2So, for example, the radial path from 0 to βk can be parametrised by z = βkt with 0 6 t 6 1. Then dz = dz
dt

dt = βkdt, and
so on. The subsequent integral is complex-valued but it can be interpreted, computed and estimated with standard real-variable
techniques.
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Then, by a routine application of Cauchy’s integral theorem,3

(13) Nk + δk = Neβk .

So, once we determine N 6= 0, it will follow from (10) that

(14) rN + (N1 + · · ·+Nm) + (δ1 + · · ·+ δm) = 0 .

Now, q has integer coefficients, and g is symmetric in β1, · · · , βm, with a suitably large power of a as a factor.
It then readily follows that g, and so also f , has integer coefficients; see §2.2, below. We can now choose the
prime p to be larger than the magnitude of the constant term of g. Then, as in the proof for e, (4) implies
that N is an integer and is not divisible by p, and in particular N 6= 0. If we further choose p larger than r,
then rN also will not be divisible by p.

Next, setting M = maxk |βk|, it is easy to see that if |z| 6M then

|f(z)| 6 |a|mp (2M)
mp

Mp−1 .

It follows that

δk 6
c · dp

(p− 1)!
,

where c = eM and d = 2m|a|mMm+1. So, δk → 0 as p→∞.

It remains to consider the Nk, which will in general be complex. We can complete the contradiction, however,
by showing that the sum N1 + · · ·+Nm is an integral multiple of p, implying that the integral part of (14)
is non-zero. In order to do this, we make the substitution w = z − βk in the integral for Nk. Summing then
gives

N1 + · · ·+Nm =
1

(p− 1)!

∞∫
0

e−wh(w) dw ,

with the integral along the positive real axis, and where

(15) h(w) = f(w + β1) + · · ·+ f(w + βm) .

It is clear from the form of f that h(w) has a factor wp. As well, using that q has integer coefficients and
that h is symmetric in β1, · · · , βm, it is straight-forward to show that h has integer coefficients; see §2.2. It
then follows from (4) that N1 + · · ·+Nm is an integral multiple of p, and we have our contradiction.

3Let T be a large real number and let γ be the closed parallelogram path through the vertices 0, βk, βk+T and T . Cauchy’s
theorem says

∫
γ F = 0 for our (complex differentiable) function F ; see Wikipedia or, for example, the nice presentation

at people.reed.edu/~jerry/311/cauchy.pdf. Now let T → +∞. Noting that e−T → 0 rapidly, it is easy to prove that
βk+T∫
T

F → 0, and (13) follows.
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2.2 Symmetric Polynomials

We need to show that f given by (11) and (12), and h given by (15), have integer coefficients. The arguments
are standard applications of the fundamental theorem of symmetric polynomials: any integer-coefficient
symmetric polynomial is an integer-coefficient polynomial function of the elementary symmetric polynomials.4

The theorem is of use to us because the integer coefficients of q are ±a times the elementary symmetric
polynomials of α1, · · · , αn. It follows that any symmetric integer polynomial of aα1, · · · , aαn is an integer,
and thus the same is also true for any symmetric integer polynomial of aβ1, · · · , aβ2n .

We can now apply this to the polynomial

(16) G(z) = (z − aβ1) (z − aβ2) · · · (z − aβm) =
1

zr
(z − aβ1) (z − aβ2) · · · (z − aβ2n) .

The coefficients of G are symmetric integer polynomials of the aβ1, · · · , aβ2n , and thus are integers. It follows
that g(z) = G(az) also has integer coefficients, and therefore so does f .

A similar but messier argument shows that h is also integer coefficient. Let
H(w) = wp−1Gp(w) ,

J(w) =
1

wp

m∑
k=1

H(w + aβk) =
1

wp

[
−rH(w) +

2n∑
k=1

H(w + aβk)

]
.

Noting that H has a zero of degree p at all of aβ1, · · · , aβm, it follows from the fundamental theorem that
J is an integer coefficient polynomial. But then combining the definitions (11), (12), (15) and (16),

h(w) =

m∑
k=1

(w + βk)
p−1

gp(w + βk) =
awp

(aw)p

m∑
k=1

[
(aw + aβk)

p−1
Gp(aw + aβk)

]
= awpJ(aw) .

It follows that h has integer coefficients.
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4The presentation in http://www-users.math.umn.edu/~garrett/m/algebra/notes/15.pdf is as nice as we’ve found, though
the Wikipedia page on elementary symmetric polynomials is good enough. The theorem is standard and important, and not
difficult to prove, but we are unaware of any particularly pretty proof.
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