This page is part of the website
Mathematics Goes to the Movies
by Burkard Polster and Marty Ross
Bianca (1984)
  8:02
  PRINCIPLE: Dimmi la radice quadrata di 38.651.089.
  EDO (an idiot savante): 6217…..
  PRINCIPLE: Ha un cervello elettronico. Pensare che non sa ne leggere ne scrivere. 
  A suo modo e un genio. Fa un po’ di tutto, anche se cio chef a e bello 
  ma inutile. Un po’ come la matematica pure: forse non serve, ma e sublime.
 16:21
  STUDENT: Volevamo parlare del quadrato magico reffigurato nel quadro di Durer. 
  
  MICHELE: Si, mella “Melancolia”, me lo rocordo. 
  STUDENT: Pare che nel Rinascimento fossero convinti che il quadrato magico di 
  ordine quattro potesse scacciare (sentimenti comme) malinconia e tristezza. 
  
  MICHELE: Interessante. Quindi…
  STUDENT: Posso? Vede, il professore ci ha detto che Durer ha firmato con la 
  data del quadro, dipinto infatti nel 1514. Mi segue? (get blackboard)
  MICHELE: Si.
  STUDENT: Come fa a dare sempre 34 sommando ogni riga, colonna e diagonale?
  MICHELE: Da sempre 34? 
  STUDENT: Si, se lei ce lo puo far vedere. 
  MICHELE: Mi sembra fuori del programma, magari non tutti interessa. 
  ALL: Si, si, ci interessa. Lo spieghi!
Translation from M. Emmer's book (A little bit off, as far as I can tell. Refers 
  to wrong picture. First picture not even in this scene.):
  TEACHER: I hope you like math and I hope we’ll be able to work together 
  solving a host of problems. . OK, let’s get to know one another…if 
  anyone would like to ask a question, now’s the time.
  STUDENT: Yes, me, on behalf of an interdisciplinary working group set up to 
  study the relationship between science, art and literature. We’d like 
  to ask something about the magic square depicted in Albrecht Durer’s work 
  Melancholia I.
  TEACHER: Yes, I know Melancholia well.
  STUDENT: During the Renaissance, it seems people thought that a magic square 
  of the fourth order could keep away feelings like melancholy and sadness.
  TEACHER: Ah yes! Interesting. S….
  STUDENT: You see, our professor told us that Durer put the date in the lower 
  part of the engraving-in fact, it was made in 1514. Do you follow me?
  TEACHER: Yes.
  STUDENT: Well, we’d like to know why every row, every column and every 
  diagonal always gives the sum of 34.
  TEACHER: Yes, always 34…
  STUDENT: Can you show us why this happens?
  TEACHER: Well, it seems a little outside the scope of our program, and anyway 
  maybe not everyone’s interested.
  Students: We’re all interested, so you can go ahead and explain. 
  TEACHER: You’re all interested, are you? But this is your first day. Wouldn’t 
  it be more useful to get to know the course better…
  STUDENT: Look, no-one’s forcing you.
  TEACHER: Ok, sure…. Well now (he gets up and goes over to the blackboard 
  unsure of what to do, and is saved by the end-of-lesson bell). 
  29:07
  MICHELE: Ecco, ora dovrebbe essere chiaro perche all’infinito (get blackboard) 
  una linea retta e una curva coincidono.
  
  58:34
  BINACA: La matematica ti piace?
  MICHELE: Mi piace la chiarezza, la logica. Un numero e positivo o negativo. 
  No mi piacciono le vie di mezzo.
  1:07:31
  Student” Traccio la tangente T all a curva su R che si incontra sull’asse 
  X in un punto detto omega. (Two blackboards)