We conclude this section by giving one of Fermat's own descent arguments.

He wished to show that there are no integer solutions of

$$
X^{4}+Y^{4}=Z^{4} \quad X \neq 0, Y \neq 0
$$

This is a curve of genus 3 (not that Fermat knew about the genus), but he remarked that it is enough to disprove

$$
\begin{equation*}
X^{4}+Y^{4}=Z^{2} \quad X \neq 0, Y \neq 0 \tag{*}
\end{equation*}
$$

On writing (*) in the shape

$$
\left(Z / Y^{2}\right)^{2}=1+(X / Y)^{4}
$$

one sees that we have an elliptic curve, though not given in canonical form. However, following Fermat, we consider integer solutions of (*).

If $\left(^{*}\right)$ has an integral solution, we take one (\mathbf{x}, \mathbf{y}) for which

$$
\max (|x|,|y|)
$$

is >0 and as small as possible. (\| is the absolute value). Then x, y, z have no common factor, and indeed are coprime in pairs. Since $x^{4} \equiv 1$ $\bmod 4$ if x is odd, one of x, y must be odd and the other even. We suppose that

$$
2 \mid x, \quad 2 \npreceq y, \quad 2 \npreceq z .
$$

Write $\left({ }^{*}\right)$ in the shape

$$
\left(z+y^{2}\right)\left(z-y^{2}\right)=x^{4}
$$

Since z, y are both odd, the two factors on the left are divisible by 2 but only one is divisible by 4 . Hence (taking $z>0$) we have two possibilities, where $u, v \in \mathbb{Z}$:

First Case Second Case

$$
\begin{array}{lll}
z+y^{2}= & 8 u^{4} & 2 u^{4} \\
z-y^{2}= & 2 v^{4} & 8 v^{4}
\end{array}
$$

The first case gives

$$
y^{2}=4 u^{4}-v^{4},
$$

which is impossible mod 4. Hence we have the second case:

$$
y^{2}=u^{4}-4 u^{4} .
$$

Now

$$
\left(u^{2}+y\right)\left(u^{2}-y\right)=4 v^{4},
$$

and so

$$
\begin{gathered}
u^{2}+y=2 v^{4} \\
u^{2}-y=2 s^{4}
\end{gathered}
$$

for some $r, s \in \mathbb{Z}$. Hence

$$
v^{4}+s^{4}=u^{2} .
$$

This is another solution of $\left({ }^{*}\right)$. Further,

$$
x^{4}=16 u^{4} v^{4}=16 u^{4} r^{4} s^{4}
$$

This contradicts the assumed minimality of the original solution, and so we have a contradiction.

