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J'unction.is a refereed mathematics journal produced by the
School of 'Mathematical Sciences at Monash University. It was
founded in 1977 by ProfG B Preston, and is addressed principally to
students in the upper years of secondary schools, but also more
generally to anyone who is interested in mathematics.

Junction deals with mathematics in all its aspects: pure
mathematics, statistics, mathematics in computing, applications of
mathematics to the natural and social sciences, history of
mathematics, mathemati~al games, careers in mathematics, and
mathematics in society. The items that appear in each issue of
Junction include articles on a broad range of mathematical
topics, news items on recent mathematical advances, book reviews,
problems, letters,anecdotes and cartoons.

*****

Articles, correspondence, problems (with or without solutions)
and other material for publication are invited. Address them to:

The Editors, Junction
School ofMathematical Sciences
POBOX 28M
Monash University VIC 3800, AUSTRALIA
Fax: +61 3 9905 4403
e-mail: michael.deakin@sci.monash.edu.au

Junction is published five ti~es a year, appearing in February,
April, June, August, and October. Price for five issues (including
postage and GST): $33* ; s'ingle issues $7. Payments should be sen~
to: The Business Manager, Function, School of Mathematical
Sciences, PO Box 28M, Monash University VIC 3800,
AUS1RALIA; cheques and money orders should be made payable
to Monash University.

• $17 for bona fide secondary or tertiary students.
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THE FRONT COVER

This issue's front cover shows a famous set of graphs. Five of the
set are drawn, although it is actually infinite. The relevant fonnula is

nx(l- x)
y=------

n2x 2 +(1- X)2

and the graphs drawn are those for n = 1,2,3,4,5.

It is readily apparent from the cover illustration and also from the
formula given above that all the graphs pass through the points (0,0) and
(1,0). Each graph also has a unique maximum point and we can find this
by differentiating. The details of this calculation are left to the reader, but

the result is that the maximum occurs at the point (_1_, ~) .
. n+l 2

If we take any particular value of x, and ask what happens as 11

gets larger and larger, then for very large .n,

I-x
y::=:-

nx

and so this value of y tends to zero as 11 tends to infinity. Thus if we
designate the particular value of xby X (say), we have in symbols

However, the interesting (~nd paradoxical) point is that the curves
themselves, taken as a whole, never approach the curve y = 0, as there is
always a point somewhere on each curve for which y = Y2.

[Something like this formed the basis for the April Fools' Day
letter of our 2002 issue, although that case is rather more complicated.]

This example is due to Georg Cantor, who is better remembered for
his research into the question of transfinite numbers. [See Function,
Volulne 2, Parts 1 and 2J Before Cantor developed this interest (for
which he is best remembered today) he looked into the theory of
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trigonometric series (like those in our issue for April 2002) and set up
much of the analytic machinery for dealing with such series. It was in
this context th~t he advanced the example illustrated on this issue's front
cover.

Cantor was a pupil of Weierstrass, who is responsible for much Qf
the careful work needed to put the theory of functions onto a sound
footing. [Some of this story was told in our special issue, released at the
end of 1996 to commemorate 100 regular numbers of Function.]

A biography of Cantor may be found at the website

http://www-history.mcs.stand.ac.uklhistory.Mathematicians/Cantor.html

He was a major figure in Mathematics toward the end of the 19th century
and into the early 20th

• Sadly his latter years were clouded by mental
illness; but this in no way diminishes the significance of his contributions
to Mathematics. Our cover illustrates one of these: one of the lesser­
known of them, but an important and interesting one nonetheless.

000000000000000000CXDOOO00000000

NEWS ITEMS

Another Prime Number Result Proved?

In Function last June and again last October, we reported the
results of recent investigations into the "twin prime conjecture". This is
the' statement (not yet proved) that there are infinitely many pairs of
primes like 3 and 5, 4 and 7, 11 and 13, and so on whose difference is 2.
The conjecture also turned up in the History Column for .April2001.·

. In an attempt to investigate the problem, Dan Goldston and Cern
Yildrin developed a new approach that seemed to show a lot of promise.
At first they believed that by using it they had been able to show a strong
partial result. However in this they were mistaken, for their proof of the
technical result was found to contain an error. However, as was remarked
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in our October story, the new approach was nonetheless perceived as very
promising.

This. judgement would seem to be borne out by another related
development. Prime pairs are examples of 2 primes in' arithmetic
progression. Now consider 3, 7, 11. This is a sequence of length 3 with a
common difference of 4. A rather meatier example is the 10-term
arithmetic progression of primes with a common difference of 210: 199,
409, 619, 829, 1039, 1249, 1459,'1669, 1879, 2089. This is the sort of
area of Mathematics where people strive for' records. Currently the
record is shared by two sequences both 22 terms long. The first, 'found in
1993, has terms of 11,410,337,850,553 + 4,609;098,694,200k. This was
equaled in 2003 by 376,859,931,192,959 + 18,549,279,769,020k, where
in each case k = 0, 1, ... ,21.

Back in 1923, G H Hardy (whose story was told in the June 1995
issue of Function) and his long-time collaborator, Littlewood, made a
very general conjecture known as the "k-tuple conjecture" 'Yhich implies
that there exist prime arithmetic progressions of any length k, although
the full statement goes beyond this.

However it now seems to be established that the sequence of prime
numbers does contain arithmetic progressions of length k for all k. This
.result has been announced by Ben Green and Terence Tao (the expatriate
Australian who was the subject of a news story in, our issue for last
February). The work has not yet been formally published, but in
accordance with much modem practice it has been posted on the Internet
for scrutiny by other mathematicians, and so far seems to have met with
approval. Their work makes use of several sophisticated techniques, but
aillong them is the approach of Goldston and Yildrin.

If this work does meet with full appro'val, it will be published in the
refereed literature and will become a theorem. Meanwhile it is posted on
the Internet at:

http://arxiv.org/abs/math.NT/0404188.

But beware! Only an expert in advanced Number Theory will be able to
follow it!

00000000000000000000000000000000
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The Second Abel Prize

Our cover story last October dealt with .the award of the first ever
Abel Prize to Jean-Pierre Serre. The Abel prize honours the memory of
the Norwegian .mathematician Niels Henrik Abel, and is now awarded
annually by the Norwegian Academy of Arts and Letters.

The 2004 prize has now been announced and this time it is a joint
award. The recipients are Sir Michael Atiyah of the University of
Edinburgh, and Isadore M Singer of the Massachusetts Institute of
Technology. Atiyah and Singer collaborated back in the 1960s to prove
the "Atiyah-Singer index theorem", that has been described by the
American Mathematical Society's website as "bringing together
topology, geometry and analysis", and as "building new bridges between
mathematics and theoretical physics"'.

For a readable account of the impact of their work on Mathematics
and Physics, see the website

http://www.abelprisen.no/nedlastning/2004/english .2004.pdf

Both winners have been the recipients of numerous other awards: in,
particular, Atiyah has already received a Fields medal (prior to the _
institution of the Abel prize, seen as the mathematical equivalent of a
Nobel Prize). For detailed biographies of the two prizewinners, look up:'

http://www-historv.mcs.st-and.ac.uk/historv/Mathematicians/Atiyah.html

for Atiyah, and

http://en.wikipedia.orq/wiki/lsadore Singer

for Singer.

"There is no branch of mathematics, however abstract, which may
not some day be applied to phenomena of the real world."

Nikolai Lobachevsky
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BOOK REVIEW

Shrine to University: A Geometry Journey along St Kilda Rd and,
Swanston Street (Second Edition), by Jill Vincent.

(Mathematical Association of Victoria, 2004)
Price $35; Members $25

The first edition of this delightful and informative book appeared
in 1999, in advance of World Mathematical Year 2000. The year 2000
saw the Mathematics 2000 Festival hosted by the University of
Melbourne. The first edition was a contribution to this endeavour. Now
the MAV have published a second edition, that expands and updates the
first. In that first edition, there were 14 chapters. This one has 15, and
takes account of changes in the Melbourne streetscape in the last five
years.

Sadly one of the original chapters is no more. The "Ansett A" has
gone from the corner of Swanston and Franklin Streets. However, we
have acquired in that time a new landmark: Federation Square. This has a
chapter and there is also another new chapter, devoted to the Town Hall.

The author has been wonderfully diligent in tracking down original
architectural drawings and suchlike material and has clearly devoted a lot
of time and energy (not to mention legwork) to her project.

In this new edition, there are 15 landmarks discussed; all are on
public view and all reflect significant mathematical concepts and
structures. In order, they are:

1. The Shrine of ·Remembrance
2. The Victorian College of the Arts Logo
3. The Nautilus Fountain
4. The Floral Clock
5. The Victorian Arts Centre Spire
6. The Victorian Arts Centre Logo
7. The Footbridge over the Yarra
8. Federation Square
9. St Paul's Cathedral
10. The Melbourne Town Hall
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11. The "Architectural Fragment" Sculpture
12. The Melbourne Central Cone
13. The Geodesic Dome at Melbourne Central
14. Storey Hall at RMIT
15. The Tessellating Pentagon Pavement

The book takes the form of a mathematical stroll through the heart
of Melbourne, beginning at the Shrine of Remembrance and heading
north.

The Shrine was erected as a memorial especially to the fallen of
World War I, and is based on classical models. The lower part echoes the
Parthenon in Greece and descriptions of the Mausoleum at Harlicanassus,
one of the Seven Wonders of the Ancient World·; above is placed a
truncated pyramid, with classical proportions. Right at the top is an
aperture that admits sunlight in such a way that the light falls exactly onto
the "Stone of Remembrance" at 11 am on November 11 each year. This
is the time and date of the Armistice that brought the hostilities of World
War I to an end. To do this required careful surveying and a sound
knowledge ofastronomical principles. A further complication arose with
the introductiol1 of Daylight Saving." This is now compensated for by
means of an ingenious arrangement of mirrors~

On the front of the Victorian College of the Arts is a logo based on
the pentagon (symbolic of our five senses) and superimposed circular
motifs. These overlap to surround a central five-pointed star. Theoverall
pattern resembles a Celtic braided figure and sits astride the initials VCA.
The book notes similar designs in Mediaeval and Islamic art. In
particular, one of the window.s of Exeter Cathedral (UK) incorporates a
similar combination of pentagonal and circular features.

The structure of the Nautilus shell was briefly discussed in
Function's October 1992 issue, where it was related to the "Golden
Section". The third chapter of this book discusses a sculpture that
follows the lines of a Nautilus shell and is to be. found outside the
National Gallery of Victoria, at the North end of the moat.

The Floral Clock on the other side of the road superposes the
twelve hours of the day on ·a doubly octagonal design. Although the
actual plants are changed from time to time, the underlying geometry
remains the same throughout.
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The spire on the Victorian Arts Centre is another of the
mathematical sights. It also appeared in an earlier issue of Function, as

, our cover story 'in April 1980 (before it was actually built!). Here there is
an extremely thorough study of the spire in all its aspects,. with detailed
architectural drawings to go with it. An accompanying table quotes some
of the dimensions to the nearest thousandth of a millimetre! The lower

part takes the form of a hyperbolic paraboloid: z = y2 - x 2
•

The Arts Centre also sports a logo that represents in two
dimensions, what the spire models in three. It is realized by the
superposition of part of the hyperbola y = 1/1xl onto an equilateral
triangle.

Proceeding further north, we come to the Yarra River. With the
inauguration of the Southbank development, a new footbridge was built
to span the river. It is of a bow truss construction and the walkway is
suspended from a parabolic arch.

Federation Square on the North bank of the Yarra, and the East
side of Swanston Street is newly built since the first edition of this book
was published. Its assertively "modem" appearance incorporates several
features of mathematical interest. One of these is the "pinwheel tiling"
that supplies the underlying geometry of many of the surfaces. This is
based on the right-angled triangle whose shorter sides are 1 and 2. There
are several examples of these proportions illustrated in the book.

Part of the controversy surrounding the plans for Federation Square
arose from the supposed clash between the style of its architecture and the
more traditional lines of the adjacent St Paul's Cathedral. This too has its
mathematical interest, with its variety of Gothic arches, trefoil and
quatrefoil windows and suchlike.

A brief chapter on the Melbourne Town Hall has also been added
for this edition. The semi-circular windows of the fa~ade incorporate the
feature known as the "arbelos". This shape has also previously made. a
brief appearance in Function: in our History Column for June 1998.

Further north still on the comer of La ~robe St, we see, outside the
Public Library, what looks like the comer of a building sinking slowly
into the pavement. It is a sculpture whose official title is "Architectural
Fragment". It is essentially a triangular pyramid with embellishments.
Its largest face has the dimensions of a 3:4:5 triangle.
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Opposite the "fragment" is Melbourne Central, ·with its prominent
conical spire designed to cover and shelter the old shot tower. Again we
see the juxtaposition of the old. and the new in the architecture. The
clearly "modem" dome encloses the heritage-listed shot tower.

Chapter 13 is an interesting and ambitious one, dedicated to the
geodesic dome that is another. feature of Melbourne Central. The
construction of such domes is discussed in considerable detail: the way
they are constructed from triangles, but on an underlying pattern of
pentagons and hexagons. They relate to the classical solids of Greek
antiquity, notably the icosahedron and the dodecahedron.

RMIT's Storey Hall is another blend of the old and the new.
Prominent on its fa<;ade is a pattern of rhombuses. There are "fat" ones
and "thin" ones that together tile the plane in a manner first discovered by
the British mathematician Sir Roger Penrose, and today known as
"Penrose Tiling". This also is the material for a long and infonnative
chapter.

Related material forms the basis of the final chapter, on the
pentagonal tiling of a pavement at the University of Melbourne. Between
the building that now houses the department of Mathematics and
Statistics and the building to its immediate West ("Old Geology") is an
area paved with pentagonal sandstone tiles. The construction follows. a
pattern known as the "Margaret Rice tiling". This uses eight irregular
pentagons that fit together to form a tessellating unit that allows a regular
tiling by a process of translation, and thus makes for a periodic pattern
(unlike the Penrose tiling which is not periodic).

The author of this delightful work is a Melbourne Mathematics
teacher. She has supplemented her accounts of these landmarks with a
set of activities, graded according to Year Level, and then the answers
given to the problems set in conjunction with these activities.

The work ends with a double bibliography: books on page 87, and
websites on page 88.

Did you know that Melbourne had so much Mathematics on public
display? Read this book, visit the sites and understand· the underlying
Mathematics to enhance your enjo~ment of our city' treasures!
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FROM THE ARCHIVES

The Game of Slither

[The following discussion comes from Function, VolLune 1, Ntllnber 2)
April 1977. In those early days of Function, there was much discussion
of various games. This extract fonned part of that discussion. It has been
slightly .edited for this issue.]

In the June 1972 issue of Scientific American, .Martin Gardner
described the following game called SLITHER. This is a game for two
players, played on a 5 x 6 lattice or 'grid', as shown in Figure 1 below.

The rules are simple. Opponents t~e turns marking a horizontal or
vertical segment of unit length. (For example, the move 'shown in Figure
2 is permitted, but that shown in Figure 3 is not.)

· e · ·· G · ·.·· 0 · " 0 · 41 ··0 ····.· 6) .·· e · · 6) ·.····· fl · 6) · ·I ···· ·..-.-.. ··· " ·· e It · ···· ·.· G 0 ·CIt II 0 0 0 . · · " ··· 0 .. IIJ · 0 ··
Figure 1 Figure 2 Figure 3

The segments must form a continuous path, but at each move the
player must add to either end of the preceding path. The player forced to
close the path is the loser. (Figure 4 shows a situation in which the next
play must be a losing one.) ..

..... .
Figure 4
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At the tinle Gardner wrote his article no \vinning strategy for either
player \vas known 1. In a tabulation of several hundred gaInes the wins
were about equally divided bet\veen the first and the second player so
there was no indication \vhether one player or the other held the
advantage. Soon after publication of his article Gardnet received a flood
of cOITespondence containing strategies of steadily mounting generality
until finally Ronald C Read, a graph theorist at the tJniversity of
\\laterloo in Ontario. Canada, reduced the standard ganle to a
nl0nunlental triviality.

Try to find a winning strategy for one of the players in the galne of
SLITHER just described. You Inight also try to fOllllulate a general
strategy for the gaIne played on a grid of In x n dots for any natural

nurnbers n7 and n greater than 1.

[The article \vent on to consider further possible genera1isations~

for exan1ple to grids \vhere the dots did not necessarily form. a rectangular
patten1. In a later issue (October 1977), a full analysis of the In X n case

was given. 1'he conclusion was :that if 17111. is even, then the first player
has a forced \vin, \vhereas if lnn is odd then the second player has a
\\linning strategy. Details are given on pp 85-87 as to how to accomplish
these wins. The discussion of grids other than the rectangular \vas left in
an inconclusive state. An addendum published a contribution including a
partial analysts from C}rahan1 FalT, then a student at Melbourne High

. School, today an Associate Professor in 'Monash lJniversity's School of
COlnputer Science and Soft\vare Engineering.

An account of H.onald Read's definitive discussion of the original
game is also included (on p' 85). ]

1 Any gam.e where chance plays no part, where two players move alternately, where the state
of the game is on view to both players at all times, and where no draws are possible is the
subject of the winning strategy theorem: either the first or the second player to D10ve can
force a win by the right choice of moves, whatever the opponent does. In this case, it is clear
that these conditions are all fulfilled. The only one that might give us pause for thought is the
questi.on of whether draws are possible. But as long as there is a "free end" to the chain of
interconnected dots, then a move is possible. Eventually we run out of dots and so such a
"free end" must become joined to some point of the chain. At. this juncture, the ganle is
necessarily lost, not drawn! Of course, knowing that one player or the other has a v/inning
strategy does not tcll us either which playcr actually has it, nor how it is to be achieved. Eds
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HISTORY OF MATH-El\/!.f\TI(~~S

'rIle Mathelnatics of I.)arwin 311<1 rVJ.endel '5 Insights

IVlichaell\ B Ileakin, MonaS!l UIliversit:r

In the late 1850s, two separate lines of enquiry \vere
si111ultaneously, but alrnost independently. In England, C~harles DarVv'in
\vas slo\v11' working his vvay to his theory of natural selection. He canie
to the vie\\T that \vhat fanciers of dogs, pigeons and other dOlnestic
anilnals achieved by selective breeding \vas also taking -place in the \vild
as the result. of cOlllpetition bet\veen individuals for space in a cro\vded
world. This led hiln to his version of the theory of evolution, for \vhich
he is now celebrated.

:tvlean\vhile, in \vhat is no\v the (~zech Republic, Gregor Mendel
\vas conducting experiments on garden peas, and sorting out the hi\VS

governing the inheritance of characteristics such as height, f1c)\ver colour
and the like. If, for exaluple, a strain ()f pea that bred true for red f1owers~

\vas crossed with another that bred true for \vhite flc)\vers, then the
offspring \vere all pink (which, perhaps, is vvhat \ve nlight expect.);
however, if these pink t1o\vers were then crossed vvith one another. the
offspring could be red, white or pink (which is perhaps not \vhat \ve
Blight expect). When _he looked at the proportions of these different
colours, Mendel found that about 1;4 were red, another l~~ \vere \vhite and
the remajning Yz pink.

Our current understanding of this result represents the red type as
having t\VO copies of a "gene" R, so that the red-flo\vering pea is
represented as RR. The white type has t\VO copies of another gene r, so
that the white-flo\vering pea is represented as fr. The cross produces the
combination of an R-type gene froul one parent with an r-type from the
other, resulting in the production of Rr progeny, \vhich vvere identifiab.1e
as having the pink flowers. When these, in their turn, interbred, each
passed on the R-type gene to half the progeny and the r type to the other
half, and hence the result M.endel observed.
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However, when other characteristics were investigated, things were
rather different. If, for exalnple, seed colour was studied, then the seeds
\vere always either green or yellow, v/ith yellow seeds making up about ~.'4

of the plants arising froll1 the second cross. I-:Iere Mendel's results are
no\v seen as resulting fronl t\VO versions of a gene: Y (for "ye-llo",,''') or y.
/-\ft.er t\VO generations of cross-breeding, there \vere still the three types
YY, y.y and y~v in the propor1ions l~ : l~ : 1/2 , but the YYand Yy types could
not be told apart by simple inspection.

In this case, the Y \vas said to be dorninant over the )i, \vhich was
tellTled recessive. The only \vay to distinguish the YY plants froll1 the Yy
was to conduct breeding experinl.ents. Nowadays we say that these two
types have different genotypes but share the saIne phenotype.

There \Vas no real attenlpt to draw these two st.rands (t.he Dar\vinian
and therv1endelian) of research together for many years. Indeed, while
Dar\vin's vlork became faITIOUS (even notorious), Mendel's was forgotten.
It \vas not till 1900, when three geneticists (Correns, Tschen.nak and de
Vries) independently rediscovered it and drew attention to it, that .its
significance \vas appreciated.

After that, hovvever, things stal1ed to move quite rapidly. rfhe first
question to arise \vas: \Vhy do not dominant genes drive out recessive
ones? This question was answered (again independently) in 1908 by two
researchers, the English luathem.atician G H Hardy (whose story was told
in this colUlnn in June 1995) and Wilhelrn ·Weinberg, a Gerlnan
physician.

The ans\ver went like this. Suppose that a gene exists i11 two
possible form.s, A and a. Then there are three possible genotypes: AA.~ .4a
and aa. 13ut look not at these but rather at the proportions of the two
forms of the gene: A and a. Suppose the J4 form exists in a proportion p
of the total; then the other, G, will be present in a proportion q, \vhere of
course p + q = 1. Suppose no\v that all the genes are rnixed up and
con1bined randomly. Then the combinations will beAA with a frequency

p2, Ila \vith a frequency 2pq and aa with a frequency q2. The values of

p and q are unaltered and so these proportions continue thereafter. Notice
that the question of donunance is entirely beside the point.

This result is na\v called the liardy- Weinberg Law. It may be seen
as the first of a series of results in the mathematical. analysis of Mendel's
la\vs of inheritance. However, it makes no allowance for Darwin's
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insight on natural 'selection. This extra con1plication took sonle tin1e to
be studied. In the early 1920s~ R ;\ Fisher and J 13 S flaldane sought tC)

unify the tvvo lines of enquiry. [Fisher IJ1.ade brief appearances in illy

colulllns for June and August 2000~ and .Haldane .in February of that saIne
year.]

The \vay in \vhich this unity was achieved was to assign to each of
the genotypes a "fitness", We no\\' often use this ten11 to refer to sporting
pro\vess and the like, but this is not \vhat is Ineant here. l~he "fitness". or
fitness coe.ffzcient, of an individual is its aptness for its environnlenC as
measured by the relative success of its offspring. 'The "fittest" individuals
are those that contribute Inost t.o t.he next generation.

So suppose that the fitness of AA is u, that of Aa. is v (often set
equal to 1) and that of aa is w. Then the Hardy-vVeinberg proportions

need to be lllodified. There will be ratios p2u , 2pql~, q2VJ-} of the three

genotypes AA, Aa, aa (respectively) in the next generation. In order to
Inakc these three ratios add up to 1, \ve divide each by their tot.al:

p2u + 2pqv + q2w , \vhich, because it is a lucan of the three valuesu, v

and HJ, is called the fJ1.ean fltness. It is usually represented by the sy1nbol
W.

It is nov; possible to writ.e equations that shovi hc)\,v the value of p
(and hence of q) varies from one generation to the next under selection.
One very COll11TIOn set of fitness values is the case u =: v = 1, ),1) = O. This
is the situation of a recessive lethal genetic disorder. In such a case, the
fonnaa is slo\vly elilninated frOlTI. the population and \vhen it is finally

eliIninated, we have w= 1. Prior to t.his, TV =p2 + 2pq =J - q2 < 1. So

the effect of natural selection is to increase the Dlean fitness toward 1ts
maXilnUITl value.

This saIne principle applies to other situations as well. One \vell­
documented case is that of a disease called sickle-cell.an.aernia. licre the
gene responsible COlnes in t\\'o forn1s Sand s. SS individuals are nonnal,
and so to outside appearances are those with the Ss genotype. Ho\vevcr
5S individuals are condemned to die of a blood disorder called sickle-cell
anaemia. It \vould thus appear that the case is the sanle as that just
discussed. And so it is in SaIne s.ituations. Sickle-cell anaenlia is a fatal
disorder arnong black Alnericans.

Ho\vever, in their ancestral homeland, back in Africa, things are
more cOlnplicated. The phenotypes for SS and 5,,; arc in fact not quite the
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same. Under the Inicroscope, the reel blood cells of the 5s individuals
sho\v a slight abnoflnality that in fact turns out to be a blessing; such
individuals have an increased resistance to n1alaria, which is enden1ic in
sub-saharan Africa. \Ve thus have

u =1- ex (say), v =1, ltV =0 so that 117 =p2 (1- a) + 2pq .

In this case also, once selection is cOlnplete, W is again Inaxilmsed.

The final value is (1- ex)2 and it corresponds to the value q =~
l+a) l+a

which typically is slnall but not zero, Nature allo\ys a nUlnber of deaths
to occur (fron1 sickle-cell anaenlia) in order to prevent a larger number of
people dying frOlJllnalaria.

Now in fact very few traits are detetnnned by the sin1ple action of a
single gene with just two possible forms. The best example of the next
cornplication is that of the ABO blood groups aillong humans. Here the
relevant gene comes in three forms that I will call A, Band 0 (although
this is not the standard sYlnbolism). There are six possible genotypes:
Aft, AB, AD, BB, EO and 00. These correspond to four distinct
phenotypes: Type A (AA and AD), Type AB CAB), Type B (BB and EO)
and Type 0 (00). .

[This was a lTIOst important piece of rnedical research as its
elucidation allowed the practice of safe blood transfusion without the
cornplication of adverse reactions.]

But this led to the proposal of a further mathematical problem.
Suppose a gene were to exist in n different fonns.There would them be

n (n - 1") d' ff h f 1 f' ff- .---~ 1 erent genotypes and to cac 0 t 1ese a Itness cae. lClent
2 .

would be assigned and the mean of all these coefficients \vould be the
value of tv. T'he question then ari'ses: Is it still the case that TIl is
rnaxilrused when the final equilibrium is achieved and selection is
con'1plete?

This question was investigated in the late 1950s by three separate
tealns of researchers. The answer is 'yes'. P A G Scheur and S P H
Mandel proved this and published their proof in the journal Heredity in
1959; fI P Mulholland and CAB Sluith published their (different) proof
in Anlerican Mathenlatical Jylonthlythat same year. In 1960, a third proof
(different again) appeared in the Quarterly Journal o.f Mathelnatics. The
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authors \vere three Australians:F V Atkinson, (J A \Vatterson (a fonncr
editor of Function) and PAP 1\1oran, a professor at the A,NU.

A few years later, a considerably simpler proof was given. It also
appeared in the Quarterly Journal o.l Mathernatics, and its author vvas
then a student, J F CKinglnan (but now Sir John Kinglnan, FRS and a
highly distinguished professor of Statistics at Can1bridge).

All this endeavour tended to reinforce the belief that the effect of
selection was to bring about "the survival of the fittest" in the quantitative
sense that the .mean (average) fitness always increased until a l11axi'mum.
was achieved.

I-Iowever, this was a belief soon to be challenged. Before we look
into this however, notice one point. In every case, we are looking at the
frequency of the type of gene, not (except after the event) at the
frequency of either the genotype of the individual nor of its phenotype.
This extrenlely fruitful viewpoint has been standard since Hardy and
Weinberg, and has since been popularised by books like The Se(/ish
Gene. These look at the underlying Inechanisn1 of evolution and speak in
tenns that make what was initially a Inathematical convenience into a
gavenling principle. (This vie\v is not., ho\vever, immune to challenge.)

By about 1960, it had long been known that the genes occur on
intracellular structures called chrofnosornes, and a distinction \vas made
bet\veen where on the chrolllosome a gene was to be found and what
form it took at that point. The word "gene" tended to drop out in favour
of two different tenns: locus, which f yfelTed to the place in the set of
chromosomes ("genolne") where the gene was to be found, and allele,
\vhich refelTed to the fonn the gene took.

Think of the case of two loci, at each of which one or other of t\VO

alleles may be found. (This is really the very silnplest case taking into
account the complications of real Biology.) Then the various genetic
combinations that can occur are AB, Ab, aB and abo That is to say at the
first locus, either the allele A or the allele a lTIay be found \vhile at the
second the possi9ilities are B or b. Thus \ve have these four possible
combinations.

Initially it had been thought that this situation could be analysed in
tefillS of the frequencies of A and a on the one hand and separately of B
and b on the other. So a body of literature arose in vv'hich the overall
frequency of A (say) was PI' with that of a being ql (= 1- Pl) and the
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overall frequency of B (say) being P2' \7\lith thatof b being q2 (= 1- P2) .

It \vas thought that the situation could be pictured by taking a square in
which on one axis, values of PI were plotted between 0 and 1, while on

the other values of P2 \vere plotted, again between 0 and 1. It \vas

assumed that to each point in this square a value of w could be assigned
and that thernaximul11 of all these values w.ould represent the situation at
equilibrium, once selection was c0l11plete. Such a diagranl was called an
"adaptive topography".

Two things happened to disturb this comfortable picture. The first
was the derivation of exact equations govenling the case under
discussion.' Several authors worked on t.his, but probably the ll10St

inf1uent~al analysis was the joint work of the US geneticist R C Lewontin
and a Japanese colleague K-I K.ojima. They published their analysis in
the journal Evolution in 1960.

I'hey considered the four aBele-combinations AB, Ab, as, ab and
- looked on these as if they were just four versions of a gene as in the
earlier analyses by Kingman and those who preceded hiIn. Now if this
were all there was to the matter then the earlier analysis would apply to
this case also. But there was a further complication.

They took the four types just listed and assigned frequencies to
theIn, in order: Xl' X2 , X3 , X4-' \\There Xl + X2 + X3 + X4 =1. They also

assigned fitness coefficients according to the following table:

AB&AB: Wll AB &Ab: lV12 AB&aB: vv13 AB & ab: W14

Ab &AB: 11121 Ab & l4.b: W 22 Ab & aB: W 23 Ab & ab: ll-V24

aB&AB: vV31 aB &A.b: HJ32 aB &aB: )1J
33 aB & ab: lV34

ab &AB: W'41 ab &Ab: It'4-2 ab & aB: HJ43 ab & ab: lV44

They were able to simplify this table sOInewhat. Biological
considerations led to the conclusions that (1) for all i and j, W ji = )1)ij' and

(2) lVl4 =W 23 = W (say). Indeed it \vould be possible to go further and set

tV = 1, but they did not do this. The next thing to do was to set up fitness
coefficients for each of the fOUf types individually, and this they achieved

by setting liJ
i = liJilX1 + W i2 X 2 + 1-Vi3 X 3 + l1J

i4 X 4 for each of the four possible

values of i. The overall mean fitness is then found to be
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Le\vontin and Kojima then gave equations. for the progress of the
selection process. Here, however, I will 'Only quote the equilibriunl case,
achieved when selection is cOlnplete. We have in this instance:

Xl (vv1 - w) =RvvD

X 2 (l1l2 - w)= -R}vD

X3 (VV3 - w)= -RH,ll)

X 4 (W4 - w)= RwD,

(1)

where R is a number between 0 and 0.5, and 1) is a shorthand for
X1X4 - X 2X3 . It is the presence of the right-hand sides that distinguishes

this case frOITI the other one discussed earlier.

They arise because of a cOlnplication resulting franl the biological
process by which the sex-cells (gametes, i.e. spernl and ova) are f'oruled.
The genes on the different chromOSOInes do not stay in their original
configurations, but recolllbine into different patterns. R is in fact the
probability that such recombination occurs het\veen the t\VO loci involved.
D is a m.easure of the effect of that recombination.

These equations allowed Moran to look again at the theory that had
been advanced for the case involving t\VO loci. In 1964 he published in
The Annals of flum.an Genetics a paper called "On the nonexistence of
adaptive topographies", that thre\v out much of \vhat had been accepted
up till then. As he wrote: "The purpose of the present paper is to shcnv
that the above theory [the study of adaptive topographies] and all the
quoted work based on it is wrong because when there exists genera]
selection the genotypes at one locus do not associate at random with the
genotypes at the other locus."

Specifically he demonstrated that:

II the luean fitness w is not a function of the two variables
PI and P2 introduced above, but rather of three variables

(any three of Xl' X 2 ' X 3 , x 4 );

II the situation satisfied by Equations (1) did not necessarily
Dlaxilruse }tJ, and that

II there were even situations. \vhere selection could actually
decrease w.
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I clainl for Inyself the credit for finding a fourth paradox arising
frOH1 Equations (1):

III The fittest of the cOlllbinations AB, Ab, aB, ab can never be
the IllOst frequent.

1'he proof is perfectly straightforward. Suppose for definiteness that A.B
is the fittest conlbination (it. Inakes no difference which one we choose).
Then lV1 is the largest of the coefficients vvi • Then in particular, HJ1 > W 4 •

But nO\\1 combine the .first and the fourth of Equations (1) to find

fr0111 \vhich it follows that Xl < x4 , and thus there are more abs than there

are ABs, even though these latter are lnore fit!

The work of Moran in particular implied that if selection was
111axinlising something, then that something was not w. 'There began a
search for what that sOInething could possibly be. The answer, when it
caIne, was rather surprising.

Suppose that there are n alleles at a single locus. This is the case
already decided by the work -of Kinglnan and his predecessors. If an
individual has an allele of type i and another of type j, then the genotype
can be represented as ij, and such an individual \vould be assigned a

fitness wu' If the frequency of the type i allele is qi and that of type j is

qj , then the mean fitness tv is the sum of all the products \1.JijQiQ j taken

over all the values of i and j. The change in the value of w froIn one
generation to the next is caused by changes in the values of the

frequencies qi (and q j)' Write fiq. for the change in qi' etc.
. 1

I'he overall change in w is the sum of two term~, each itself a sum

of other tern1S. The first is twice the SUIll of all the products vVUQi!1Qj,

and the second is the sun1 of all the products Vt)ijl1qi~qj' In SOlne cases,

this second tcnn is small cOD1pared to the first, and if it is valid to ignore
it then the luean fitness will increase. But a better \vay to express this is
to say that the partial increas~ in nlean fitness is al\vays positive.

l~his resu 11: had been advanced by Fisher back in the 1920~, and
nail1ed by hiln as "the fundalnental theorem of natural selection-'. Later,
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however, it was thought to have had only limited validity, or else to have
the st.atus rn.erely of an approxiInation. Ho\vever, in 1972, G R Price,
writing in The Annals o,fHum.an Genetics, suggested that Fisher had been
nlisunderstood, and that he had Ineant that the partial increase in mean
fitness was always positive, not that the illean fitness itself al\vays
increased. I-Ie wrote: "The Inystery and the controversy (over the
'fundaIl1ental theorem') result from incomprehensibility rather t.han
error."

Later work by W J Ewens(then at Monash University) led to his
being able to construct a function that does indeed increase under the
influence of natural selection. This he published in the journal
Theoretical Population. Biology in 1989. Ewens agreed \'lith Plice that
Fisher had been misunderstood, and was also able to show that his
function always increased no matter what biological con1plications \vere
included and no rnattcr how complicated the underlying equations rrl.ight
become,

What is lost, though, is the immediacy of biological interpretation.
As E\vens wrote: "An interpretation of this theorelTI is put forward here'
which ilnplies that it is correct as a Inathematical statclnent, but of less
biological value than claimed by Fisher".

The old, but inCOITect, understanding had been that w itself
increased froln one generation to the next. T'his makes for a sin1plicity of
interpretation, that is, ho\vever, deceptive. Reading popular works on
Genetics, such as The Selfish Gene, one wonders quite ho\v Inuch of the
true 111athelTI.atical theory has been absorbed!

l'houghts along these lines have found trenchant expression in the
writing of the mathen1atician Ian Ste\vart (in his book L~fe 's Other Secret,
Chapter 12). I-Iere is a salnple.

" .. , it is not unusual t~ be told that people are having childi'en bin
order to pass on their genes to future generations', . . . but I know t.hat
vyhen I \-vas deciding to have children, I didn't pay rnuch attention to Iny
genes at all. I blame this kind of nonsense on a widespread
misunderstanding of the se(fish gene viewpoint, which rnaintains that the
only reason \ve exist is so that our genes can reproduce. . ... H.o\vever, it
is equally possible to pronl0te the slavish gene theory, in \vhich genes
\vorry enorn1011s1y about the survival of their .organiSlTIs. (If the genes
don't produce a viable organisln. they die out, right?)"
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COMPUTERS AND COl\1PUTING

"Conlputation is Exclusive"

The title of our COlUlllU in this issue is taken from thewebpage

httg://www.mathpages.com/home/kmath106.htm

\vhich begins by discussing the notion of a "conlputable number"_ T'his is
not perhaps quite what one might expect. While it does include numbers

like ·14 whose exact value lnay be COlllputed, it also includes others like

J2 for \\lhich .this is not the case. Ho\vever it is possible to \vrite an

algorithrn in finite tenns' that will conlputeJ2 to any desired degree of
accuracy_ (You Inight like to try this as an exercise!) Although the

values achieve~ by such a prograrn \-'lill never exactly equal J2,. the
various values that are achieved converge to this value and to no other.

It is like the case of the sequence 1, 1/2, lA, ... , whose terms
approach, but never attain, the value O. If we continue the sequence long
enough, we can get arbitrarily close to 0, and no nunlber other than 0 has
this relation to the sequence.

Similarly to compute J2 or 7[,' say, we 'need to constluct a

sequence of approximations that converge, .in this same sense, to J2 or
7f. We can produce ever better and better approximations to the true
values of these nUlnbers \vithout ever actually reaching them.

However, because of the convergence property, we can positively
rule' out any incorrect value - just as long as we have enough time and
computing power! This is what is Ineant by "exclusive" in the title of this
COlUlllil. .

Fr01TI time to time, people come up \vith the notion that the
accepted theory of (say) 7i is wrong . Recently .we had a letter from a
reader who espoused such a view. His value differed from the accepted
decin1al expansion in the third decimal place. Ho\vever, the area of a unit
circle, i.e. 7[, can be expressed as beingS111aller than that of a regular
polygon whose sides are all tangents to it. In the case of our
correspondent, it may be shown that his value is greater than that of an
enclosing regular 64-gon, whose area in its tum is greater than 7[.
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First, let's look at the standard 5 x 6 game. 1\vo of the sides have
6 dots along them. This means that each has 5 intervals between adjacent
dots. Player A_, lTIoving first, takes the central interval in either one.
Thereafter, A lrurrors every move the opponent B makes. Clearly, A
cannot be the first to close the path, as such a n10ve. would be a Inirror
ilnage of a move by B, which \vould already have closed the path, and so
lost the galne. Thisis Professor Read's "rnonumenta] triviality".

Notice that this sallIe strategy applies to all rectangular grids in
which the number of dots is even. T'here \vill be either t\VO or fOUf sides
with an even nUlTlber of dots along theln~ and anyone of these nlay be
used to initiate the sarne strategy.

Thus, ~f the number of dots is even, the first player has an
extrelnely siluple \vinning strategy. It is not, ho\vev'er, the only possible
one. There are many [nore. The illustrations belo\v apply to a 4 x 4
but the principles invoked are general. In this case there are 16 dots and
24 possible first lTIOVes. Froln these 24, pick out a set of exactly 8 \vith
the follo\ving two properties:

1. No t\VO share a co~on end-point,
2, Each is the beginning or end of exactly one possible

connection.

Such lnoves \vill be called 'favoured Inoves'. It is always possible
to choose a set of favoured moves, and in fact it is possible to do this in
Inany ways. For the 4 x 4 case, Figures 1., 2 and 3 below sho\v some of
the possibilities. The third illustrates a pattern vvhose analogues can
always be set up.

....--~ G--- ....

Figure 1 Figure 2.

.....--~ e----...-- .... ..-- ....

..--~ .--~

.. ---@ 01r---e

Figure 3 _
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A generalised winning strategy for A, playing first, is to make any
one of the favoured ill.oves. This \vill force B, the opponent, to rnake a
non-favoured lTIOve. A will now be able to Inake another favoured nl0ve,
and so it goes.B will never have the opportunity to make a favoured
H10ve. Because the favoured D10ves are never connected to one another,
no favoured move can close the path. Eventually B ·will be forced to
n1ake a closing Inove (ret.urn to a previously visited point) and so lose the
gallIe.

Notice that there are n1.n dots and that each dot belongs to exact] y
one of a set of pairs, the favoured lTIOVes. It follows that to set up the
\vinning strategy requires Inn to be even, as there l1.1Ust in general be 111nl2
favoured lTIOVes.

So \\That about the case rnn odd? In this case B has the \vinning
strategy, but it .is not as Sil1.1ple to apply because the initiative still lies
\vith A, who Inoves first. However, lvhatever A does, B has a forced win.
This is illustrated in Figures 4 and 5, which use the case of a 5 x 5 grid
for the delnonstration.

, .. ---e ..-- ....
I

b ...---e

e----e 0----4

...--... ....--...
"---4& e----e

Figure 4 Figure 5

To exploit a winning strategy, B must first \vait to see what A does .
.A.n example is displayed in Figure 5. But now one end or other of the
interval actually chosen by A must lie an even nUlnber of intervals away
fron1 each of the four corner points. In the case shown in Figure 4, it is '
the right-hand that lies 2 intervals from the top left-hand comer (or 4
frorn the bottoln left-hand one, etc).
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B 111Ust avoid this point and consider the renlaining 24 points of the
grid. These 24 can be paired off into 12 pairs that fonn a set of favoured
moves. One possibility is illustrated in Figure 5. One point in the-'set of
24 will be the other end of the interval chosen by A. From this end, B
lllakes a favoured ll1ove. Note that there will always be such a 111ove.

The galTIe no\v proceeds as in the earlier case, except that it is no\v B who
forces the win.

You lnight care to explore specific cases of sinlple grids. The
2 x 2 case is completely trivial, and the 2 x 3 case not nluch harder;

ho\vever, the 3 x 3 case lllay be conlpletely analysed \vithout too much

headache, and the next few cases are easily accessible .

.A CORRECTION AND AN ADDENDUM

In the course of the COlnputer colunm in our previous issue, we
inadvertently misspelt the nan1e of Professor W M Kahan several tilnes.
OUf apologies to everybody!

OUf discussion of Avni Pllana's "Tie-knot problem" {Problenl
27.4.3) showed two possible interpretations of the problem, leading to
t\\lO sOlllewhat different solutions. For more on tie-knots, see ·The
Australian A1athenlatics Teacher, VaLLune 60, Part 1 (March 2004), p 32.

"Although to penetrate into the intimate mysteries of nature and
thence to learn the true causes of phenomena is not allo\ved to us,
nevertheless it can happen that a certain fictive hypothesis Inay suffice for
explaining many phenomena."

I-Jeonhard Euler, 1748
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PROBLEMS AND SOLUTIONS

First the solutions to the problems set in Volume 27, Part 5
(October 2003).

S.OLUTION TO PROBI..-IEM 2705.1 (Submitted 'by Willie Yang
(Singapore), Jim Boyd (USA) and Richard Pahnaccio (USA), jointly).

The problem read:

Evaluate 4sin 200 + tan 200
•

Solutions were recei ved from Keith Anker, Sefket Arslangic
(Bosnia), John Barton (2 solutions), Julius Guest, Joseph Kupka, Carlos
Victor (Brazil) and. the proposers. Here is Barton's first.

Inserting tabulated values.suggests that the required value is J3 .

l'hen:

r3;; 600 ('" 200) sin(3 x 20
0) 3sin 20

0
- 4 sin 3 20°

'\/ j =tan. = tan .J x =. =--------
cas(3 x 200

) 4 cos 3 200
- 3cos 200

3-4sin20° { 2}=tan 20° x . =tan 200 1+----
I -4sin 200 1 - 4 sin 200

2sin 200

= tan 200 + -----------'
cos 200

- 2 sin 200 sin 400

200 2sin20°
=tan + \

cos 20° - (cos 200
- cos60° )

=tan 200 + 4 sin 200
, since cos 600 =1/2.

This sequence of identities is reversible, which establishes the result.

Barton's second proof was shorter, but less transparent.
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SOLU1'ION TO PROBLEM 27.5Q2 (Sublnitted by Sefket Arslangic
(Bosnia))

r[he problem read

Prove that

1 .1
--+---+
n+l n+2

for all positive integers n.

1 ]
+-<­

2n J2

Solutions \vere received froill Keith Anker, John B,utoI1, Julius
Guest, Joseph Kupka, Carlos Victor (Brazil) and the proposer, rHost of
whom proved a sOITlewhat stronger result. !-Iere is :Kupka's.

Let S =_1_ + __1_ + ... +- J._
n 11. + 1 n +- 2 2n .

1 1. 1. 1 1.
Then 5 =--+--.-+- ... +-+--+---

n+l n + 2 n + 3 2n 2n +- 1 2n +- 2

,So S -s =_1_+_1 ~=_1 ~:__ 0
+1 > -'

n fl 2n + 1 2n +- 2 n + 1 2n+ 1 2n + 2

Thus {Sn} is an increasing sequence. Furthermore

Sn=51 + (52-51) + (53-52) +- .... +- (Sn-Sn-l)

= ~ + (~ - ~J" +- (-~ - ~J' +... + (__1 -' J-.')
2 3 4·' 5 6 21'1. - 1 2n /

1 1 1 1 1 1 1
=1--+---+---+ +---

2 3 4 5 6 211 -- 1 2n

This last series is the partial sum of an infinite series whose
limiting value is kno\vn to be In 2. Because {SJl} is an increasing

sequence, the limiting value is greater than any individual partial sum.

1. .
Thus S" < In 2 ("" 0.693) < -12- ("" 0.707).
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SOIJUTION TO PROBLEM 27.5.3 (Submitted by Julius Guest)

The problen1 read:

Let

12 22
11.

2

S'fn = ---- + + ... ---------
2x3x4x5 3x4x5x6 (n+1)(n+2)(n+3)(n+4)

Find an explicit fornlula for S n and determine lim Sn •
n"""'oo

Solutions \vere receiyed from Keith Anker, Sefket Arslangic.
(Bosnia) (2 solutions), John Barton, Joseph Kupka, Carlos Victor (Brazil)
and the proposer. All were rather siInilar and so \vhat follo\vs is a
composite.

It may be proved that

n 2 1 1 2 1 9 1 8 1--------- =--- - --- + --- - ---
(n. + l)(n + 2)(n + 3)(11. + 4) 6 n +1 ] n + 2 211+ 3 3 n + 4

[1'his may readily be proved once \ve kno\v it; to establish it in the first
place requires partial fractions:]

l'hen

s =~(~ +~ +... + _1_) _2(~ +~ +... +_1_.)
n 6,23 n'+l. 34 n+2

+~(! +.!.. + ... + _1_) _~(2. +~ + ... +_1_)
2 ,4 5 11.+3 3 5 6 n+4,

198 fBut - - 2 + - - - = 0, so Inany of these ternlS cancel out. Ater
623 '

SOlne simplification, we are left with the answer the fit:st question:

5 1 1 11 1 8 1S =- - --- ,+ --- - _._-
n 36 6 n + 2 6 n -I- 3 3 n + 4

As n ~ 00, 5" ~ ~ which answers the second question.
6
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SOLUTION TO PROBI..;EM 27.504 (Submitted by Keith l\nker)

The problelll read:

Lines I] and /2 are perpendicular to one another and lie in

the plane of a triangle A,Be. 'lJsing only measurements in the
directions of I} and l2' deteruune the area of ABC.

Solutions were received from Sefket Arslangic (Bosnia)~ John
'Balian, Carlos Victor (Brazil) and the proposer.

Details varied, but all came down to the recognition that II and 12

could be taken as the axes of a rectangular co-ordinate systen1. .Suppose
then that A =(Xl' )'1 ), B = (x2 , Y2) and C =(x3 , Y3) in these co-ordinates.

rrhe result is now a standard one. l'he area is given by the value of the
detenmnant

x v 11 "" I

X 2 Y2 1

x3 Y3 1.

Balton cites SOlnmerville' s Analytical Conics and Osgood & Graustein' s
}Jlane and Solid Analytic Geon~etfy as exalnples of texts \vhere the result
may be found.

We close with four ne\v problems,

PROBLEl\f 28.3.1 (subnritted by Julius Guest)

Prove that all the points of inflection of the curve y == sin x

. 2 4x 2

he on t.he curve y = -.-2- •
x +4

LetA be the region contained bet\veen the x-axis and the

parabola y == 1- 4x 2
• fJeten:nine the largest rectangle that

can be inscribed \vithin 1-1.
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PROBLEM 2803e3 (subnlitted by Paul Grossrnan)

Let us define a Do/nino set oj'rank n as a set of tiles,
the rectangular faces of \vhich are separat.ed into two
squares, each Inarked with dots representing numbers froIn
zero to n, such that no two tiles contain the saIne pair of
nurnbers and all combin~tions of pairs are represented.

• •

The figure sho\vs a set of rank 2 laid out in a closed
chain. The contacting squares on adjoining tiles have
Inatching numbers and each tile \vas placed in the clockwise
direction at the end of the previous tile, either in the saIne
direction or at right angles. Now:

1. Prove that a closed chain with the above conditions
can be established vv'ith a set of f.ank 6 (the standard domino
set) but not with sets of rank 3, 4 or 5.

2. Show what ranks will allow a continuous chain to
be formed with matching numbers on adjoining squares and
tiles placed at the end of the -previous ti~e.

PROBLEM 28.3.4 (submitted by Sefket Arslangic, Bosnia)

Let x 2+y2 + Z2 + 2xyz =1, where x, y, z 2 O.

-.. 2 -.. 3
Prove that x~ +y + zL- ~"4 .
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