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Function is a refereed mathematics journal produced by the
School of Mathematical Sciences at Monash University. It was
founded in 1977 by Prof G B Preston, and is addressed principally to
students in the upper years of secondary schools, but also more
generally to anyone who is interested in mathematics.

Function deals with mathematics in all its aspects: pure
mathematics, statistics, mathematics in computing, applications of
mathematics to the natural and social sciences, history of
mathematics, mathematical games, careers in mathematics, and
mathematics in society. The items that appear in each issue of
TFunction include articles on a broad range of mathematical
topics, news items on recent mathematical advances, book reviews,
problems, letters, anecdotes and cartoons.
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Articles, correspondence, problems (with or without solutions)
and other material for publication are invited. Address them to:

The Editors, Function

School of Mathematical Sciences

PO BOX 28M

Monash University VIC 3800, AUSTRALIA
Fax: +61 3 9905 4403

e-mail: michael.deakin@sci.monash.edu.au

Function is published five times a year, appearing in February,
April, June, August, and October Price for five issues (including
postage and GST): $33"; ; single issues $7. Payments should be sent
to: The Business Manager Function, School of Mathematical
Sciences, PO Box 28M, Monash University VIC 3800,
AUSTRALIA; cheques and money orders should be made payable
to Monash University.

* $17 for bona fide secondary or tertiary students.
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THE FRONT COVER

This issue’s front cover shows a famous set of graphs. Five of the
set are drawn, although it is actually infinite. The relevant formula is

- nx(l-x)
n’x* + (1-x)*

and the graphs drawn are those forn=1, 2, 3,4, 5.

It is readily apparent from the cover illustration and also from the
formula given above that all the graphs pass through the points (0, 0) and
(1, 0). Each graph also has a unique maximum point and we can find this
by differentiating. The details of this calculation are left to the reader, but

1

. . . 1
the result is that the maximum occurs at the point (——T’ Ej .
. n+

If we take any particular value of x, and ask what happens as n
gets larger and larger, then for very large n,

1-x

y:
nx

and so this value of y tends to zero as n tends to infinity. Thus if we
designate the particular value of x by X (say), we have in symbols

nX(1-X) _
M 1 w2
noe pt X+ (1-X)

However, the interesting (and paradoxical) point is that the curves
themselves, taken as a whole, never approach the curve y = 0, as there is
always a point somewhere on each curve for which y =%2.

[Something like this formed the basis for the April Fools’ Day
letter of our 2002 issue, although that case is rather more complicated.]

This example is due to Georg Cantor, who is better remembered for
his research into the question of transfinite numbers. [See Function,
Volume 2, Parts 1 and 2,] Before Cantor developed this interest (for
which he is best remembered today) he looked into the theory of



66

trigonometric series (like those in our issue for April 2002) and set up
much of the analytic machinery for dealing with such series. It was in
this context that he advanced the example illustrated on this issue’s front
cover.

Cantor was a pupil of Weierstrass, who is responsible for much of
the careful work needed to put the theory of functions onto a sound
footing. [Some of this story was told in our special issue, released at the
end of 1996 to commemorate 100 regular numbers of Function.]

A biography of Cantor may be fdund at the website

http://www-history. mes.stand.ac. uk/history. Mathematicians/Cantor.htmi

He was a major figure in Mathematics toward the end of the 19" century
and into the early 20™. Sadly his latter years were clouded by mental
illness, but this in no way diminishes the significance of his contributions
to Mathematics. Our cover illustrates one of these: one of the lesser-
known of them, but an important and interesting one nonetheless.

COCACAOACICACIOICACAICAICICICIOD

NEWS ITEMS

Another Prime Number Result Proved?

In Function last June and again last October, we reported the
results of recent investigations into the “twin prime conjecture”. This is
the ‘statement (not yet proved) that there are infinitely many pairs of
primes like 3 and 5, 4 and 7, 11 and 13, and so on whose difference is 2.
The conjecture also turned up in the History Column for April 2001.

" In an attempt to investigate the problem, Dan Goldston and Cem
Yildrin developed a new approach that seemed to show a lot of promise.
At first they believed that by using it they had been able to show a strong
partial result. However in this they were mistaken, for their proof of the
technical result was found to contain an error. However, as was remarked
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in our October story, the new approach was nonetheless perceived as very
promising. '

This judgement would seem to be borne out by another related
development. Prime pairs are examples of 2 primes in arithmetic
progression. Now consider 3, 7, 11. This is a sequence of length 3 with a
common difference of 4. A rather meatier example is the 10-term
arithmetic progression of primes with a common difference of 210: 199,
409, 619, 829, 1039, 1249, 1459, 1669, 1879, 2089. This is the sort of
area of Mathematics where people strive for records. Currently the
record is shared by two sequences both 22 terms long. The first, found in
1993, has terms of 11,410,337,850,553 + 4,609,098,694,200k. This was
equaled in 2003 by 376,859,931,192,959 + 18,549,279,769,020k, where
ineachcase k =0, 1, ..., 21.

Back in 1923, G H Hardy (whose story was told in the June 1995
issue of Function) and his long-time collaborator, Littlewood, made a
very general conjecture known as the “k-tuple conjecture” which implies
that there exist prime arithmetic progressions of any length k, although
the full statement goes beyond this.

However it now seems to be established that the sequence of prime
numbers does contain arithmetic progressions of length & for all k. This
result has been announced by Ben Green and Terence Tao (the expatriate
Australian who was the subject of a news story in our issue for last
February). The work has not yet been formally published, but in
accordance with much modern practice it has been posted on the Internet
for scrutiny by other mathematicians, and so far seems to have met with
approval. Their work makes use of several sophisticated techniques, but
among them is the approach of Goldston and Yildrin.

If this work does meet with full approval, it will be published in the
refereed literature and will become a theorem. Meanwhile it is posted on
the Internet at:

hitp:/arxiv.org/abs/math.NT/0404188.

But beware! Only an expert in advanced Number Theory will be able to
follow it!

[lsleleletelateloloelobloalosloletleeloalonlvele ol
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The Second Abel Prize

Our cover story last October dealt with the award of the first ever
Abel Prize to Jean-Pierre Serre. The Abel prize honours the memory of
the Norwegian mathematician Niels Henrik Abel, and is now awarded
annually by the Norwegian Academy of Arts and Letters.

The 2004 prize has now been announced and this time it is a joint
award. The recipients are Sir Michael Atiyah of the University of
Edinburgh, and Isadore M Singer of the Massachusetts Institute of
Technology. Atiyah and Singer collaborated back in the 1960s to prove
the “Atiyah-Singer index theorem”, that has been described by the
American Mathematical Society’s website as “bringing together
topology, geometry and analysis”, and as “building new bridges between
mathematics and theoretical physics”.

For a readable account of the impact of their work on Mathematics
and Physics, see the website

http://www.abelprisen.no/nedlastning/2004/english _2004.pdf

Both winners have been the recipients of numerous other awards: in
particular, Atiyah has already received a Fields medal (prior to the
institution of the Abel prize, seen as the mathematical equivalent of a
Nobel Prize). For detailed biographies of the two prizewinners, look up:

http://www-history.mes.st-and.ac.uk/history/Mathematicians/Atiyah.html

for Atiyah, and

http://en.wikipedia.org/wiki/lsadore_Singer

for Singer.

OOOVOICIACOCACACICAT COTIOTOVOQ0T

“There is no branch of mathematics, however abstract, which may
not some day be applied to phenomena of the real world.”

Nikolai Lobachevsky
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BOOK REVIEW

Shrine to University: A Geometry Journey along St Kilda Rd and
Swanston Street (Second Edition), by Jill Vincent.
(Mathematical Association of Victoria, 2004)
Price $35; Members $25

The first edition of this delightful and informative book appeared
in 1999, in advance of World Mathematical Year 2000. The year 2000
saw the Mathematics 2000 Festival hosted by the University of
Melbourne. The first edition was a contribution to this endeavour. Now
the MAV have published a second edition, that expands and updates the
first. In that first edition, there were 14 chapters. This one has 15, and
takes account of changes in the Melbourne streetscape in the last five

years.

Sadly one of the original chapters is no more. The “Ansett A” has
gone from the corner of Swanston and Franklin Streets. However, we
have acquired in that time a new landmark: Federation Square. This has a
chapter and there is also another new chapter, devoted to the Town Hall.

The author has been wonderfully diligent in tracking down original
architectural drawings and suchlike material and has clearly devoted a lot
of time and energy (not to mention legwork) to her project.

In this new edition, there are 15 landmarks discussed; all are on
public view and all reflect significant mathematical concepts and
structures. In order, they are:

The Shrine of Remembrance
The Victorian College of the Arts Logo
The Nautilus Fountain
The Floral Clock
The Victorian Arts Centre Spire
The Victorian Arts Centre Logo
The Footbridge over the Yarra
Federation Square
St Paul’s Cathedral
- The Melbourne Town Hall

SO PN AW
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11.  The “Architectural Fragment” Sculpture
12.  The Melbourne Central Cone

13.  The Geodesic Dome at Melbourne Central
14.  Storey Hall at RMIT

15. The Tessellating Pentagon Pavement

The book takes the form of a mathematical stroll through the heart
of Melbourne, beginning at the Shrine of Remembrance and heading
north.

The Shrine was erected as a memorial especially to the fallen of
World War I, and is based on classical models. The lower part echoes the
Parthenon in Greece and descriptions of the Mausoleum at Harlicanassus,
one of the Seven Wonders of the Ancient World; above is placed a
truncated pyramid, with classical proportions. Right at the top is an
aperture that admits sunlight in such a way that the light falls exactly onto
the “Stone of Remembrance” at 11 am on November 11 each year. This
is the time and date of the Armistice that brought the hostilities of World
War I to an end. To do this required careful surveying and a sound
knowledge of astronomical principles. A further complication arose with
the introduction of Daylight Saving. This is now compensated for by
means of an ingenious arrangement of mirrors.

On the front of the Victorian College of the Arts is a logo based on
the pentagon (symbolic of our five senses) and superimposed circular
motifs. These overlap to surround a central five-pointed star. The overall
pattern resembles a Celtic braided figure and sits astride the initials VCA.
The book notes similar designs in Mediaeval and Islamic art. In
particular, one of the windows of Exeter Cathedral (UK) incorporates a
similar combination of pentagonal and circular features.

The structure of the Nautilus shell was briefly discussed in
Function’s October 1992 issue, where it was related to the “Golden
Section”. The third chapter of this book discusses a sculpture that
follows the lines of a Nautilus shell and is to be found outside the
National Gallery of Victoria, at the North end of the moat.

The Floral Clock on the other side of the road superposes the
twelve hours of the day on a doubly octagonal design. Although the
actual plants are changed from time to time, the underlying geometry
remains the same throughout.
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The spire on the Victorian Arts Centre is another of the
mathematical sights. It also appeared in an earlier issue of Function, as
our cover story in April 1980 (before it was actually built!). Here there is
an extremely thorough study of the spire in all its aspects, with detailed
architectural drawings to go with it. An accompanying table quotes some
of the dimensions to the nearest thousandth of a millimetre! The lower

part takes the form of a hyperbolic paraboloid: z = yr-x*.

The Arts Centre also sports a logo that represents in two
dimensions, what the spire models in three. It is realized by the
superposition of part of the hyperbola y=1/q onto an equilateral

triangle.

Proceeding further north, we come to the Yarra River. With the
inauguration of the Southbank development, a new footbridge was built
to span the river. It is of a bow truss construction and the walkway is
suspended from a parabolic arch.

Federation Square on the North bank of the Yarra, and the East
side of Swanston Street is newly built since the first edition of this book
was published. Its assertively “modern” appearance incorporates several
features of mathematical interest. One of these is the “pinwheel tiling”
that supplies the underlying geometry of many of the surfaces. This is
based on the right-angled triangle whose shorter sides are 1 and 2. There
are several examples of these proportions illustrated in the book.

Part of the controversy surrounding the plans for Federation Square
arose from the supposed clash between the style of its architecture and the
more traditional lines of the adjacent St Paul’s Cathedral. This too has its
mathematical interest, with its variety of Gothic arches, trefoil and
quatrefoil windows and suchlike.

A brief chapter on the Melbourne Town Hall has also been added
for this edition. The semi-circular windows of the facade incorporate the
feature known as the “arbelos”. This shape has also previously made a
brief appearance in Function: in our History Column for June 1998.

Further north still on the corner of La Trobe St, we see, outside the
Public Library, what looks like the corner of a building sinking slowly
into the pavement. It is a sculpture whose official title is “Architectural
Fragment”. It is essentially a triangular pyramid with embellishments.
Its largest face has the dimensions of a 3:4:5 triangle.
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Opposite the “fragment” is Melbourne Central, with its prominent
conical spire designed to cover and shelter the old shot tower. Again we
see the juxtaposition of the old and the new in the architecture. The
clearly “modemn” dome encloses the heritage-listed shot tower.

Chapter 13 is an interesting and ambitious one, dedicated to the
geodesic dome that is another feature of Melbourne Central. The
construction of such domes is discussed in considerable detail: the way
they are constructed from triangles, but on an underlying pattern of
pentagons and hexagons. They relate to the classical solids of Greek
antiquity, notably the icosahedron and the dodecahedron.

RMIT’s Storey Hall is another blend of the old and the new.
Prominent on its facade is a pattern of rhombuses. There are “fat” ones
and “thin” ones that together tile the plane in a manner first discovered by
the British mathematician Sir Roger Penrose, and today known as
“Penrose Tiling”. This also is the material for a long and informative

chapter.

Related material forms the basis of the final chapter, on the
pentagonal tiling of a pavement at the University of Melbourne. Between
the building that now houses the department of Mathematics and
Statistics and the building to its immediate West (“Old Geology”) is an
area paved with pentagonal sandstone tiles. The construction follows a
pattern known as the “Margaret Rice tiling”. This uses eight irregular
pentagons that fit together to form a tessellating unit that allows a regular
tiling by a process of translation, and thus makes for a periodic pattern
(unlike the Penrose tiling which is not periodic).

The author of this delightful work is a Melbourne Mathematics
teacher. She has supplemented her accounts of these landmarks with a
set of activities, graded according to Year Level, and then the answers
given to the problems set in conjunction with these activities.

The work ends with a double bibliography: books on page 87, and
websites on page 88.

Did you know that Melbourne had so much Mathematics on public
display? Read this book, visit the sites and understand the underlying
Mathematics to enhance your enjoyment of our city’ treasures!
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FROM THE ARCHIVES

The Game of Slither

[The following discussion comes from Function, Volume 1, Number 2,
April 1977. In those early days of Function, there was much discussion
of various games. This extract formed part of that discussion. It has been
slightly edited for this issue.]

In the June 1972 issue of Scientific American, Martin Gardner
described the following game called SLITHER. This is a game for two
players, played on a 5x6 lattice or ‘grid’, as shown in Figure 1 below.
The rules are simple. Opponents take turns marking a horizontal or
vertical segment of unit length. (For example, the move shown in Figure
2 is permitted, but that shown in Figure 3 is not.)

@ © o« © & o ¢ e & & & o & e e ¢ & 0 o
o 6 @ o & & O o & © © o O o ¢ @ 6 0 ©
2 a0 85 0 00 . I e e 0 o o0 Taw 8
o e o & 0 o ® e e 6 o o e ® © © o o
e ® 8 6 &5 & © » ¢ e 9 & O ¢ © ¢ & & &

Figure 1 Figure 2 Figure 3

The segments must form a continuous path, but at each move the
player must add to either end of the preceding path. The player forced to
close the path is the loser. (Figure 4 shows a situation in which the next

play must be a losing one.)
E .

o 4 @ 6 0 9

Figure 4



74

At the time Gardner wrote his article no winning strategy for either
player was known'. In a tabulation of several hundred games the wins
were about equally divided between the first and the second player so
there was no indication whether one player or the other held the
advantage. Soon after publication of his article Gardner received a flood
of correspondence containing strategies of steadily mounting generality
until finally Ronald C Read, a graph theorist at the University of
Waterloo in Ontario, Canada, reduced the standard game to a
monumental triviality.

Try to find a winning strategy for one of the players in the game of
SLITHER just described. You might also try to formulate a general
strategy for the game played on a grid of mxn dots for any natural

numbers m and n greater than 1.

[The article went on to consider further possible generalisations;
for example to grids where the dots did not necessarily form a rectangular
pattern. In a later issue (October 1977), a full analysis of the mXxn case
was given. The conclusion was that if mn is even, then the first player
has a forced win, whereas if mn is odd then the second player has a
winning strategy. Details are given on pp 85-87 as to how to accomplish
these wins. The discussion of grids other than the rectangular was left in
an inconclusive state. An addendum published a contribution including a
partial analysis from Graham Farr, then a student at Melbourne High

. School, today an Associate Professor in Monash University’s School of
Computer Science and Software Engineering.

An account of Ronald Read’s definitive discussion of the original
game is also included (onp 8§5). ]

' Any game where chance plays no part, where two players move aliernately, where the state
of the game is on view to both players at all times, and where no draws are possible is the
subject of the winning strategy theorem: either the first or the second player to move can
force a win by the right choice of moves, whatever the opponent does. In this case, it is clear
that these conditions are all fulfilled. The only one that might give us pause for thought is the
question of whether draws are possible. But as long as there is a “free end” to the chain of
interconnected dots, then a move is possible. Eventually we run out of dots and so such a
“free end” must become joined to some point of the chain. At this juncture, the game is
necessarily lost, not drawn! Of course, knowing that one player or the other has a winning
strategy does not tell us either which player actually has it, nor how it is to be achieved. Eds
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HISTORY OF MATHEMATICS
The Mathematics of Darwin and Mendel’s Insights

Michael A B Deakin, Monash University

In the late 1850s, two separate lines of enquiry were proceeding
simultaneously. but almost independently. In Fngland, Charles Darwin
was slowly working his way to his theory of natural selection. He came
to the view that what fanciers of dogs, pigeons and other domestic
animals achieved by selective breeding was also taking place in the wild
as the result of competition between individuals for space in a crowded
world. This led him to his version of the theory of evolution, for which
he is now celebrated.

Meanwhile, in what is now the Czech Republic, Gregor Mendel
was conducting experiments on garden peas, and sorting out the laws
governing the inheritance of characteristics such as height, flower colour
and the like. If, for example, a strain of pea that bred true for red flowers,
was crossed with another that bred true for white flowers, then the
offspring were all pink (which, perhaps, is what we might expect);
however, if these pink flowers were then crossed with one another. the
offspring could be red, white or pink (which is perhaps not what we
might expect). When bhe looked at the proportions of these different
colours, Mendel found that about ¥4 were red, another ¥ were white and
the remaining %2 pink.

Our current understanding of this result represents the red type as
having two copies of a “gene” R, so that the red-flowering pea is
represented as RR. The white type has two copies of another gene r, so
that the white-flowering pea is represented as rr. The cross produces the
combination of an R-type gene from one parent with an r—type from the
other, resulting in the production of Rr progeny, which were identifiable
as having the pink flowers. When these, in their turn, interbred, each
passed on the R-type gene to half the progeny and the r type to the other
half, and hence the result Mendel observed.
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However, when other characteristics were investigated, things were
rather different. If, for example, seed colour was studied, then the seeds
were always either green or yellow, with yellow seeds making up about %
of the plants arising from the second cross. Here Mendel’s results are
now seen as resulting from two versions of a gene: Y (for “yellow”) or y.
After two generations of cross-breeding, there were still the three types
YY, yy and Yy in the proportions ¥ : ¥4 : 2, but the YY and Yy types could
not be told apart by simple inspection.

In this case, the Y was said to be dominant over the y, which was
termed recessive. The only way to distinguish the YY plants from the Yy
was to conduct breeding experiments. Nowadays we say that these two
types have different genotypes but share the same phenotype.

There was no real attempt to draw these two strands (the Darwinian
and the Mendelian) of research together for many years. Indeed, while
Darwin’s work became famous (even notorious), Mendel’s was forgotten.
It was not till 1900, when three geneticists (Correns, Tschermak and de
Vries) independently rediscovered it and drew attention to it, that its
significance was appreciated.

After that, however, things started to move quite rapidly. The first
question to arise was: Why do not dominant genes drive out recessive
ones? This question was answered (again independently) in 1908 by two
researchers, the English mathematiciam G H Hardy (whose story was told
in this column in June 1995) and Wilhelm Weinberg, a German
physician. :

The answer went like this. Suppose that a gene exists in two
possible forms, A and a. Then there are three possible genotypes: AA, Aa
and aa. But look not at these but rather at the proportions of the two
forms of the gene: A and a. Suppose the A form exists in a proportion p
of the total; then the other, a, will be present in a proportion ¢, where of
course p + g = 1. Suppose now that all the genes are mixed up and
combined randomly. Then the combinations will be AA with a frequency

p?, Aa with a frequency 2pg and aa with a frequency ¢°. The values of

p and g are unaltered and so these proportions continue thereafter. Notice
that the question of dominance is entirely beside the point.

This result is now called the Hardy-Weinberg Law. It may be seen
as the first of a series of results in the mathematical analysis of Mendel’s
laws of inheritance. However, it makes no allowance for Darwin’s
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insight on natural selection. This extra complication took some time to
be studied. In the early 1920s, R A Fisher and J B S Haldane sought to
unify the two lines of enquiry. [Fisher made brief appearances in my
columns for June and August 2000, and Haldane in February of that same
vear. ]

The way in which this unity was achieved was to assign to each of
the genotypes a “fitness”. We now often use this term to refer to sporting
prowess and the like, but this is not what is meant here. The “fitness™. or
Jitness coefficient, of an individual is its aptness for its environment, as
measured by the relative success of its offspring. The “fittest” individuals
are those that contribute most to the next generation.

" So suppose that the fitness of AA is u, that of Aa is v (often set
equal to 1) and that of aa is w. Then the Hardy-Weinberg proportions
need to be modified. There will be ratios p’u, 2pgv, g°w of the three
genotypes AA, Aa, aa (respectively) in the next generation. In order to
make these three ratios add up to 1, we divide each by their total:

2 2 . .. .
pu+2pgv +q°w, which, because it is a mean of the three values u, v
and w, is called the mean fitness. It is usually represented by the symbol

It is now possible to write equations that show how the value of p
(and hence of g) varies from one generation to the next under selection.
One very common set of fitness values is the case u = v =1, w =0, This
is the sitaation of a recessive lethal genetic disorder. In such a case, the
form aa is slowly eliminated from the population and when it is finally

eliminated, we have w=1. Prior to this, = p” +2pg=1-¢°-<1. So
the effect of natural selection is to increase the mean fitness toward its
maximum value.

This same principle applies to other situations as well. One well-
documented case is that of a disease called sickle-cell anaemia. Here the
gene responsible comes in two forms § and 5. SS individuals are normal,
and so to outside appearances are those with the Ss genotype. However
ss individuals are condemned to die of a blood disorder called sickle-cell
anaemia. [t would thus appear that the case is the same as that just
discussed. And so it is in some situations. Sickle-cell anaemia is a fatal
disorder among black Americans. '

However, in their ancestral homeland, back in Africa, things are
more complicated. The phenotypes for SS and Ss are in fact not quite the
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same. Under the microscope, the red blood cells of the Ss individuals
show a slight abnormality that in fact turns out to be a blessing; such
individuals have an increased resistance to malaria, which is endemic in
sub-saharan Africa. We thus have

u=1l-a (say), v=1, w=0 so that w=p>*(l-a)+2pq.

In this case also, once selection is complete, W is again maximised.

2

, (1= . a
The final value is @ and it corresponds to the value g=-——
I+ I+

which typically is small but not zero. Nature allows a number of deaths
to occur (from sickle-cell anaemia) in order to prevent a larger number of
people dying from malaria.

Now in fact very few traits are determined by the simple action of a
single gene with just two possible forms. The best example of the next
complication is that of the ABO blood groups among humans. Here the
relevant gene comes in three forms that I will call A, B and O (although
this is not the standard symbolism). There are six possible genotypes:
AA, AB, AO, BB, BO and OO. These correspond to four distinct
phenotypes: Type A (AA and AO), Type AB (AB), Type B (BB and BO)
and Type O (00). ’

[This was a most important piece of medical research as its
elucidation allowed the practice of safe blood transfusion without the
complication of adverse reactions.]

But this led to the proposal of a further mathematical problem.
Suppose a gene were to exist in n different forms. There would them be
n(n—1)

different genotypes and to each of these a fitness coefficient

would be assigned and the mean of all these coefficients would be the
value of w. The question then arises: Is it still the case that W is
maximised when the final equilibrium is achieved and selection is
complete?

This question was investigated in the late 1950s by three separate
teams of researchers. The answer is ‘yes’. P A G Scheur and S P H
Mandel proved this and published their proof in the journal Heredity in
1959; H P Mulholland and C A B Smith published their (different) proof
in American Mathematical Monthly that same year. In 1960, a third proof
(different again) appeared in the Quarterly Journal of Mathematics. The
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authors were three Australians: F V Atkinson, G A Watterson (a former
editor of Function) and P A P Moran, a professor at the ANU.

A few years later, a considerably simpler proof was given. It also
appeared in the Quarterly Journal of Mathematics, and its author was
then a student, J F C Kingman (but now Sir John Kingman, FRS and a
highly distinguished professor of Statistics at Cambridge).

All this endeavour tended to reinforce the belief that the effect of
selection was to bring about “the survival of the fittest” in the quantitative
sense that the mean (average) fitness always increased until a maximum
was achieved.

However, this was a belief soon to be challenged. Before we look
into this however, notice one point. In every case, we are looking at the
frequency of the type of gene, not (except after the event) at the
frequency of either the genotype of the individual nor of its phenotype.
This extremely fruitful viewpoint has been standard since Hardy and
Weinberg, and has since been popularised by books like The Selfish
Gene. These look at the underlying mechanism of evolution and speak in
terms that make what was initially a mathematical convenience into a
governing principle. (This view is not, however, immune to challenge.)

By about 1960, it had long been known that the genes occur on
intracellular structures called chromosomes, and a distinction was made
between where on the chromosome a gene was to be found and what
form it took at that point. The word “gene” tended to drop out in favour
of two different terms: locus, which referred to the place in the set of
chromosomes (“genome”) where the gene was to be found, and allele,
which referred to the form the gene took.

Think of the case of two loci, at each of which one or other of two
alleles may be found. (This is really the very simplest case taking into
account the complications of real Biology.) Then the various genetic
combinations that can occur are AB, Ab, aB and ab. That is to say at the
first locus, either the allele A or the allele @ may be found while at the
second the possibilities are B or b. Thus we have these four possible
combinations.

Initially it had been thought that this situation could be analysed in
terms of the frequencies of A and a on the one hand and separately of B
and b on the other. So a body of literature arose in which the overall
frequency of A (say) was p,, with that of a being ¢, (=1- p;) and the
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overall frequency of B (say) being p,, with that of b being ¢, (=1-p,).
It was thought that the situation could be pictured by taking a square in
which on one axis, values of p, were plotted between 0 and 1, while on
the other values of p, were plotted, again between 0 and 1. It was
assumed that to each point in this square a value of W could be assigned
and that the maximum of all these values would represent the situation at
equilibrium, once selection was complete. Such a diagram was called an
“adaptive topography”.

Two things happened to disturb this comfortable picture. The first
was the derivation of exact equations governing the case under
discussion.  Several authors worked on this, but probably the most
influentjal analysis was the joint work of the US geneticist R C Lewontin
and a Japanese colleague K-I Kojima. They published their analysis in
the journal Evolution in 1960.

They considered the four allele-combinations AB, Ab, aB, ab and
“looked on these as if they were just four versions of a gene as in the
earlier analyses by Kingman and those who preceded him. Now if this
were all there was to the matter then the earlier analysis would apply to
this case also. But there was a further complication.

They took the four types just listed and assigned frequencies to
them, in order: x, x,, X3, Xx,, where x, +x, +x; + x, =1. They also
assigned fitness coefficients according to the following table:

AB& AB: w,  AB&Ab: w, AB&aB: w,; AB&ab: w,
Ab & AB: wy,  Ab & Ab: wy, Ab & aB: wy Ab & ab: vwy,
aB & AB: wy, aB & Ab: ws, aB & aB: wy, aB & ab: wy
ab & AB: wy, ab & Ab: wy, ab & aB: wy; ab & ab: wyy

They were able to simplify this table somewhat. Biological
considerations led to the conclusions that (1) for all i and j, w =W and
(2) wy, =wy =w (say). Indeed it would be possible to go further and set
w = 1, but they did not do this. The next thing to do was to set up fitness
coefficients for each of the four types individually, and this they achieved
by setting w; = w, X, + W, X, + WX, + w,x, for each of the four possible
values of i. The overall mean fitness is then found to be

W = WX, + Woy X,y + WXy + WyXy -
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Lewontin and Kojima then gave equations for the progress of the
selection process. Here, however, 1 will only quote the equilibrium case,
achieved when selection is complete. We have in this instance:

x,(w, = W)= RwD

s (w2 - v): ~RwD
L (wy = W)=—RwD

X (wy = W)= RwD,

[

o
=

(1)

ks

where R is a number between O and 0.5, and D is a shorthand for
XX, — X,x; . It is the presence of the right-hand sides that distinguishes

this case from the other one discussed earlier.

They arise because of a complication resulting from the biological
process by which the sex-cells (gametes, i.e. sperm and ova) are formed.
The genes on the different chromosomes do not stay in their original
configurations, but recombine into different patterns. R is in fact the
probability that such recombination occurs between the two loci involved.
D is a measure of the effect of that recombination.

These equations allowed Moran to look again at the theory that had
been advanced for the case involving two loci. In 1964 he published in
The Annals of Human Genetics a paper called “On the nonexistence of
adaptive topographies”, that threw out much of what had been accepted
up till then. As he wrote: “The purpose of the present paper is to show
that the above theory [the study of adaptive topographies] and all the
quoted work based on it is wrong because when there exists general
selection the genotypes at one locus do not associate at random with the
genotypes at the other locus.”

Specifically he demonstrated that:

= the mean fitness W is not a function of the two varjables
p, and p, introduced above, but rather of three variables

. (any three of x;, x,, X3, x40

v the situation satisfied by Equations (1) did not necessarily
maximise W, and that

= there were even situations where selection could actually
decrease W.
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I claim for myself the credit for finding a fourth paradox arising
from Equations (1):

s The fittest of the combinations AB, Ab, aB, ab can never be
the most frequent.

The proof is perfectly straightforward. Suppose for definiteness that AB
is the fittest combination (it makes no difference which one we choose).
Then w, is the largest of the coefficients w,. Then in particular, w, > w,.
But now combine the first and the fourth of Equations (1) to find

xi(wy — W)= XA(W4 - ),

from which it follows that x, < x,, and thus there are more abs than there
are ABs, even though these latter are more fit!

The work of Moran in particular implied that if selection was
maximising something, then that something was not w. There began a
search for what that something could possibly be. The answer, when it
came, was rather surprising.

Suppose that there are n alleles at a single locus. This is the case
already decided by the work of Kingman and his predecessors. If an
individual has an allele of type i and another of type j, then the genotype
can be represented as ij, and such an individual would be assigned a

fitness w;. If the frequency of the type i allele is ¢, and that of type j is
q;, then the mean fitness W is the sum of all the products w;q,4; taken

over all the values of i and j. The change in the value of W from one
generation to the next is caused by changes in the values of the
frequencies ¢; (and g;). Write Ag. for the change in ¢,, etc.

The overall change in W is the sum of two terms, each itself a sum
of other terms. The first is twice the sum of all the products Wijf[,Aq e

and the second is the sum of all the products w;Aq,Aq;. In some cases,
this second term is small compared to the first, and if it is valid to ignore
it then the mean fitness will increase. But a better way to express this is
to say that the partial increase in mean fitness is always positive.

This result had been advanced by Fisher back in the 1920s, and
named by him as “the fundamental theorem of natural selection”. Later,
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however, it was thought to have had only limited validity, or else to have
the status merely of an approximation. However, in 1972, G R Price,
writing in The Annals of Human Genetics, suggested that Fisher had been
misunderstood, and that he had meant that the partial increase in mean
fitness was always positive, not that the mean fitness itself always
increased. He wrote: “The mystery and the controversy [over the
‘fundamental theorem’] result from incomprehensibility rather than
error.”

Later work by W J Ewens (then at Monash University) led to his
being able to construct a function that does indeed increase under the
influence of natural selection. This he published in the journal
Theoretical Population Biology in 1989. Ewens agreed with Price that
Fisher had been misunderstood, and was also able to show that his
function always increased no matter what biological complications were
included and no matter how complicated the underlying equations might
become.

What is lost, thongh, is the immediacy of biological interpretation.
As Ewens wrote: “An interpretation of this theorem is put forward here
which implies that it is correct as a mathematical statement, but of less
biological value than claimed by Fisher”.

The old, but incorrect, understanding had been that W itself
increased from one generation to the next. This makes for a simplicity of
interpretation, that is, however, deceptive. Reading popular works on
Genetics, such as The Selfish Gene, one wonders quite how much of the
true mathematical theory has been absorbed!

Thoughts along these lines have found trenchant expression in the
writing of the mathematician [an Stewart (in his book Life’s Other Secret,
Chapter 12). Here is a sample.

“... it is not unusual to be told that people are having children ‘in
order to pass on their genes to future generations’. ... but I know that
when I was deciding to have children, I didn’t pay much attention to my
genes at all. I blame this kind of nonsense on a widespread
misunderstanding of the selfish gene viewpoint, which maintains that the
only reason we exist is so that our genes can reproduce. ... . However, it
is equally possible to promote the slavish gene theory. in which genes
worry enormously about the survival of their organisms. (If the genes
don’t produce a viable organism,. they die out, right?)”
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COMPUTERS AND COMPUTING

“Computation is Exclusive”

The title of our column in this issue is taken from the webpage

http://www.mathpages.com/home/kmath106.htm

which begins by discussing the notion of a “computable number”. This is
not perhaps quite what one might expect. While it does include numbers

like /4 whose exact value may be computed, it also includes others like
V2 for which this is not the case. However it is possible to write an
algorithm in finite terms that will compute V2 1o any desired degree of
accuracy. (You might like to try this as an exercise!) Although the

values achieved by such a program will never exactly equal V2, the
various values that are achieved converge to this value and to no other.

It is like the case of the sequence 1, V2, Y4, ... , whose terms
approach, but never attain, the value 0. If we continue the sequence long
enough, we can get arbitrarily close to 0, and no number other than O has
this relation to the sequence.

Similarly to compute «/5 or 7z, say, we need to construct a
sequence of approximations that converge, in this same sense, to V2 or
m. We can produce ever better and better approximations to the true
values of these numbers without ever actually reaching them.

However, because of the convergence property, we can positively
rule out any incorrect value — just as long as we have enough time and
computing power! This is what is meant by “exclusive” in the title of this
column. ’

From time to time, people come up with the notion that the
accepted theory of (say) m is wrong. Recently we had a letter from a
reader who espoused such a view. His value differed from the accepted
decimal expansion in the third decimal place. However, the area of a unit
circle, i.e. m, can be expressed as being smaller than that of a regular
polygon whose sides are all tangents to it. In the case of our
correspondent, it may be shown that his value is greater than that of an
enclosing regular 64-gon, whose area in its turn is greater than .



SOLUTION TO ‘SLITHER’

First, let’s look at the standard 5x 6 game. Two of the sides have
6 dots along them. This means that each has 5 intervals between adjacent
dots. Player A, moving first, takes the central interval in either one.
Thereafter, A mirrors every move the opponent B makes. Clearly, A
cannot be the first to close the path, as such a move would be a mirror
image of a move by B, which would already have closed the path, and so
lost the game. This is Professor Read’s “monumental triviality”.

Notice that this same strategy applies to all rectangular grids in
which the number of dots is even. There will be either two or four sides
with an even number of dots along them. and any one of these may be
used to initiate the same strategy.

Thus, if the number of dots is even, the first player has an
extremely simple winning strategy. It is not, however, the only possible
one. There are many more. The illustrations below apply to a 4 x4 grid,
but the principles invoked are general. In this case there are 16 dots and
24 possible first moves. From these 24, pick out a set of exactly 8§ with
the following two properties:

I. No two share a common end-point,
2. Each is the beginning or end of exactly one possible
connection.

Such moves will be called ‘favoured moves’. It is always possible
to choose a set of favoured moves, and in fact it is possible to do this in
many ways. For the 4x4 case, Figures 1, 2 and 3 below show some of
the possibilities. The third illustrates a pattern whose analogues can
always be set up.
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A generalised winning strategy for A, playing first, is to make any
one of the favoured moves. This will force B, the opponent, to make a
non-favoured move. A will now be able to make another favoured move,
and so it goes. B will never have the opportunity to make a favoured
move. Because the favoured moves are never connected to one another,
no favoured move can close the path. Eventually B will be forced to
make a closing move (return to a previously visited point) and so lose the
gane.

Notice that there are mn dots and that each dot belongs to exactly
one of a set of pairs, the favoured moves. It follows that to set up the
winning strategy requires mn to be even, as there must in general be mn/2
favoured moves.

So what about the case mn odd? In this case B has the winning
strategy, but it is not as simple to apply because the initiative still lies
with A, who moves first. However, whatever A does, B has a forced win.
This is illustrated in Figures 4 and 5, which use the case of a 5x35 grid
for the demonstration.
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To exploit a winning strategy, B must first wait to see what A does.
An example is displayed in Figure 5. But now one end or other of the
interval actually chosen by A must lie an even number of intervals away
from each of the four corner points. In the case shown in Figure 4, it is -
the right-hand that lies 2 intervals from the top left-hand comer (or 4
from the bottom left-hand one, ete).
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B must avoid this point and consider the remaining 24 points of the
grid. These 24 can be paired off into 12 pairs that form a set of favoured
moves. One possibility is illustrated in Figure 5. One point in the'set of
24 will be the other end of the interval chosen by A. From this end, B
makes a favoured move. Note that there will always be such a move.
The game now proceeds as in the earlier case, except that it is now B who
forces the win.

You might care to explore specific cases of simple grids. The
2x2 case is completely trivial, and the 2x3 case not much harder;

however, the 3x3 case may be completely analysed without too much
headache, and the next few cases are easily accessible.

OQCACOOVORCIOD O CAPITICICCOICD

A CORRECTION AND AN ADDENDUM

In the course of the Computer column in our previous issue, we
inadvertently misspelt the name of Professor W M Kahan several times.
Our apologies to everybody!

Our discussion of Avni Pllana’s “Tie-knot problem” (Problem
27.4.3) showed two possible interpretations of the problem, leading to
two somewhat different solutions. For more on tie-knots, see The
Australian Mathematics Teacher, Volume 60, Part 1 (March 2004), p 32.

[e’sleSleeloolelalovloelsolonlot »olealoaleale ale el

“Although to penetrate into the intimate mysteries of nature and
thence to learn the true causes of phenomena is not allowed to us,
nevertheless it can happen that a certain fictive hypothesis may suffice for
explaining many phenomena.”

Leonhard Euler, 1748
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PROBLEMS AND SOLUTIONS

First the solutions to the problems set in Volume 27, Part 5
(October 2003).

SOLUTION TO PROBLEM 27.5.1 (Submitted 'By Willie Yong
(Singapore), Jim Boyd (USA) and Richard Palmaccio (USA), jointly).
The problem read:
Evaluate 4sin 20° + tan 20°.
Solutions were received from Keith Anker, Sefket Arslangi¢

(Bosnia), John Barton (2 solutions), Julius Guest, Joseph Kupka, Carlos
Victor (Brazil) and the proposers. Here is Barton’s first.

Inserting tabulated values suggests that the required value is V3
Then:

_sin(3x20°) _ 3sin20° - 4sin’ 20°
cos(3x20°)  4cos®20° - 3c0s20°

V3 =tan60° = tan(3x 20°)

=tan20° x 3=4sin20° = tan 20° {1 + 2z }
1-4sin20° 1-4sin20°
2sin 20°
c0s20° — 2sin 20° sin 40°
2sin20°
c0s20° — (cos 20° - cos60° )

=tan20° + 4sin20°, since cos 60° =1/2.

=tan20° +

=tan20° +

This sequence of identities is reversible, which establishes the result.

Barton’s second proof was shorter, but less transparent.



89

SOLUTION TO PROBLEM 27.5.2 (Submltted by Sefket Arslangi¢
{(Bosnia))

The problem read

Prove that

1 1 N N 1
- ~ — L ==
n+l n+2 2n N/F‘

for all positive integers n.

Solutions were received from Keith Anker, John Barton, Julius
Guest, Joseph Kupka, Carlos Victor (Brazil) and the proposer, most of
whom proved a somewhat stronger result. Here is Kupka’s.

Let 5, ———p L L
n+l n+2 2n
Then S, = ——+——popp L
n+2 n+3 2n 2n+1 2n+2
1 1 11 1

'SO SVH'I——SH: + - -
2n+1 2n+2 n+l 2n+l1 2n+2

Thus {S, } is an increasing sequence. Furthermore

1 1 " (1 1)
==t |- =t |- =+
2 (3 4) 5 6

( ] 1
+ . —_—
2n-1 2n

This last series is the partial sum of an infinite series whose
limiting value is known to be In 2. Because {S,} is an increasing

sequence, the limiting value is greater than any individual partial sum.

1
Thus 5, < In2 (=0.693) < —= (=0.707).
, <7 )
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SOLUTION TO PROBLEM 27.5.3 (Submitted by Julius Guest)
The problem read:
Let

. 1? 2° n’
,Sn = + + ... -
2x3x4x5  3x4x5x%6 (n+Dn+2)n+3)n+4)

Find an explicit formula for S, and determine lim S, .
Solutions were received from Keith Anker, Sefket Arslangié
(Bosnia) (2 solutions), John Barton, Joseph Kupka, Carlos Victor (Brazil)
and the proposer. All were rather similar and so what follows is a
composite.

It may be proved that

n’ 1t 21 91 81
(n+Dn+2)n+3)n+4) o6n+l 1n+2 2n+3 3n+4

[This may readily be proved once we know it; to establish it in the first
place requires partial fractions:]

Then

/1 1 1 11 1
S, == =+=+-+ =2 =t
612 3 n+1 3 4 n+2

9(1 1 1) 81 1 1
B I L~ =t
2(4 5 n+3j 3(5 6 n+4j

But -1— -2+ -9— - § = 0, so many of these terms cancel out. After

2
some simplification, we are left with the answer the fir'st question:

5 11 11 1 8 1
+_‘.

"T36  6n+2  6n+3 3n+d

5 . , .
As n—»eo, S — = which answers the second question.
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SOLUTION TO PROBLEM 27.5.4 (Submitted by Keith Anker)
The problem read:

Lines /, and [, are perpendicular to one another and lie in

the plane of a triangle ABC. Using only measurements in the
directions of [, and [,, determine the area of ABC.

Solutions were received from Sefket Arslangi¢ (Bosnia). John
Barton, Carlos Victor (Brazil) and the proposer.

Details varied, but all came down to the recognition that [, and /,
could be taken as the axes of a rectangular co-ordinate system. Suppose
then that A =(x,,y,), B=(x,.y,) and C= (x5,y5) in these co-ordinates.
" The result is now a standard one. The area is given by the value of the
determinant

xooy
Xy, ¥, 1
x3 ¥yl

Barton cites Sommerville’s Analytical Conics and Osgood & Graustein’s
Plane and Solid Analytic Geometry as examples of texts where the result
may be found.

We close with four new problems.

PROBLEM 28.3.1 (submitted by Julius Guest)

Prove that all the points of inflection of the curve y =sin.x
4x?
X +4

. 2
lie on the curve ¥y~ =

PROBLEM 28.3.2 (submitted by Keith Anker)

Let A be the region contained between the x-axis and the
parabola y=1-4x”. Determine the largest rectangle that

can be inscribed within A.
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PROBLEM 28.3.3 (submitted by Paul Grossman)

Let us define a Domino set of rank n as a set of tiles,
the rectangular faces of which are separated into two
squares, each marked with dots representing numbers from
zero to n, such that no two tiles contain the same pair of
numbers and all combinations of pairs are represented.

The figure shows a set of rank 2 laid out in a closed
chain. The contacting squares on adjoining tiles have
matching numbers and each tile was placed in the clockwise
direction at the end of the previous tile, either in the same
direction or at right angles. Now:

1. Prove that a closed chain with the above conditions
can be established with a set of rank 6 (the standard domino
set) but not with sets of rank 3, 4 or 5.

2. Show what ranks will allow a continuous chain to

be formed with matching numbers on adjoining squares and
tiles placed at the end of the previous tile.

PROBLEM 28.3.4 (submitted by Sefket Arslangié, Bosnia)

y, z 2 0.

L

Let X +y>+z7 +2xyz=1, where x

3
Prove that x> +y° +2z° > T
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