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FUNCTION is a mathematics magazine produced by the Department
of Mathematics at Monash University. The magazine was founded

o

in 1977
by Prof G B Preston. FUNCTION is addressed principally to students in
the upper years of secondary schools, and more generally to anyone who is
interested in mathematics.

FUNCTION deals with mathematics in all its aspects: pure mathe­
matics, statistics, mathematics in computing, applications of mathematics
to the natural and social sciences, history oof mathematics, mathematical
games, careers in mathematics, and mathematics in society. The items that
appear in each issue of FUNCTION include articles 011 a broad range of
mathematical topics, news items on recent mathematical advances, book
reviews, problems, letters, anecdotes and cartoons.

* * * * *

Articles, correspondence, problems (with or without solutions) and other
material for publication are invited. Address them to:

The Editors
FUNCTION
Department of Mathematics
Monash University
Clayton, Victoria, 3168

Fax: (03) 905 4403
e-mail: function@maths.monash.edu.au

A.lternatively correspondence may be addressed individually to any of
the editors at the mathematics departments of the institutions listed on
the inside back cover. .

FUNCTION is published five times a year, appearing in :February, April,
June, August, and October. Price for five issues (includIng postage):
$17.00*; single issues $4.00. Payments should be sent to the Business Man­
ager at the above address: 0 cheques and money orders should be made
payable to Monash University. Enquiries about advertising should be di­
rected to the Business Manager.

*$8.50 for bona fide secondary or tertiary students.
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EDITORIAL

Welcome to our last issue of Function for 1994.

This issue has a strong geometric flavour. In a longer than usual front
cover article, "Chains of Circles" , Bert Bolton and Bjll Boun9.Y examine the
geometry arising out .of the patterns of farms around towns. This leads to
a concept known as inversion, which turns out to be a very useful technique
for investigating certain g~ometric problems. The well-known theorem of
Pythagoras is examined in a new light in K Sastry's article on n-gonal
numbers, "The Pythagorean Theorem: A Pythagorean Generalization".
In-our regular History column, we take a look at 'a graph arising from a
mathematical model of the transmission of malaria which turns out to be
helpful in ~eveloping malaria control programs. In our column on Com­
puters and Computing, we explain how you can generate stunning fractal
images on a computer screen with the aid of random numbers and s·ome
simple transformations.

Also in this issue are the results of this year's Asian Pacific Mathe­
matics Olympiad and International Mathematical Olympiad in which the
Australian teams distinguished themselves, and of course there is our reg­
ular P·roblems section.

This year we have introduced a p.umber of changes to Function. We hope
that by doing this we have made Function more interesting and appealing.
However, the only way we can be sure is if our readers respond. We are
always pleased to hear wha.t readers think of Function, so don't hesitate to
drop us a line!

To those readers who are nearing exams, especially· t.hose who are ap­
proaching the -end of their final year of school, we offer our best wishes for
your future work or studies, and we hope to renew· your acquaintance in
1995.

* * * * *
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THE FRONT COVER

Chains of Circles

Bert Bolton, University of Melbourne,

and Bill Boundy, SA

Functio.n 5/94

The front cover shows a central circle surrounded by a ring of six circles

all with a common radius. Each circle in the ring touches its two neighbours

and the inner circle. A further outside ring of six touching circles is also

shown. The origin of this and other similar diagrams lies in an analysis

of the geography of farms which surrounded a walled, fortified city. The

mathematical analysis involves ideas of scaling, inversion and symmetry

which are straightforward to apply in this case but are powerful enough to

be used in morecompli~atedsituations. '

,In the early nineteenth century before railways were started, a German

geographer noted that the farms in his native countryside of the North

German plain were arranged in a pattern of rings and circles surrounding a

town or city. His name was Johann Heinrich von Thiinen (1806-1850); the

nearest pronunciation of his name is "Toonen". He wrote a book called The

Isolated State in which he said:, "If one assumed that in a province of about

60 km diameter, a big town lay at the centre and that the farms of this

province could only send their products to this town, a~d that the agricul­

ture in the qistrict had attained the highest level of cultivation, the:'1 one

could assume that four types of farming systems would exist around this

town. ... Fairly sharply differentiated concentric rings or .belts will form

around the town, each with its own particular staple product". Thiinen's

book is in German and translations have been made, but they are not well

known. The same pattern of rings of farms is known round the city states

on the North Italian Lombardy plain. We will not follow Thiinen's devel­

opment of his pattern of rings which dealt with t~e. economics of the town,

but look only at the geometry of patterns of rings of circles surrounding

the town.

We will reduce the real geographical situation into an ideal problem.

The central town is a circle; the farms are also circles and for simplicity at

first, we take the radii of the town and the farms to be the same. We then

have the central pa~t of the pattern on the front cover. It will be noticed

that there is .some spare land round the town that is not used for farming.

If we were "Greenies" we might allow this spare land to be left as a relic
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of the original forest, but that is not parot of the geometry. First we must
recognise that the geometrical problem is one of packing. The farms need
to be as big as possible and we expect each to touch its two neighbours. We
know a similar pattern to this and we pause to look at it in Figure 1. Honey
bees storOe the honey for their winter feed in beeswax Gells, which·theycreate
and build into a pattern of hexagonal tunnels called honeycombs. Figure 1
can be taken as a cross-section through these tunnels. The start of the
pattern is the hexagon marked 0; the first ring is placed round it and there
are just 6 hexagons marked 1. At this stage we want to encourage readers
to draw their own patterns. Even a sketch helps, but it needs only a pair
of compasses and the fact that the side of the inscribed regular hexagon in
a circle has the same length as its radius. A good radius to choose for a
diagram is 1 centimetre. Another way of looking at a hexagon is to note
that it is made up of six equilateral triangles which fit into a circle such
that its radius is equal to the side of the hexagon.

Figure 1

The growth of the beeswax hexagonal cells continues with the ring
marked 2. There are 12 such hexagons. The pattern continues. It is tempt­
ing to guess -that the ring of hexagons marked n has 6n he~agons. We can
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see that this is so by noting that the pattern at every ring maintains the
6-fold symmetry, and we need only discuss what happens inside one-sixth
of the whole pattern. To help with this/we have outlined in Figure 2 a sixty­
degree sector in dotted lines. If the rings are marked 1,2, ... ,n, n + 1, ...
then the (n + 1)th ring· receives one more hexagon per sector than was
found on the nth ring. Note in passing how efficient the bees' pattern -is;
there are no spare gaps. All the space is used either for the wax walls or for
containing honey. Is it a fair question to ask if the bees "know" geometry?

......
...... ......

...... ......
......

......

Figure 2

No, the bees don't know geometry. The hexagonal shape of the wax cells
is achieved by·the bees working to make cells for the honey and while each
bee is working by and for itself, it is in competition with its neighbours
for space and the hexagonal cells are the outcome. A discussion of this
is given in the book Growth an.d Form by D'Arcy Wentworth Thompson
(1917); this book applies mathematics to many biological problems.

Let us return to the front cover with this experience of the hexagons in
mind. The first ring of 6 circles (farms) defines the 6-fold symmetry. On
the front cover we have drawn an outer circle touching all the circles in the
first ring; it is called the circumscribing circle. We will take tb.e common
radius of the town and the first farms as unity and then the radius of
the circumscribing circle is 3. We can now see one way at least to make
progress to the second ring; treat the circumscribing circle of radius 3 as a
new "town" and then the second ring has 6 "farms" of radius 3.. We are
now letting the geometry take over from the geography. There may have
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been more than six farms in each ring and we are s~rictly exploring the
pattern when we have restricted the number of farms to six and allowed
them to touch thre.e neighbours.

The move from ring 1 to ring 2 is just the same as the. move from
the centre farm to ring 1. The second ring has farms each of radius 3.
Strictly speaking, the farms of the second ring can be anywhere round
the circumscribing circle, but we have selected the pattern so that the
farms touch on a common radial line and share a cor.h.mon tangent with the
circumscribing circle. By doing this we have preserved the 6-fold symmetry.
Another way of describing the construction of the second ring is to say that
it is a version of the first ring scaled by a factor 3.

./
./

./
./

./
./

./
./

./
./
./~---

3

Figure 3

We examine the geometry.more fully by choosing a sector of 60° as in
. Figure 3, just as we did for the hexagons. The radii are marked. GI , G2

are the centres of circles in the first and second rings. The upper part of
the sector is bounded by the dotted line touching the two circles at N I

and N 2 . An arc of the circumscribing circle is shown; its radius is 3. The
triang~e ~OGINI is a (30°,60°,90°) triangle and by Pythagoras's Theorem
the sidelength 0 N1 is

ONI == JOG? - GIN? == V4=-1 == V3.
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Similarly, ON2 = jOC1- C2N? = )36- 9 = 3y'3. Notice that the
scale factor of 3 has appeared between the first and second ring. Note that

oN I x 0 N 2 = V3 X V3 x 3 == 32

the square of the scale factor.

There is another relationship between the two rings expressed through
the phrase that one can be inverted into the other. The process of inversion
is defined as follows. Given a point 0 in a plane, the so-called centre of
inversion, and a constant k, the so-called inversion constant, then any' point

- . .---)-

P of the plane 'can have associated with it a point Q on the ray OP such
that

OP x OQ == k

The points P and Q are said to be inverse to each other. To see this more
clearly, we repeat Figure 3 with another general radius interse.cting the

---)-

two circles in PI, Q1 and P2, Q2; this. is Figure 4. Consider the line OQ2
---+ ---)-

moving towards OC2. The point Q2 moves towards OC2 and the length

OQ2 increases. At the same time PI moves towards OC2 and the length of
oPI decreases. This way of looking at points "moving" along the curves
is one of the ways that geometry was examined after Is'aac Newton taught
us about the dynamics of representing a body by a point with mass, and
is very useful in a problem such as we face here. OQ2 increases as 0 PI
decreases; let us look at their produc~ OPI x OQ2.

Figure 4
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The fact that the second circle is scaled up from the first suggests that
the triangles ~OCIPI and ~OC2P2 may be similar. This is true; the proof
is as follows.

The angle PIOCI is common to both triangles. The ratio C4P2/CI PI is
equal to 3 (the scale factor). The ratio OC~/OCI == 6/2 which equals 3.
These three conditions are enough to make f),.OCIPI similar to L:i.OC2P2.
The triangles L:i.OC1Ql and 40C2Q2 are similar for the same reasons. Thus
OP2/0Pl == OQ2/0QI == 3 and, cross-multiplying,

OPI x OQ2 == OP2 X OQl

This is enough to show that PI inverts into Q2 and similarly that Ql inverts
into P2.· The constant value of the product can be seen from the position
where PI and -QI m.erge into N1 and, simultaneously, where P2 and Q2
merge into N 2. We have already found that

ON! x ON2 == 32

so that the full statement of inversion is

We can say that 'the first ring inverts into the second ring through the
circumscribing circle.

Inversion is a powerful general technique. It can be used across a straight
line or across curved lines. A good introduction, especially for problems of
curves, is given by E H Lockwood, A Book of Curves (1961), Cambridge
University Press, Chapter 23, p. 172.

But we still have- not completed Qur analysis of the Thiinen problem.
The front cover showed t4e pattern when the radius of the first farm was
chosen to be the same as that of the town. We relax this condition and
choose a smaller radius for the farm; for instance, we pack 12 touching
farms round the town in the first ring, 12 in the second ring, and so on.'
The proof that inversion solves this problem also is as follows. We do not
need to draw the whole pattern; we use the symmetry of the pattern which
is now 12-fold, and draw a sector of 30° as in Figure 5. The points marked
in Figure 5 have the same meanings as in Figure 4. The radius of the town
can be taken as 1 and the radii of the first set of circles as rl, and of the
second set of circles as r2. We start by treating the problem as one of
scaling. We need the value of sin 15° which we get by using

cos 20 == 1 - 2 sin2 0;
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thus,

.' 150 V2 -.V3
SIn == ---

2

N2 _....... - .... --

-------­
.... .,.."". ....

--
---.:.._-----------

---------------
--------

Figure 5

In the triangle ~OC1Nl, sin 15° == -1Tl and+Tl

J2~V3
. Tl = J = 0.349198 ...

2--- 2-V3

T2 1 + 2Tl
=---

Tl 1
and T2 == 0.593076. '.. Exactly as we found for the ring of 6 circles, the
triangles flOCIP1 and ~OC2P2 are similar and the triangles ~OCIQl and
~OC2Q2 are similar.

The scaling of the pattern is represented by the scaling ratio of the circum­
scribing circles. Thus

Thus

and
OPI X OQ2 = OP2 X OQl

which is the condition for inversion. We again use 0 N l x 0 N 2 and Pythago-
ras's Theorem to obtain the inversion constant as -
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which is the square of the radius of the first circumscribing circle.

There are further ring patterns to find. One in which the town and
all the farms have the same radius occurs by looking at 'Figure 1 in the
following way. A circle can be inscribed in each hexagon and the pattern
of these circles has each circle touching its 6 neighbours. If the side of the
hexagon is given the value unity, then the radius of the inscribed.circle can
be 'proved by Pythagoras's Theorem to be {}. This pattern, of circles is
another realization of Thiinen's pattern. of rings. .

We conclude this discussion of rings of circ.les (or farms round a town) .
by stating that the problems can be generalized not only to any number
of ~qual touching.circles, but also to unequal circles. An account of the
chains of circles was first given by the Swiss mathematician Jacob Steiner.
(1796-1863), a contemporary of Thiinen. Steiner explored these problems
in great generality. His work is described in the Diction~ry of Scientific
Biography (a good source for the descriptions of mathematicians' work)
and a short discussion is presented in the book of C Stanley Ogilvy, Excur­
sions in Geometry (1969), Oxford University Press, in the chapter on the
applications of inverse geometry. 'Ogilvy's book is a stimulating account of
advanced geometry.

* * * * *

Bert Bolton is Emeritus Professor of Theoretical Physics at Monash
University and is now ,Research Associate at the Department of History
and Philosophy of Science of,the University of Melbourne, working on the
History of Science in Australia.

Bill Boundy has taught Mathematics and Physics in various South Aus­
tralian institutions, including the University of Adelaide. He is currently
undertaking some collaborative research with Bert Bolton. His personal
interests include radio, photography and recreational mathematics.



138 Function 5/94

THE PYTHAGOREAN THEOREM:
A PYTHAGOREAN GENERALIZATION

K R S Sastry, Addis Ababa, Ethiopia

The Pythagorean Theorem, that the sum of the squares of the legs of
a right-angled "triangle equals the square of the hypotenuse, is very w~ll

known. Can we look at it differently in a way that will lead us to find a
new generalization? The answer is yes. To do this, we need to go back in
time to the ancient Pythagoreans - the pupils of Pythagoras - who evolved
the concept of polygonal or n-gonal numbers.

The ancient Pythagoreans used the sequence

1,3,6,10,15, ...

of numbers of objects (say, sea shells) to depict the sequence of triangles
shown in Figure 1.

o

3 6

Figure 1

10

Hence they called the numbers in this sequence triangular numbers. Notice
that each triangle is obtained geometrically from the previous one by adding
objects in a row adjacent to one ofits sides. It is a simple exercise to obtain
a formula for the rth triangular number in terms of r.

In a similar way, the Pythagoreans depicted the square numbers

1,4,9,16,25, ...

as shown in Figure 2.

Each square is obtained from the previous one by adding objects "in rows
alongside two adjacent sides. The rth square number is of course r2•
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o

4 9

Figure 2

For a similar reason, the numbers

1, 5, 12,22,35, ...

are called pentagonal numbers. See Figure· 3.

o

5 12

Figure 3

22

Each pentagon is obtained from the previous one by adding objects in rows
alongside three adjacent sides. As another simple exercise, you could find
a formula for the rth pentagonal number; we .will give the answer shortly.

. This idea can be extended to obtain a sequence of polygonal numbers of
side n (or n-gonal numbers) of rank r, where n ~ 3 and r == 1, 2, 3, "... The
rank r denotes the number of objects on each side. If we use the symbol
p~ for the polygonal number of side n and rank r, then the formula for p~

18
r 2 r

P~=(n-2)2-(n-4)2' n~3, r=1,2,3,... (1)
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It is left as an exercise for you to derive this formula. Observe that n == 3
gives the triangular numbers Pi = !r(r+1), n == 4 gives the square numbers
PI == r2

, n = 5 gives the pentagonal numbers P; = ~r(3r -1), n= 6 the
hexagonal numbers, and so on. It is this polygonal number idea that we
would like to use to find a Pythagorean generalization of the Pythagorean
theorem.

Suppose ABC is a triangle, right angled at C. Let a and b denote
respectively the lengths of the legs Be and CA, and let c denote the length
of the hypotenuse AB (Figure 4). '

A

b

B 4000--

a
-"",,"--, C

Figure 4

Then the Pythagorean theorem translates into the equation

a2 + b2 = c2
(~)

The traditional geometrical interpretation of Equation 2 is that the sum
of the areas of the squares described on the legs of a right-angled triangle
equals the area of the square described on the hypotenuse.

However, if we simultaneously look at the sequence of square numbers
and Equation 2, we get the following polygonal number idea:

- ath square number + bth square number == cth square number (3)

where a, band c are now restricted to taking natural number values.

That is, if we can depict squares with a objects, b objects, and c objects
per side on the legs with lengths a and b and the hypotenuse with length
c respectively of a right-angled triangle, then

a2 objects + b2 objects = c2 objects
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Therefore we may look upon the Pythagorean theorem as giving rise to a
Pythagorean relation among certain triples of the square numbers. Figures
5 and 6 respectively show the traditional geometric view. and the present
polygonal number view of the Pythagorean relation, for the case of the

.Pythagorean triple (a,b,c) = (3,4,5).

A

C b

B C

Figure 5
Traditional geometric view: a2 + b2 == c2

EJC
Figure 6

Polygonal number view: a2 objects + b2 objects == c2 objects
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(4)

Now let us define a Pythagorean relation for the' triangular numbers.
Looking again at (3), the following definition suggests itself.

A triple (a, b, c) of natural numbers is said to satisfy the Pythagorean
relation for the triangular numbers if

ath triangular number + bth triangular number == cth triangular number

i.e., if ~a(a +1) + !b(b +1) == !c(c '+ 1), or

a
2 + a + b2 + b == c

2 + c

For example, the triple (a, b, c) == (2,2,3) satisfies (4), the Pythagorean
relation for the triangular numbers, as you can verify. Some other examples
of triples that satisfy (4) are (3,5,6), (5,6,8), (14,14,20) and (34,35,49).
By analogy with the usual Pythagorean triples such as (3,4,5), let us call
a ,triple (a, b, c) a Pythagorean' triple of triangular numbers, or briefly, a
triangular Pythagorean triple, if a, b, c satisfy Equation (4).

As a more difficult exercise, you could show that any triangular Pytha­
gorean triple (a, b, c) can form the lengths of three sides of a triangle. In
order to do this, you need to prove that a + b > c for any natural numbers
a, b, c that satisfy (4).

What polygonal number interpretation can be given to a triangular
Pythagorean triple (a, b, c)? We can depict appropriate triangles - in the
manner squares were depicted in Figure 6 - on the sides of a triangle with
side lengths a, b, c. This is done in Figure 7 for the triangular Pythagorean
triple (3,5,6).

Figure 7
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It is now a simple matter'to give the extended definition of the Pytha­
gorean relation for the polygonal numbers:

A triple (a, b, c) of natural numbers is said to satisfy the Pythagorean
relation for the n-gonal numbers (or to be an n-gonal Pythagorean triple)
if

ath n-gonal number + bth n-.gonal number = cth n-gonal number

Using the notation of (1), we may write the equation above more cOII]:pactly
as:

pa + pb = pc (5)n n n

For example, (5,5,7) is a pentagonal Pythagorean triple, as you can easily
check.

As a furt:p.er exercise, you may like to prove that, for any value of n, any
triple (a, b, c) of natural numbers that satisfies (5) can form the lengths of
the sides of a triangle. Let us call such a triangle an n-gonal Pythagorean
triangle. These triangles have some interesting properties. Here IS a par­
tial list. If n = 3 they a~e all obtuse-angled triangles. If n = 4,. of course,
they are right-angled triangles. If n > 4 they are all acute-angled triangles.
Curiously, all these obtuse and acute angles are nearly right angles. If
n =I 4, the triangles can be isosceles (for example, the triangles corre­
sponding to the triangular Pythagorean triple (2,2,3) and the pentagonal
Pythagorean triple (5,5,7)), but no two distinct triangles can be similar
for a given value of n if n =f- 4. A large variety of problems - several of
them very deep - is suggested when we look up A H Beiler's Recreations in
the Theory of Numbers, Dover (1964), pages 104-133, 185-199 and 248-268,
and L E Dickson's History of the Theory of Numbers, Volume II, Chelsea
(1971), pages 1-39, 165-190,341-400 and 615-627.

The reader can find a discussion of the properties mentioned above
and more in the article "Pythagorean· triangles of the polygonal numbers" ,
wflich appeared in Volume 27, Number 2 (Spring 1993) of the journal Math­
ematics and Computer Education on pages 135-142.. Another interesting
property of the polygonal numbers may be found in the article "Cubes of
l1atural numbers in arithmetic progression" " which appeared in the June
1992' issue of Crux Mathematicorum on pages 161-164.

* * * * *
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HISTORY OF MATHEMATICS

Mathematics and Malarial

.Michael A B Deakin

Function 5/94

The British epidemiologist and pioneer of tropical medicine, Sir Ronald
Ross (1857-1932), is best remembered today for his life's work on the trans­
mission of malaria, for which he was awarded the Nobel Prize in Physiology
and Medicine in 1902. It was Ross who showed conclusively that malaria
is transmitted by mosquitoes and who analysed that transmission with a
view to control or· eradication of this virulent disease.

Ross was a considerable mathematician as well as being a medical re­
searcher (he also wrote quite meritorious poetry). Among the studies he
made was the development of a mathematical model of malaria and its
transmission. This led to what are now called the Ross Malaria Equations.
Figure 1 shows the so-called trajectories of these equations.

Let a population of mosquitoes live in the same locality as a population
of humans, and let x be the proportion of humans infected with malaria and
y the proportion of mosquitoes so infected. In a given time, a proportion
R of the infected humans recovers and a proportion M of the mosquitoes
dies of malaria. If each human suffers ·B bites in this given time and each
mosquito delivers b bites in this same time, then it can be shown that in
the long run

x=x =

y=y =

Bb-RM
B(M + b)

Bb-RM
b(B +R)

(1)

provided these numbers are positive.

Before this "long"""run" or "equilibrium" situation is achieved, however,
x and y will vary with time. While it is possible to graph the valu.es of x
versus the time, or of y versus the time, it is also possible to construct a
graph of the values of y versus the values of x. Such a graph is referred to .
as a "phase-plane graph" and the technique is a most useful and important
one in mathematical modelling.

IDr Deakin has recently returned from overseas. We reprint here, with a few modifica-
tions, his cover story for Function) Vol. 11, Part 2. .
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Figure 1 shows 'such a graph. Every point in the square defined by
o::; x ::; 1, 0::;" y ::; 1 other than (0,0) and (x, y) lies on exactly one curve
or trajectory; as time goes by, this curve traces the subsequent values of
x, y which continue to travel along it, in the direction of the arrows toward
the long-run s~lution x == x, y == y.

The diagram here shows the case for which x == 0.35, y == 0.30.

If x < 0, or y < 0, then the situation x == x, y == y cannot be achieved
and the arrows would then show that in the long run x == 0, y == 0.
This correspon<;ls to there being no malaria present - a much wished-for
situation.

y ---------------

o

Figure·!

x
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Equations (1) show us that if Bb > RM, then both x, 11 are positive as
in Figure 1, and malaria remains endemic. If, on the other hand, Bb < RM,
then both x, yare negative and so the malaria is eradicated.

In order to eradicate malaria therefore we need to achieve a situation in
which

'RM >Bb.

That is to say, we need to combine several factors:

Increase the recovery rate of the humans,
Increase the mortality of the mosquitoes,
Decrease the rate at which mosquitoes bite humans.

(2)

Inequality (2) shows an ir:nportant point. It is not necessary to eliminate
all mosquitoes, nor to cure every human case of malaria, nor need all biting
be prevented. As long as Inequality (2) continues to apply, malaria cannot
spread in the population. This led to considerable hopes that malaria might
be eradicated, as smallpox has been.

Unfortunately, matters not taken into account in the analysis complicate
matters. Malaria plasmodia are becoming resistant to the drugs (derivatives
of quinine) used to keep the value of R high, and Inosquitoes have become
resistant to the pesticides used to keep the value of M up. It has also
been discovered that malaria infects other ani·mals besides humans and
this corresponds (in essence) to higher values of b and lower values of R
than we might at first suppose.

.Nonetheless, the analysis has been very helpful, and continues to be
helpful, in malaria control programs.

In 1923, the American Journal of Hygiene devoted a special supplement
to the Ross Malaria E·quations. Most of this was written by Alfred J Lotka,
a mathematician at the Johns Hopkins University in Baltimore. (We tend
to forget that malaria was endemic in Baltimore 'and in many other parts
of the United States until well into this century.) Lotka produced a very
full study of the equations in the course of this wo~k, and Figure 1 is based
on one of his diagrams.

* * * * *
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COMPUTERS AND COMPUTING

Chance and Beauty

Cristina Varsavsky

In our February issue we looked at the geometrical construction of frac­
tals, more precisely the Sierpinski triangle. This w~ generated by repeat­
edly applying a basic constructive procedure which consisted of replacing
a square with three new squares scaled down by a factor of 0.5. We also
observed that the final fractal, that is, the set ·of points obtained after ap­
plying the basic procedure infinitely many times, does not depend on the
figure we start from but only on the three transformations involved.

There are other ways· of constructing such a fractal image. We will
introduce here a method based on chance (any method based on chance is
usually called a stochastic method). A fractal constructed using the method
described above consists of an infinite number of points. Since we can only
plot a finite number of them on the screen, we need to distribute them in
such a way as to create the illusion of the fractal. It is here that chance
plays an important role: we generate a sequence of points by means of a
random process.

c- -1D c

I T3
I, I

A B

D C D C

T1 . 12

A B A B ........
/'

A B
FIgure 1

Let us illustrate this random process with the Sierpinski triangle. There
are three transformations involved here - we name th~mT1,.T2 and T3 . They
are represented in Figure 1, which shows the effect of each of them on the
square drawn with dotted lines. The three transformations consist of a
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contraction by a scale factor of 0~5; in addition, T2 involves a horizontal
shift and T3 involves a horizontal and a vertical shift. We represent these
transformations through the following equations,

T { x' = O.5x
I y' = 0.5y

r. { x~ = 0.5x + 0.5
2 y' = 0.5y

r[1 { x' = O.5x + 0.25
.i3 ,

Y = O.5y + 0.5

which transform the point (x, y) into the point (x', yl).

We start with a point Po - say (0,0). Then we randomly select one of
the three transformations which we apply to Po to get a new point Pl. We
repeat this process,- that is, we generate P2 by applying a randomly selected
transformation'to Pl. This is repeated again and again uI;l.til enqugh points
are generated to produce the fractal image.

Now, 'since we intend to produce this fractal with a computer program,
we need to design a procedure for choosing randomly one of the three
transformations. Nowadays computers come with a generator of random
numbers equally distributed between 0 and 11. We can use this facility as
follows: we generate a random number and then we choose TI if it is less
than 1/3, T2 if it lies between 1/3 and 2/3, and T3 if it is greater than 2/3.

The following computer program implements this algorithm in Quick­
Basic (in this language, RND is the instruction for the random number
generation) :

SCREEN 9
WINDOW (-.5, -.5) - (1.5 t 1)
iterations = 10000
x = 0 : y = ,0

FOR i = 1 TO iterations
choice = RND
IF choice < .33 THEN

xn = .5 * x
yn = .5 * y
ELSEIF choice < .66 THEN

xn = .5 * x + .5
yn = .5 * y

1More precisely, computers generate pseudo-random numbers, but this in itself could be
the subject of another article. '
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ELSE
xn = .5 * x + .25
yn = .5 * y + .5

END IF
PSET (xn, yn)
x = xn : y = yn

NEXTi
END

149

The output of the program, shown in Figure 2, is the Sierpinski triangle,
which is already familiar to us.

Figure 2

Take as a second example the fractal generated with the five trans~or­

mations illustrated in Figure 3. Each transformation is a contraction by
a factor of 1/3, followed by a translation. The FOR ... TO ... loop now
should be written as:

FOR i = 1 TO iterations
choice = RND
IF choice < .2 THEN

xn = .33 * x

yn = .33 * y
ELSEIF choice < .4 THEN
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xn == .33 * x + .66
yn = .33 * y
ELSEIF choice < .6 THEN

xn = .33 * x + .33
yn == .33 * y + .33
ELSEIF choice < .8 THEN

xn == .33 * x + .66
yn. = .33 * y '+ .66
ELSE

xn == .33 * x

yn == .33 * y + .66
END IF
PSET (xn, yn)

x == xn : y = yn
NEXT i

1\

0 - C
0 c 0 c

Ts T4

A B A B
D C

/

I T3 I
A B

0 C D C

T1 T2
A B A B .......- /'

A B

Figure 3

These five transformations are the clue to the fractal depicted In

Figure 4.
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Figure 4

151

So far we have only worked with transformations involving contractions
(scaling), but there.are other transformations we could use to produce more
complex fractal images. Let us do this more systematically. We could think
of a point (x, y) being transformed to the point (x', y') by performing the
following matrix multiplication:

(1)

For example, the contraction involved in the three transformations for
the Sierpinski triangle could be expressed as in (1) with a = d = 0.5 and
c = b = 0, as you can check by carrying out the matrix multiplication. In
general, a matrix product of the form

will result in scaling by a-factor of a in the horizontal directio:t;l, and by a
factor of d in the vertical direction.

Similarly, an anticlockwise rotation through an angle f) and centred at
the origin is expressed as: .

[
COS f) - SinO] [x

y
] = [ X

y
: ]"

sin 0 cos 0
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Reflections in the x- and y-axes are achieved through the matrix equa­
tions

[1 0] [x] [ x' ] [-1 0] [x] [ x' ] ..o -1 Y = y'. and 0 1 y = y'. respectively.

If more than one transfornlation is applied to a point, the overall trans­
formation consists of the product of the corresponding matrices from right
to left in the order they are applied (you can check that the order in which
transformations are applied usually matters).

We will illustrate these ideas with the set of transformations shown·
in Figure 5. What are the matrices for T1, T2 and T3? T1 consists of an
anticlockwise rotation through an angle of 45° followed by a contraction by
the factor ~. This results in the matrix product .

[ V2/2 0 ] [V2/2 -V2.2/2] = [0.5 -0.5]
o V2/2 V2/2 V2/2 0.5 0.5

o c

o

A B

c
Ci

A

___ -..;lI"----OO+

8

Figure 5

Similarly, T2 involves an anticlockwise rotation through -an angle of 45°
followed by ~ .contraction by a factor of 1, and then a reflection in- the
y-axis, which is represented by the matrix

[
-1 0] [V2/2 0 ] [V2/2 -V2/2] = [-0.5 0.5]

o 1 0 V2/2 V2/2 V2/2 0.5 0.5

This is followed by a shift of one unit in the horizontal direction.
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Finally, T3 is a contraction by the s~ale factor 0.5 in the horizontal
direction and the scale factor 0.75 in the vertical direction, followed by a
horizontal and a vertical shift.

The corresponding section in the program follows:

FOR i =7 1 TO iterations
choice = RND
IF choice < .33 THEN

xn = .5 * x -:- .5 * Y
yn = .5 * x + .5 * Y
ELSEIF choice <..66 THEN

xn = -.5 * x + .5 * Y + 1
yn = .5 * x + .5 * Y
ELSE

xn = .5 * x + .25
yn = .75 * y+ .75

END IF

The program, run with window set to (-2, -2) - (3,3) and 20000 iterations,
produces the maple leaf displayed in Figure 6.

This article gives you enough insight into the theory of transformations
for you to experiment with them and design your own aesthetic figures
generated by a stochastic process. An alternative you may wish to consider
is to add colour to make theln look even more beautiful.

Figure 6
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OLYMPIAD NEWS

Hans Lausch, Special Correspondent on

Competitions and Olympiads

Function 5/94

1. The, Sixth Asian Pacific Mathematics Olympiad

The Asian Pacific Mathematics Olympiad (APMO), an annual competi­
tion, was started in 1989 by Australia, Canada, Hong Kong and Singapore.
Since then the number of participating Pacific Rim countries has grown to
fourteen. Besides students from the founding countries, participants in the
1994 APMO were from Chile, Colombia, Indonesia, Malaysia, Mexico, New
Zealand, the Philippines, the Republic of China, the Republic of ,Korea and
Thailand. Here are the questions from this four-hour examination:

Time allowed: 4 hours.
No calculators to be used.
Each question is worth seven points.

Question 1.

Let j : R -t R a function such that

i) for all x, y E R

j(x) + f(y) + 1 2:. j(x + y) 2: f(x) + f(y)

ii) for all x E [0,1), j{O) 2:: f(x).

iii) - f (-1) == f (1) = 1.

Find all such functions.

Question 2.

Given a nondegenerate triangle AB·C, with circumcentre 0, orthocentre
H, and circumradius R, prove that \OH\ < 3R.

Question 3.

Let n be an integer of the form a2 + b2 , where a and b are relatively
prime integers and such that if p is a prime, p ~ Vii, then p divides abo
Determine all such n.



Olympiad News 155

Question 4.

Is there an infinite set of points of the plane such that no three elements
of it are colline~r, and the distance between any two of them is rational?

Question 5.

You are given three lists, A, B, and C. List A contains the numbers of
the fO!nl 10k in base 10, with k any integer greater or equal to 1. Lists B
and C· contain the same numbers translated into base 2 and 5 respectively:

A
10
100
1000

B
1010

1100100
1111101000

C
20

400
13000

Prove that for every integer n > 1, there is exactly one number in exactly
one of the sets B or C that has exactly n digits.

Australian certificate winners (school year in parenthesis) were:

Gold: William Hawkins (12), ACT, Canberra Grammar School
Silver: James Lefevre (12), Tas, La1).nceston College

Akshay Venkatesh (12), WA, Scotch College
Bronze: Anthony Wirth (12), Vic, Melbourne Church of England

Grammar School
Ren Hou (12), NSW, North Sydney Boys' High School
Andrew Rogers (12), Vic, Scotch College
Nigel Tao (12), SA, Westminster School

2. The XXXV International Mathematical Olympiad (IMO)

In April, the ten-day- Team Selection School of the: Australian Math­
ematical Olympiad Committee took place at Sydney Church of England
Grammar School ("Shore School") ip. North Sydney. Candidates for the
Australian team at this year's IMO and other highly-gifted students who
look forward to at least one more year of secondary· education were there
to undergo a day and evening programme consisting of tests and examina­
tions, problem sessions and lectures by mathematicians. Finally, the 1994
Australian IMO Team was selected.

The following students were selected as team members: William Haw­
kins, James Lefevre, Akshay Venkatesh, Andrew Rogers, Nigel Tao and
Chaitanya Rao (Melbourne Church of England Grammar School); reserve:
Anthony Wirth.
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Hong Kong was this year's venue for the IMO. There the Australian
team had to contend with six problems during nine hours spread equally
over two days in succession. The Australian team finished in twelfth place,
out of 68 participating countries (behind USA, China, Russia, Bulgaria,
Hungary, Vietnam, United Kingdom, Iran, Romania, Japan and Germany) ..
This matches some of our best performances to date. Members of the team
received awards as follows:

James Lefevre, Silver medal

William Hawkins, Silver medal

Andrew Rogers, Bronze medal

Akshay Venkatesh, Bronze medal

Nigel Tao, Bronze medal

Chaitanya Rao, Honourable Mention.

Well done!

* * * * *

MATHEMATICAL NURSERY RHYME

Hey diddle diddle, the cat and the fiddle,
The cow jumped over the moon;
Which requires computation of jts orbit's equation
To avoid jumping late or too soon.
If Earth's mass be my gravitation be g,
The product must equal indeed
Moon's distance from Earth (cancel out the moon's mass)
Multiplied by the square of its speed.

From: The Surprise Attack in Mathematical Problems
by L A Graham (Dover, 1968)

* * * * *
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PROBLEM CORNER

SOLUTIONS

PROBLEM 18.3.1

A man's shirt is normally buttoned up with the left side overlapping the
right side. If a man puts his shirt on inside-out an~ buttons it ~p, which
side will be outermost?

SOLUTION

With the shirt on inside-out, the buttons will be on the left side instead
of the right. However, they will be facing inward, so the left side will still
be outermost.

PROBLEM 18.3.2

Find the unique 5-digit number which, when ~ultiplied by 4, yields the
number formed by ~riting·the digits of the original number in the. reverse
order.

SOLUTION

The problem can be written as shown below, where each letter corre­
sponds to a digit:

ABC D E
4.

E DeB A

Since 4 times the first digit, A, plus the carry from the adjacent column,
equals the single-digit number E, A must be 1 or 2. By loo'king at the
rightmost coh;lmn we can see that 4E has A as its last digit, so A is even.
Therefore A = 2.

We now know that 4E ends in 2, so E must be either 3 or 8. We also
know that E is at least 4A, so we conclude that E = 8.

It now follows that there is no carry when B is multiplied by 4, so B'
must be equal to 0, 1 or 2. By examining the second column from the right,
we can see that 4D + 3 ends in B, and so B is odd~ Hence B = 1.

Now that we }(now that 4.0+3 ends in 1, we can deduce that D is either
2 or 7. If D = 2 then there is a carry of 1 into the middle column, and so
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4C + 1 would have to end in C. This would give C == 3, and it is easy to
check that this doesp.'t work. Therefore D == 7, and we readily deduce that
C == 9. Hence the number is 21978.

More on one of our earlier problems

PROBLEM 15.4.7

Prove that the polynomial

fn( x) == xnsin a - x sin(na) + sin[(n - 1)a]

is exactly divisible by

h(x) == x2
- 2x cos a + 1

where a is a real number, and n is an integer greater than 1.

This problem appeared in Function, Vol. 15, Part 4 (1991), and a so­
lution using complex numbers was given in Vol. 17, Part 5 (1993). Keith
Anker of Monash University has provided an alternative proof, which does
not use complex numbers, and which proceeds by induction on n. (He
actually proves the slightly stronger statement that the claim is ~rue for
any integer n ~ 0.) For reasons of space, and because a solution to this
problem has already been published, we will not reproduce the proof here,
but some readers might like'to try to discover it for themselves. (A proof by
induction proceeds by showing, firstly, that the claim is true when n == 0,
and, secondly, that if the claim is true for any particular value of n) say
n == k, theft it must also be true for the next value of n, namely n == k + 1.)

PROBLEMS

PROBLEM 18.5.1 (D F Charles, Oak Park, Vic.)
---+

In Figure 1, the point P is free to move along OL.

(a) What is the maximum value of (j ((jmax)?

(b) With AB remaining at 1 unit, what is the length of 0 A so that
()max == 30°?

(The problem can be solved without calculus.)
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Figure 1

PROBLEM 18.5.2 (Peter Oliphant, student, Monash University)

The numbers in the equilateral triangle shown in Figure 2 represent the
areas of their respective regions. Find th~ area of the central triangle.

Figure 2

* * * * *
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