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EDITORIAL

We welcome readers to this second issue of the new-look Function. This
time \ve have three feature articles. Michael Deakin looks at the geometry
of the Tetra® Pak and its constructi~n, while M. J. Englefield presents
a useful but not well known relationship between logarithms.· K. -R. S.
Sastry looks at whether or not the length of a triangle median equals the
"mean" of the lengths of certain sides of the triangle, using three different
definitions of "mean". In addition, John Stillwell gives, in our History of
Mathemati~s·section,.~ fascinating account of the history of Fermat'~ Last
Theorem, following up his previous note about Andrew Wiles's proof. He
describes how famous mathematicians such as· Euler, Lame, Kummer and
'Fermat himself struggled over the years to prove. (or disprove) Fermat's
famous conjecture.

Our front cov~r illustrates the famous fractal iin~ge known as the Sier
pinski Carpet. This is produced by an iterative process, and has some
intriguing properties, including a fractal dimension of 1·8929.

This issue also includes our ,other regular sections - Problem Corner
and Computers and Computing, where in the latter you can learn how to
construct magic squares. We report on the recent Telecom 1994 Australian
Mathematical Olympiad, listing the problems pose~ and, the winners of
Gold Certificates. Finally, we include, as a follow-up to our cover story
in August 1993 on sundials, a reader's letter describing a most unusual
sundial, which uses, your own shadow to tell the time!

We continue to welcome readers' contributions, whether they are letters,
articles, new problems ·or solutions to earlier problems. Send them to the
Editors of Function at the address on the inside back cover. We look
forward to hearing from you.

* * * * *
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THE FRONT COVER

THE SIERPINSKI CARPET

Cristina Varsavsky,Monash, University

Function 2/94

The front cover illustrates the famous fractal image known as the Sier:
pinski Carpet. This computer-drawn image is the result of 5 iterations of
the geometric transformation described in Exercise 2 in the article "Con
struct your own Fractal" in the previous issue of Function. This exercise
required you to write a computer program which would iteratively carry
out the following basic step.

5

57 S6 55

Sa 54

81 82 S3

Figure 1

In other words, divide each square into nine identical squ~es, and omit
the middle one.

If we carry out this iterative process infinitely many times, the resulting
set of points is known as the Sierpinski Carpet. This structure is one of sev
eral fractal images created by Waclaw Sierpinski (1882-1969), a prominent
Polish mathematicianl of his time.

A QuickBasic program for producing up to 10 iterations of this iterative
process is given on pages 59 and 60, in the Computers and Computing
Section of this issue.

A fractal is more than a beautiful picture. The theory of fractals involves
~any sophisticated concepts; one of them is that of fractal dimension. We

IThere is .also .amoon crater named after W. Sierspinski
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hence

usually regard a line as having dimension one because it does not contain
area or volume elements. Similarly, a square has dimension two and a cube
has dimension three. Applying this definition, we might intuitively argue
that both the Sierpinski Thiangle and the Sierpinski Carpet have dimension
one, since in the limit they: cannot contain any area.

Mathe~aticiansat the beginning of this century came up with another
way of defining dimension. Le~ us start with a square, and apply the
transformation (shown in Figure 1) that reduces the 'square by a factor of
i, but this time we do not omit the middle square. If N is the number
of reduced squares (in this case 9) and r is the reduction factor (in this.
case i), we have the following. relation:

N~~
- r D

where D == 2, the dimension of the square. This relation h.olds for any N
and r, and it is also true for a line CD = 1) and a cube (D =3).

In theSierpinski Carpet the number of squares left is 8, so N = 8' and
r = i. Substituting these values in'the aboveformula, we get

1
8 = (i)D'

Taking logarithms of both sides of this equation gives

log(8) = D log(3}

D = ~~:~~~ = 1.8928.

This number, 1.8928, is called the fractal dimension of the Sierpinski Car
pet.

Similarly, for the Sierpinski Triangle, the reduction factor is .~ and the
number of parts left in at each iteration is 3. Therefore its fractal dimension
is D = .~ = 1.5850. In both cases the fractal dimension lies between 1,
the Euclidean dimension of the line, and 2, the Euclidean dimension of the
plane.

* * * * *



36 Function 2/94

THE TETRA® PAK

Michael A.B. Deakin, Monash University

I don't use much milk in my home, but I like always to have some on
hand for visitors who take it in their tea or coffee. So what I buy are
small portions of long-life (UHT) mille These u~ed to take the form of
small bucket-shaped plastic' containers, each holding 18 mL But recently
I've found these replaced by ·adifferently packaged product. The milk now
comes in a cardboard tetrahedron with seals' on two of its six edges. This
new shape is marketed under the brand-name Tetra® Pak.

Figure 1 shows a perspective view of a tetrahedron, with four triangular
faces, six edges and four vertices. The four triangles are congruent isosceles
triangles; in the special case of a regular tetrahedron, all faces are 'in fact
equilateral triangles.

The two thicker edges D A and C B represent the sealed edges of the
Tetra® Pak, and are taken to have length a. The other four edges will
each be taken to have length b.

Of course, if the tetrahedron were a regular one. then we would have

a=b

but for the Tetra® Pak, as we shall see, this is not the case.

o

c

A

Figure 1
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Because of the perspective drawing in Figure 1, DA and CB may
appear to have different lengths. However, you may check from a real
Tetra® Pak that they really do have the same length!

We now analyse the tetrahedron, starting with the base as" shown in
Figure 2.

A

c a/2 E

"Figure 2

a/2 B

This is an isosceles triangle ABC,and we will place the point E at
the midpoint of its base BG. Let the length of the base be a, let the
height of the triangle be !J" and let the sides AB and AC each have
length b. Then, applying Pythagoras' Theorem to the" triangle ABE:

b2 =h2 + (a/2)2.

Now, by symmetry, the fo~rth"vertex of the tetrahedron, D, is directly
above a point on the line EA. Call this point F, and let y and z be
the lengths of EF and FD respectively. Arguing by symmet!y, we can
see that DE has the same length, h, as AE, and AD has the same
length, a, as BG.
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A

c

From triangle EDF:

From triangle AFD :

.E

Figure 3

B

Solving these two equations for y and z is tedious but not particularly
difficult. I will spare you the details. The results are .

y = h - a
2j(2h) and z2 = a

2(4h2
- a

2)J(4h2
).

Let us now find out some ~engths, areas and volumes. The area of the
base ABC is ah/2,as is readily seen: The height of the tetrahedron is
z and it is known "that the volume of a tetrahedron is

(1/3) x Area of Base x Perpendicular Height..

Thus we may use'" this formula with the value of z given above to find the
volume to be {1/12)a2Y"4h2 - a2• "

To measure the Tetra® p~, open it along one of the seale~ edges (say
DA) and then flatten it carefully out from the other seal. This produces a
rectangle of sides a and h. (See Figure 4.) Measurement of the rectangle
gives

a =·h = 5 em,
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so that the rectangle is a square. 'This may well be deliberate. In any case,
we find b =5.5"9 em, so the tetrahedron is not reg·ular.

U H T

c B...---------------..

U H T

",Ei

MIL K (

___U@~n'!&'~111t I~
U'HT MILK

G
A G

Figure 4

Substitution of the measured values into the formula for the volume
yields a volume of 18 ml, which is a little under the claimed 20 mI. However,
I meas'!red the amount of milk in a Tetra@ Pak and found it was indeed
20 mI. I attribute the extra to a slight rounding out of the faces of the
underlying tetrahedron.

The six edges, AB,BC,CA,DA,DB,DC, of a tetrahedron come in
three pairs of "opposites". Opposite the side Be is DA and these
two sides, although they do not intersect, are nonetheless at right angles,
because if at any point on Be we place a line parallel to DA, this line
will be perpendicular toEC. This is quite obvious geometrically, but it
may also be proved formally, by vector algebra, for example.

Now take G to be the mid-point of DA. The line EG is perpendicular
to both Be and DA. (Again this is rather obvious, but ~ formal: proof
could be given.) This means that of all the lines that connect points on
Be to points on DA, EG is the shortest. It is sometimes referred to as
the "distance" between Be and DA.

We may now calculate this distance by applying Pythagoras' Theorem
to triangle DGE. The re~ult is Vh2 - a2/4. This works out to be 4.33
cm, which seems about right.
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The point G lies at the ~,id-point of the base 'of triangle ADC and
of triangle ADB. This is why in Fig. 4 the two bottom corners of the
flattened tetrahedron both correspond to the point G.

To make Tetra® Paks, we tal(e a con~,inuous tu1?e of cardboard and
make seals along its length by flatt~ning the tllbe at equally spaced inter
vals, making adjacent seals at right angles to each other. These will have
to' be about 4.3 cm apart and each will have a length of 5 em. The circum
feren~e of the tube will have to make up both sides of the seal and thus
we need a tube of circumference 10 cm. More generally, we would have a
circumference of 2a and a separation of Jh2 - a2/ 4. Then cut along the
seals, and hey presto!

* * * * *

MATHEMATICAL NURSERY RHY"ME

Simple Simon met a 1( man
Going to the fair.
Said Simple "Simon to the 1r man
"You have unusual ware.
The 1["'5 I've seen before were round
But, gosh, your 1r'S r 2 ."

From: The Surprise Attack in Mathematical Problems
by L.A. Graham (Dover, 1968).
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A LAW OF LOGARITHMS

M. J. Englefield, Monash University'

Recently, while working on something quite different, I stumbled across
the result

(1)

The logarithms may be taken to any. base, say c.

To prove Equation (~), we may write

alogeb = (clog. a) log.b

= clogca lo~b

= (dog. b) log. a

= b1o&a. (2)

Here we have us.ed the property that for any positive numbers c and u,

and the index law for powers, namely

with x = loge a, y = loge b.

Take 'the logarithm to base a of both side~ of Equation (2.). This gives

(3)

since logo a = 1.

Rearranging Equation (3) produces the change-of-base law.

We may apply Equation (1) to certain problems of antidifferentiation.
Consider the problem of antidifferentiat.ing

f(x) = 21nz

where In x = loge x, the natural logarithm of x. Using Equa~ion (1),

f(x) = x1n2

(4)
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so that the required antiderivative is

x 1+ln2

F(x) = 1 + In2 + c

X.X
1n2

1 + In2
+ c

X 21nx

= + c.
1 +ln2

Function 2/94

You may find other applications of Equation (1). I find it strange that
.this law is not more \videly known.

* * * * *

M. J. Englefield has been in the Department of Mathematics at Monash
University since 1965. His· publications include the text 'Mathematical
Methods for Engineering and Science Students and his research interests
are in methods of solving differential· equations, with applications to theo-.
retical physics.

* * * * *
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MEANS AND TRlANGLE MEDIANS

K. R. S. Sastry, Addis A~aba, Ethiopia

Given two positive numbers u and v, the three well-kilownmeans
of.these numbers are (i) the arithmetic mean !(u + v), (ii) the geometric
mean VUV and (iii) the harmonic mean :~:. (see article by Ken Evans
in'Function, Vol. 15, Part 4, pp. 98-106).

A triangle' median is a line segment between a vertex an.~ the midpoint
of the opposite side. For example, one such triangle median is the line
segment AD, ,vhere D is the mid-point of BC in triangle ABC (see
Figure 1).

A

B D
Figure 1

c

Using standard notation, w~ let a, b, c respectively denote the lengths
ofthe sides BC, C A and AB. We denote by ma the length of. the triangle
median from vertex A, Le. the length of the line. AD. Analogously we
define mb and me as the lengths of the triangle medians from vertices
B and C respectively.

In -this article, we ask:

Are there triangles in which rna is the (i) arithmetic mean, or (ii)
geometric mean, or (iii) harmonic mean of band' c?

We can derive an expression for rna in terms of. a, b, c by ~pplying

the cosine rule. From triangles ADC and ADB we can write
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and

b2 = m~ + ~ - 2ma(i) cos LADe

c2 .. = m~ + ~ - 2ma (~) cos LADB.

Function 2/94

Since LADe and LADB are supplementary angles,

cos LADe + cos L;1DB = o.
We add the above equations and sQlve for 4m~ to avoid fractions. This
yields

4m2 = 2b2 + 2c2
- a2

•a

, Likewise, 4mi = 2c2 + 2a2 - b2 and 4m~ =2a2 + 2b2
- c2

•

(1)

The Median and the Arithmetic Mean of the Sides

Can the length' of the median AD of triangle ABC equal the arith
metic mean of the lengths of sides AB and AC? To find out the answer
let us substitute rna = !(b + c) in (1).. Then we find that'

(b + c)2 = 2b2 + 2c2
- a2

•

After simplification the equation yields a = b - c if b > c or a = c - b
if c > b. In either case t~e triangle degenerates to a line segment. Hence
the answer is '

Theorem 1. In a non-degenerate triangle ABC the length of the
median 'AD cannot equal the arithmetic mean of the lengths of the sides
AB and AG.

Of course this also means that 1nb =F !(c + a) and me =1= !(a + b). ,

The Median and the Geometric Mean of the Two Sides

Is ~t possible for the median AD to be the geometric meal). of the sides
AB and AC of triangle ABC? The answer is yes.

Theorem 2. The median AD will be the geometric mean of the sides
AB and AC of triangle A,BC if and only if a = y'2(b - c) if b > c
or a = y'2(c - b) if c > b.

Proof. Put rna =~ in 4m~ = 2b2 + 2c2 - a2• Then we get

4bc ~ 2b2 + 2c2 _-a2
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and therefore

So

otherwise

Conversely, from

we get

a = v'2(b - c) if b > c;

a =v'2(c - b).

45

Hence the theorem follows.

Remark: With the constraint a- = V2(b - c) it is no longer certain that
such lengths a, b, c form a triangle. Note that b >-c implies a + b > c,
which is ne~essary if the length~ a, b and c are to form a triangle (See
Figur~ 1). We must also have b+c >-a. That-is, '~+c >V2(b-c)~ Hence
b and c should be such that c < b < (3 + 2V2)c. For example, if c = 1
then 1 < b < 3 + 2V2. If we choose b = 2 then a = V2(b - c) = V2.
This yields 4m~ = 2b2 + 2c2

- a2 = 8, rna = V2 which equals vIbC for
b = 2, c = 1.

The Median and the Harmonic Mean of Two Sides

Theorem' 3. The median AD of a triangle ABC will-be the harmonic
mean of the sides AB and AC if and only if a ~ :~~ ..j2(b2 + 4bc + c2)

if b > c· or a = b~~J2(b2 + 4bc+ c2) if c > b.

Proof. Put rna = ~~~ in (1) and solve for a.

* * * * *

K. R. S. Sastry, an expatriate mathematics teacher with the Ethiopian
Education Ministry~ earned his mathematics degrees from Mysore Univer-'
sity, India. A contributor to several mathematics journals, his hobby is
photography.

* * * * *
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HISTORY OF MATHEMATICS

FERMAT'S LAST THEOREM

John Stillwell, Monash University

Function 2/94

Fermat's last theorem is the most famous theorerp. iIi mathematics and
was, until recently, its most famous open problem. In the 350 years since
the theorem was first stated, some of the. greatest mathematicians have
attempted to prove it, all without success until the proof of Andrew Wiles
in June 1993. At the time of writing, this proof still needs some work, but
seems essentially correct. While we wait for the full story to emerge, it may'
be of interest to survey some of the classic attempts to prove the theorem 
correct,proofs of special cases, and others simply incorrect - together with
'some of the recent research on which Wiles based his proof.

Pierre de Fermat (1601-1665) conjectured the theorem around 1637,
while reflecting on problems about sums of squares. Since ancient times,
people have known examples of whole number squares that are sums of two
whole number squares, for instance

52 = 32 + 42

132 = 52 + 122

172 = 82 + 152
•

A·round 200 AD, the Greek mathematician Diophantus showed, in his
Arithmetica, that any whole number square could be split into two frac
tional squares. For example"

Fermat was a keen'student of the Arithmetica, and jotted many of his
thoughts on number theory in the margin of his copy. Next to piophantus'
explanation of how to split 42 into two squares, Fermat wrote:

It is impossible to separate a cube into two cubes, or a bi- '
quadrate into two biquadrates, or in general any power higher
than second into .powers of like degree; I have discovered a truly
marvellous proof of this 'which however this margin is'too small to
contain.
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I~ modern notation, Ferlnat's statement is that the equation

47

has no solution in positive integers a, b, c when n' is an integer greater
than 2.

The statement became known as Fermat's last theorem after other the
orems claimed by Fermat were .eventually proved (or, in a few cases, dis
proved). What makes the last theorem so' difficult is its enormous scope:
it has to be proved for the infinitely many values 3, 4, 5, 6, ... of n, and
even proofs for particular values of n are difflcult. Until recently, in fact,
almost all progress has been by hand-to-hand fighting against individual
values of n. Fermat himself left a proof for n = 4. In 1770 Euler gave a
proof for n = 3 (not quite-complete, but capable of being patched up).
Legendre and Dirichlet disposed of n = 5 between them in the 1820s.
Dirichlet got n = 14 from an unsuccessful· attempt to do n = 7, and
Lame finally settled n = 7 in 1840.

Then iIi 1847 Lame announced a proof for all n. This created a sensa-·
tion at the Paris Academy, though not quite the one that. Lame expected.
Almost immediately, -a mistake was found in his proof! Meanwhile, in Ger
many, Kummer had encountered the same difficulty, and w~developing

a way round it. The "ideal numbers" he invented for this purpose were a
great success - elsewhere in number- theory :- but they turned out to be
onlypartia.lly successful with Fermat's last theorem. KUIIlmer Was able to
deal with many values of n, but not all. In fact, it is still unknown whether
his method ~an cope with infinitely many values of n.

All the same, Kummer was far more. successful than any other math
ematician who had attacked the problem, and his work put Fermat's last
theorem on the map. In 1908 t4e hunt for a proof intensified with the
offer of a prize of 100,000 marks, left in the will of mathematician Paul
Wolfs~ehl. The value of the Wolfskehl prize was 'wiped out by the German
hyperinflation in the 1920s,.but in its early ye~s it 'attracted thousands
of entries - all of them wrong. Most of the entrants were amateur math
ematicians, encouraged by the fact that Fermat himself was an amateur,
and hoping to discover a lost proof by Fermat's own methods.

Alas, it is wrong for amateurs (and even professionals) to think Fermat's
last theorem is that easy. Fermat was an amateur, .yes, but a master_of
all the mathematics th~n known, and able to compete with the top math
ematicians of his day (most of whom were also amateurs, ~.g. Descartes
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and Pascal). And anyway, did Fermat have a proof? P~obably not. His
marginal note was written when he was a beginner in number theory, and,
was most likely based on a mistake. He 'never repeated the claim, except
·for the c~es n = 3 and n = 4. We know his proof for n = 4 is correct,
and perhaps he could have done n = 3 the way Euler did, but that, was
probably his limit. ~

Be that as it may, there was virtually no progress on the theorem be
tween !(ummer and the 19808, when a wild idea by' the German math
ematician Gerhardt Frey reduced Fermat's last theorem from a question

.about nth powers to a question about sqllares and cubes. Frey said: sup
pose (contrary to Fermat's last ~heorem) that there are positive integers
a, b, c such that

an +bn =' en,

and consider the curve with equation

y2 = x(x _ an)(x + cn).

Frey ~essed that the .unlike.ly numbers an and ·cn -would give this
curve an unlikely property, called "nonmodularity". i.n' the ~rade. His guess
was proved by the American Ken Ribet in 1987. Then to prove Fermat's
last theorem it ~nlyremainedto' prove that nonmodularity is in fact impos
sible. This is wha~ Andrew Wiles did; it took him seven'· years and about
250 pages, using some of the most sophisticated methods ·of modern math
ematics. Even if the· proof is.· simplified in the future, there will probably
never be_a margin large enough to contain it!·,

No doubt it will also be beyond the scope of Function, but it is possible
to give an idea of the classical results of Fermat? Euler a~d K~mmer.

Pierre de Fermat (1601 - 1665)

As mentioned above," Fermat prov~d the <;ase ,n = '4, that~ the sum of
two fourth powers cannot be a fourth power. In'f~ct, he proved that the
sum of two fourth powers cannot even be a~square..ai~ method was one of
his own invention 'called "infinite descent" .

Supposing there are positive i~tegers'at", bI , Cl ~uc~ that

at
4 + b1

4 = Ct
2

,

Fermat finds smaller positive integers a2, ~, C2 such that,

a24 + ~4 = C22.
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this is the first step of the "descent.",. which can be continued indefinitely.
applying the same argument to a2, b2, C2 gives smaller positive integers a3,
b3, C3 with the same property, and so on. However, it is impossible to find
smaller positive integers indefinitely, so we have a contradiction. No such
al, bI , Cl exist.

This is the logic of Fermat's argument. The mathematical part is to find
a way to "descend" from aI, bI , Cl to a2, b2, C2. Fermat used ail ancient
result about sums of squares (apparently known to the Babylonians around
2000 Be) which goes as follows.

If x, y, z 'are integers without common divisor, and

x2+ y2 = z2

with x even, then t~ere exist integers u, v such that

x=2uv, y=u2~v2, z=u2+v2.

For example, if x = 4, y = 3 and z = 5, take u = 2 and v = 1.

Applying this result t~

after removing any common divisors, we can conclude that

a1
2 = 2uv,

b1
2 = u2 _ v2,

Cl = u
2 + v

2
•

.But then v2 + b1
2 = u2, and 50 we also have integers ui, VI with

v = 2UtVI, -

- b
1 = .2 2

UI - VI ,

U = U1
2 + V 1

2

It follows in particular that

a1
2 = 2uv = 4(U1 2 + Vt

2
)UIVt.

It can be checked the factors Ut2 + Vl 2 , 'Ul and v1have no conunon -divisor..
Since their product is the square a12/4, they must themselves be squares,
say
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This gives
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4 4 2 2 2
a2 + b2 = Ul + VI = C2 -

Finally, it can be checked that a2, b2, C2 are smaller than at, b1, Ct- As
already mentioned, this leads to an infinite descent, which is impossible.
Hence there is no· triple ai, bl , Cl with the fourth powers of the first two
adding up to the square of the third. In particular, there are no positive
integer fourth powers whose sum is a fourth power.

Leonhard Euler (1707 - 1783)

If you thought that Fermat's proof for n = 4 was tricky, I have bad
news for you. The n == 4 case is by far the easiest. No other case has yet
been proved by reasoning of the kind used by Fermat, using only simple
properties of the positive integers. All ~nown proofs for n = 3, n = 5, etc.
use more sophisticated concepts, in particular they use irrational numbers.
The idea of using" irrational numbers to prove results about integers ap
peared around 1770; Euler used it to give the first proof of Fermat's last
theorem. for n = 3. His proof is too complicated to summarise here, but I
can tell you the key idea.

If a, b, c are positive integers such that

a3 + b3 = c3
,

~. then
a3 = c3

- b3 = (c - b)(c2 +.cb + b2
),

and the right hand side can be factorised completely to

a3 = (c - b)(c - (b)(c - (2b)

using the irrational (and imaginary) number '( = (1 + H)/2.
But so what? The numbers c - (b and c - (2b are ~ot integers, so how

can they help? Euler's bold and successful idea was to treat them a'S if
they were integers, and to look for a contradiction in the wider world' of
"integers" of the form r +(s + (2t, where T, s, t are ordinary integers. In
particular, ~e claimed that since c- b, c- (b, c-(2b have product equal to
a cube, they must themselves be cubes. Euler'sjustification for this claim
was rather weak, but amazingly, he was right! Later mathematicians were
able to explain clearly why Euler's "integers" behave like ordinary integers,
and hence put the rest of his argument (some complicated but conventional
algebra) on a solid foundation.
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Ernst E~uard Kummer (1810 .. 1893)
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.The numbers 1" + (8 + (2t are examples of what are now called algebraic
integers. The algebraic integers relevant to Fermat's last theorem are of
the form ao + (nal + ... + (nn-l an_1 where (n = cos 2: + i sin 2:, where i
denotes the imaginary number yCT. (Euler's ( is (3.) They enable us to
factorise the expression en - bn arising from a hypothetical counterexample
to Fermat's last theorem, as follows:

It is then tempting to generalise Euler's argument and claim that each
factor on the right hand side.must be an nth power. Unfortunately, what
works for n = 3 does not work for all values of n. Euler got away with
his argument for n = 3 only because there is a decent concept of prime
factorisation in the algebraic integers r + (3S + (32t. Each such algebraic
integer has a unique prime factorisation, and this is the real reason that
factors of a cube are also. cubes (provided they have no common factor).

Lame's "proof" of Fermat's last theorem attempted to generalise Euler's
idea, assuming that the .above factors of the nth power an are also nth

powers. This ~sumes unique prime factorisation of the (n integers for all
values of n, which alas is not the case. Kummer showed that it first breaks
down for n = 23. Not deterred by this, he created an even more general
concept·of "integer" , .and "prime", for which unique prime factorisation is
v:alid. Kummer's integers can be used to settle many case of Fermat's last
theorem,_ but notal!.

* * * * *

John Stillwell is Associate Professor in· Mathematics at Monash Vniver
sity, and has written several books, including Mathematics and Its History
(Springer- Verlag 1989). In his spare time he enjoys reading, music and
swimming.

* * * * *
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AN ALGORITHM FOR M.AGIC SQUARES
Cristina Varsavsky, Monash University

A magic square· is a square nlatrix whose columns, rows and diagonals
all have the same sum. Magic squares have fascinated the, great minds of
the world and nlany mathematicians have amuse'd themselves with them.
They have been found in paintings, on vases, fortune bowls and seals of the
ancient world, and they were also used by Arabian astrologers to predict the
future. One of the world's famous engravings, Albr~cht Durer's Melancho
lia (1514), depicts; among other mathematical concepts, the magic square
sllown in Figure 1.

16 3 2 13
5 10 11 8
9 6 7 12
4 15 14' 1

Figure 1

Today magic squares are still an interesting diversion to exercise our
minds. How can we create one? How· should the different numbers relate
to each other? Let us explore this with a 3 x 3 square with generic entries
a, b, c, d, e, 1,9, h and i (se~ Figure 2).

a b c

·d e f
9 h i

Figure 2

The sum of all rows, columns and diagonals should give the same num
ber, say k. Therefore the following equations must be satisfied.

a+b+c = k

d+e+f = k

9+ h+ i = k

a+d+g = k

'b+e+h = k

c+ f+i = k

a+e+i = k

c+e+g = k
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So any solution to this system of .eight equations and 10 unkn?wns
would result in a magic $.quare.. How many solutions are there? I asked
the computer algebra system MAPLE to solve ~t for me, and received the
answer shown in Figure 3, where solutions are given in terms of b, i an.d
k (1 asked MAPLE to do this), meaning that' for each choice of the triplet
b, i and k, we get a magic square by plugging those values into each
expreSSIon.

-i + ~k b -b+ i + ik3 .

-b+ 2i lk b - 2i + ~k3 3

b+ lk - i -b+~k i3 . 3

Figure 3

Let. us inspect the solutions shown in ·FigUre 3. Firstly, th~ middle
square is always occupied by a third of the total: sum, also called the magic
constant. Since all entries must be integers, it follows that the magic con
stant must be a multiple of three. Secondly, although any integer choices
of band i. will produce integer entries, not all of them will be positive.
We need b and i such that

-i + ik > 0 or i < .~k (1)3

-b+ 2i > 0 or b < 2i (2)

b+!k - i > 0 or i - b < kk (3)

-b+ £k>O or b < '1k (4)3 3

-b+i + lk > 0 or b - i < lk (5). 3 3

b - 2i + i·k > 0 or 2i - b < ~k . (6). 3

Let us find a square with a magic constant k = 30 (which of course is
a multiple of three). According to (1) and (4), b and i must be less than
20. Conditions (3) and (5) indicate that the difference between b and i
must be less than 10. Now, to satisfy (2), one possible choice is b = 3 and
i = 7, which also satisfies the remaining condition (6). Replacing these
values in the expressions, we get the magic square depicted in Figure 4.
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13 3 14

11 10 9
1--.

6 17 7

Figure 4
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Usually, magic squares a~e more interesting than this. For example, the
magic square of the Melancholia engraving has some other special proper
ties: not only do the columns, rows and di~gonalsadd to the magic constant
34, but also the four corners of the squa~e, and opposite pairs (5, 9, 8, 12
and 3, 2, 15, 14), to name afew. Also, the middle numbers in the bottom
row represent the year, 1514, in which the engraving was made.

A well-known method, called the De La Louvere Procedure l , produces
magic squares of an odd number of columns, n, with the special feature
that a set of n 2 consecutive numbers is used to fill up the square. Here is
the algorithm:

Algorithm De la Louvere

1. Start with any number x and place it in the middle position of the
first row.

·2. Increment x by one unit. This becomes the next entry.

3. To find the position for this entry, move one position up and one to
the right. If you fall outside the square on its top, move down the
column till you reach the bottom of the square. If you fall outside the
square on its right side, move to the left till you find the left side of
the square.

4. Repeat st~ps 2 and 3 until you complete n entries.·

5. Increment x by one and place it in the position immediately below
the current positio.n.

6. Repeat steps 2, 3, 4 and 5 until you·fill up the square.

1Antoine de la Louvere was a Jesuit, born in Languedoc, France, in 1600.
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Figure 5 shows tIle first few steps for a 5 x 5 square starting with
x = 11, and Figure 6 displays the completed square.

,
11

j3
12~.

11

)5
1.(

11
"13·

12

11 18
~

15 17

14 16~

13

12

Figure 5

27 34 11 18 25

33 15 17 24 26

14 16 23 30 32

20 22 29 31 13

21 28 35- 12 19

Figure 6

It· is possible to prove that the square produced through this method
will have a magic constant calculated according to the formula

. n3 -- n
magic constant = -.-2- + 'nx

Here is a program in QuickBasic which implements this algorithm:

REM pe la Louvere Algorithm for odd magic squares

REM you may need to change the following statement
DIM square(25, 25)

INPUT as Enter an odd number. the size of the magic square: ", size
INPUT U Enter the,starting number:- ", start
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number .= start: i = 1: j = (size + 1}/2

WHILE number <= size * size + start - 1
square(i, j) = numb~r

number = number + 1

FOR k = 2 TO size

i =i - 1: j = j + 1
IF i =: 0 THEN

i = size
ELSEIF j > size THEN

j = 1
ENOIF
sqqare(i, j) = number
number = number + 1

NEXT

;= j + 1

WEND

REM Printing the Magic Square

PRINT: PRINT
FOR i = 1 TO size

FOR j = 1 TO size
PRINT square(i, j): TAB(S * j);

NEXT j
PRINT
PRINT

NEXT i

PRINT "Columns, rows and diagonals add up to"; (size A 3 - size) /
2 + size * start
END

Running this program for a 9 x 9 square and initial value 11 produces
the following output:
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57 68 79 90 11 22 33 44 55

67 78 89 19 21 32 43 54 56

77 88 18 20 31 42 53 64 66

87 17 28 30 41 52 63 65 76

16 27 29 40 51 62 73 75 86

26 37 39 50 61 72 74 85 is
36 38 49 60 71 82 8·4 14 25

46 48 59 70 81 83 13 24 35

47 58 69 80 91 12 23 34 45

Columns, rows and diagonals add up to 459

Exercise: Here is an algorithm to produce magic squares with an even
number of columns. Write a computer program that implements this algo-
rithm.

Algorithm for Magic Squares of Size .4

1. Mark the tw,? main diagonals, say with the letter A (Figure 7).

2. Select a starting .. number ~ (x·= 4 in Figure 8), and move to the
upper left corner of the square.

3. Move to the next position to the right, and increment x by 1. If that·
.position is not already marked, enter the current value of x.

4. Rep~at step 3 until the row is completed, then move to the left of the
next row.

5. Repeat steps 3 and 4 until all rows are completed.

6. Fill the marked positions using essentially the same rule as in 3 and 4.
Start at the top left corner, but now fill in the marked positions and
skip the ones with numbers in it. The value of ~ is now decrease.d by
1 each time you move one position to the right; in the bottom right
square you should have the original value of x (see Figure 8).



58

A 5 6 A

8 A A 11

12 A A 15

A 17 18 A

.14 .14
!J4 .4

A ..4

A 'A

Figure 7

Figu~e 8
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19 5 6 16

8 14 13 11

12 -10 9 15

7 17 18 4

A similar procedure could be followed to form an 8 x 8 magic square.
Divide the square into four squares of size 4, mark the diagonals of the four
4 x 4 squares, and fill it up proceeding through steps 2 to 6.

Have fuil!

* * * * *
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THE SIERSPINSKI CARPET

Here is the QuickBasic program used to produce the Sierspinski Carpet
illustration on the front cover. The progra~ has the same structure as that
given on pages 22-23 of the previous issue of Function.

REM SIERPINSKI CARPET..
SCREEN 9
COLOR 11
DIM xl(10), x2(10), x3(10), x4(lO), yl(lO),
y2(10), y3(lO),y4(lO)

INPUT "Enter the'number of iterations [1-10] : ", number

REM initialisation of variables
horz = 150: vert = 30
xl(number) = 0: Yl(number) = 0
x2(number) == 300:. y2(liumber) = 0
x3(number)-= 300': y3(number) = 300
x4(numbe"r) =" 0: y4(nu.mber) = 300
xdisp(I)'= 0: xdisp(2) = 100: xdisp(3) = 200:
xdisp(4) = 200:
xdisp(5) = 200-: xdi:sp(6) == 100: xdisp(7)= 0:
xdisp(8) = 0
ydisp(l) = 200: ydisp{2) = 200: ydisp(3) = 200:
ydisp(4) = 100
ydisp(5) = 0: ydisp(6) = 0: ydis.p(7) = 0:
ydisp(8) = 100

GOSUB Drawing
END

REM Next iteration
Iterate:

number = number - 1

trans = 1
GOSUB Transform
trans = 2
GOSUB Transform
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trans = 3
GOSUB Transfo-rm
trans = 4'

GOSUB Transform
trans = 5 -'

, GOSUB Transform
trans = 6
GOSUB Transform
trans = 7
GOSUB Transform
trans = 8
GOSUB Transform
number = number + 1
RETURN

REM Basic step: transformation of square in terms
of the previous one

Transform:
xl{number) = xl{number + 1)/3 + xdisp{trans)
yl(number) = yl(number + 1}/3 + ydisp(trans)
x2{number) = x2(number + 1)/3 + xdisp(trans}
y2(number) = y2(number + 1)/3 + Ydisp{trans)
x3(number) = x3(number + 1)/3 +xdisp(trans)
y3(number) = y3(number + 1)/3 + Ydisp{trans)
x4(number) = x4(number + 1)/3 + xdisp(trans)
y4(number) = y4(number + 1)/3 + ydisp(trans)

REM Drawing of square at the last iteration

Drawing:
IF number '> 1 GOTO Iterate

. LINE (horz + x1(1), vert + y1(1» - (horz + x2(1),
vert + y2(1»
LINE - (harz + x3(1), vert + y3(~»

LINE - (harz + x4(1),. vert + y4(1»
LINE - (harz + x1(1), vert + y1(1»
RETURN

* * * * *

FUllctioll 2/'94
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PROBLEM CORNER

SOLUTIONS

We are holding over solutions of the problems set. last time un~il our next
issue. We invite readers to provide us with solutions to those problems or
with alternative solutions or corrections to solutions published in· previous
issliesof Function.

PROBLEMS

Our first three problems are motivated by the discussion in K. R. S.
Sa$try's article on Means and Triangle Medians on pp. 43-45 of this issue,
and use the same standard notation.

PROBLEM 18.2.1

Is there an isosceles triangle ABC with a = c in which rna = a? (Note
that rna would then trivially be equal to the arithmetic, geometric and
harmonic means-of a and c.)

PROBLEM 18.2.2

Is there an isosceles triangle ABC for which rna = i(a + b + c), the
arithmetic mean of the lengths of all three sides?

PROBLEM 18.2.3

Under what circumstances (if any) is it possible to have a triangle ABC in
which rna = v'bC and mb = .vca?
PROBLEM 18.2.4 (R. D. Coote, Katoomba High School, N.S.W.)

Express each integer from 1 to ·100 in terms of an equation involving all
four digits 1, 9, 9, 4 (in that order) and any other mathematical symbols.
Note: 100 equations are needed!

Example: 1 = 1 +(~- 9) x 4

* * * * *
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THE TELECOM 1994

AUSTRALIAN MATHEMATICAL OLYMPIAD

The contest 'was held in Aust'ralian schools on February 8 and 9. On
either day students had to ~C)it a paper consisting of fO'ur problems, .for which
they we're given four hours.

Paper 1

1. Let ABC be a triangle and M and lV points on Be such that B1Y! =
M ...N = N C. A line parallel to .4C meets lines .l4B, AM and AN in
points D, E and' F respectively. Show that EF = 3DE.

2. Prove that for every integer x, the number

tx5 + lx3 + ftx
is an integer.

3. Let ABC be a triangle with side .lengths being integers and AB and
AC being relatively prime. Let the tangent at A to the circumcircle
of ABC meet Be produced at D. Prove that both AD ,and CD are
rational, but that neither is an integer.

4. Determine all functions !, defined for all rational numbers and having
real values, such that

I(x + y) = I(x) + fey) + 2xy.

Paper 2

5. Let q be an arbitr~y positive real number and an, n = 1,2, ... , be
real numbers such that ao = 1, al = 1+q, and for all positive integers
k the following equations are satisfied:

(i) a2k-l - ..!!.2&-
a2k-2 - a24:-1'

, (ii) a2k -a2k-l = a2k+l - a2k·

Show that for each q as given one can find a.positive integer N such
that an > 1994 for all n > N.

6. Let n be a positive integer. Prove that both 2n + 1 and 3n + 1 are
perfect squares if and only if n+1 is both the sum of two successive per
fect squares and the sum of a perfect square and twice the succeeding
perfect square.
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7. Students from 13 different countries participated in the Fifth Asian
Pacific Mathematics Olympiad (1993). These students belonged to 5
different etge groups, namely 14,. 15, 16, 17 and 18. Prove that there
were at least 9 participants in that competition, each of whom had
more fellow participants in his or her age group than fellow participants
from his or her own country. .

8. Let ABeD be a parallelogram, E a point on AB and F a point on
CD. Let AF intersect ED 'in G and Ee intersect FB in H. Further,
let GH produced intersect AD in L and Be in M.
Prove that DL = BM.·

There were 98 entrants. Gold Certificates were received. by:

William Hawkins (year 12), Canberr.a Gramrnar School, ACT

Akshay Venkatesh (12), Scotch College, Western Australia

Ren HOll (12), North Sydney Boys' High School, NSW

Nigel Tao (II), Westminster School, South Australia

Andrew Rogers (12), Scotch College, Victoria

Chaitanya Rao (12), Melbourne Church of England Grammar School, Vic
toria

Anthony 'Wirth (12), Melbourne Church of England Grammar School,
Victoria

John Ho (12), J~mesRuse Agricultur~ High School, NSW

James Lefevre (12), Launceston College, Tasmania.

Congratulations to alll Twenty-eight students, including all Gold Cer
tificate winners) were invited to represent Australia at the Sixth' Asian. Pa
cific Mathematics Olympiad. Students from thirteen countries of the Asia
Pacific Region take part in this competition, 1.ohich started in 1989.

*****.-
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LETTER TO THE EDITOR

Another Unusual Sundial

Function 2/94

I w~ interested to read your account of the Monash Sundial (Function,
Vol. 1i, Part 4). J:tecently I was in Montpellier (France) and ?ame across
the sundial pictured below. The French describe it as an analermnic dial.
It is in the shape ·of an ellipse (major axis 536 cm, minor axis 388 em)
and the distances from the "J\lne line" to eaeh of the other lines in turn
are 12 em, 44 em, 81 cm, 119 em, 150 em and 167 em. One stands at the
appropriate position for the tinle of year and one's shadow indicates solar
time.

Peter·Ransom
12 Annaside Mews, Leadgate

Consett, Co. Durham, England.

[The writer is President of the British. Sundial Society. Eds~]

*****.
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