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FUNCTION is a mathematics magazine addressed principally to students inthe upper
forms of secondary schools. ~

It is a ‘special interest’ journal for those who are interested in mathematics,
Windsurfers, chess-players and gardeners all have magazines that cater to their interests.
FUNCTION is a counterpart of these.

Coverage is wide — pure mathematics, statistics, computer science and applications
of mathematics are all included. Recent issues have carried articles on advances in
mathematics, news items on mathematics and its applications, special interest matters,
such as computer chess, problems and solutions, discussions, cover diagrams, even
cartoons.
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Articles, co_rrespondencé, problems (with or without solutions) and other material for
publication are invited. Address them to:

The Editors,

FUNCTION,

Department of Mathematics,
Monash University,
Clayton, Victoria, 3168.

Alternatively correspondence may be addressed individually to any of the editors at
the mathematics departments of the institutions listed on the inside front cover.

FUNCTION is published five times a year, appearing in February, April, June, August,
October.  Price for five issues (including postage): $17.00%; single issues $4.00.
Payments should be sent to the Business Manager at the above address: cheques and money
orders should be made payable to Monash University. Enquiries about advertising should be
directed to the business manager. - ’

*$8.50 for bona fide secondary or tertiary students.
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THE FRONT COVER

Bert Bolton, University of Melbourne

Our cover diagram for this issue is a good example where Physics and Mathematics are
brought together in some calculations. It shows the pattern of waves in a plane ‘issuing
from two sources. This can be represented in a simple experiment by two rods dipping
together into the surface of water and is often the subject of a demonstration in Physics
teaching. We will return to this demonstration at the end of the article and show how to
do it for yourself.

This piece of Physics was first discussed by Thomas Young in 1802 and his correct
explanation of the pattern using light waves was one of the experiments that gave evidence
for the fact that light is propagated by waves. In the seventeenth century, Isaac Newton
had been a supporter of the idea that light is propagated by particles, or, as they were
called in those days, corpuscles; his influence on science was so strong that for over a
hundred years his ideas were accepted, even though they could not explain some of Newton’s
own observations, viz. the coloured circles known as “Newton’s Rings”. It is worth
emphasizing that we are only considering the propagation of light through space or through
a homogeneous medium. If we have to ask questions about the interaction of light with
matter at an atomic level, we now know that energy is transferred by discrete amounts of
energy. To understand the interaction of light with matter we need to use the Quantum
Theory.

But we needn’t go that far 'in talking-about Thomas Young’s classical ideas of wave
propagation. In the cover diagram, the two points § and § are the sources of the two
waves that spread outwards. Each of the points S and 'S" is known mathematically as a
focus and the two together as the foci. To keep the physical picture in mind, consider $
and §° as the points where two thin rods dip together into the water at regular
intervals of time. Each wave spreads out over the water as a pulse, a very narrow region
with a disturbance on the surface. We call each circular disturbance a “wavefront” and
they appear in the diagram at unit distance apart. The diagram has been drawn with their
radii 1, 2, 3, etc. units. In the original diagram, the unit was 1 centimetre (cm) and
the distance SS’ was 10 cms. Only the top half is given; the bottom half is the mirror
image ‘in the line through § and §'. Maintaining the physical picture of the pulses on
water, the wave-fronts eventually overlap and give a double amplitude. There are 14 wave-
fronts, from § to S§’. Beyond these 14 wave-fronts there are no interactions.

The diagram can be interpreted as a “snap-shot” of the wave-fronts at one particular
time. But time advances continuously and the intersections with double amplitudes are
moving through space and fall on the dotted curves. We now want to find the shape of
these dotted curves. (The intersections do not have quite double amplitudes as the waves
are damped, but we can ignore that for the moment.)

Figﬁre 1
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In Figure 1, P is a point on one of the dotted curves, C is the midpoint between §
and §° and A, A" are the points where the two branches of the dotted curve meet the
horizontal line. It is conventional to call AC = CA’ = a. The physical condition
defining the dotted curve is that

r,—r. = constant. : (¢3)

When this constant is positive we get the right-hand dotted branch and when the constant
has the same absolute value but is negative, we get the left-hand branch. The value of
this constant can be given by noting that A’ lies on it so that
r —r =8A" - SA.
s 8
There is symmetry about the line through C and at right angles to S’ and
SA” = SA.
Thus
ro-TL = SA” = SA = AA' = 2a. 2)
The equation (2) defines the shape of the dotted curve as a hyperbola but the discussion
is probably more familiar in terms of the co-ordinates (x, y) of the point P. The
origin of co-ordinates is the point C, the positive x-axis is the horizontal line CS§’
and the y-axis is ‘the vertical line through C at right angles to CS. It is
" conventional to call the co-ordinates of S (-ae, 0) and of S (ae, 0). e is a
constant for a given dotted line and known as the eccentricity; we shall discuss it later.
Using Pythagoras’ Theorem, Equation (2) can be written as
[(x + t'ze)2 + ):2]“2 - [(x - ae)2 + y2]m' = 2a.
Then
(x +ae)’ + ¥ = {[(x - ae)’ + yz]”2 + 2a)?,
which gives on expansion and simplification
a-ex = [(x - ae)2 + yz]m.

Squaring again and rewriting the result gives

(]

X 2
S+—=ts=t
a a(l-e%)
‘There are many conventions for thé curves such as the one we are examining and we usually
write b* = a2(e2 ~ 1) to give
2

Hla® = bt = 1. €)]

"Notice the two symmetﬁes that we have already met; Equation 3 is unchanged when x is
replaced by -x and also when y is replaced by -y.

Before continuing with the mathematical analysis of (3), we should appreciate how the
cover picture allows us to understand how Thomas Young defined experiments to reveal the
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wave nature of light. Young allowed the light waves from two sources S and S§° to fall
on a white screen parallel to the line SS’. The pattern of the intensity on this screen
would be a series of large intensities nearly regularly spaced in the centre, but with
spacing increasing towards . the outside in both directions. When the distance S§S’ is
‘much larger than the wavelength of the light waves (usually so) the region on the screen
in. which the regular spacings occur is wide. This regular ‘spacing of intense positions
allows the wavelength of light to be calculated. The wavelength of the yellow light from
flame containing sodium is about 0.5 of a micrometre (a millionth of a metre) and the
distance SS’ is about a millimetre, so the condition is well satisfied to get the
regularly spaced lines of intensity on the screen. They are called “interference fringes”
or “Young’s fringes”.

Returning to the Mathematics, let us consider the behaviour of Equation (3) for
i 2 2
values of x:and y much larger than @ and b. The individual terms ’% , y_2 are
: a b
each much larger than 1, and must almost cancel one another out. If therefore we neglect
the 1, we have - :

2
- =9

b2

QN, Rn‘

or 2 1
y/x = Hbla) = He’ - 1)'*, a constant.

This represents two straight through the origin € and they are known as the asymptotic
behaviour of the hyperbola for large x, y. They can be seen on the cover diagram by
looking at the dotted curves, which become straight lines in the asymptotic limit. Notice
that the equations give the two asymptotic straight lines for the two branches.

The word hyperbola comes from two Greek words meaning “an excessive throw”. When a
ball is ordinarily thrown in the-air it returns to the earth; ignoring air resistance the
curve is a parabola. But if the hyperbola is considered to be the path of a projectile it
has the asymptotic behaviour of “going off to infinity” as a straight line. To the Greeks
this must have seemed an exaggerated (or excessive) thing to hdappen. We now know that a
piece of matter, such as an asteroid or a non-returning comet, moving fast enough -and
coming towards a star (such as our sun) or a planet will be attracted towards it, swing
round it and go off into space again. The asymptotic straight lines that we have seen
arising from Equation (3) are indeed the straight lines that a material particle describes
“when not acted on by .a force, which is precisely an expression of Newton’s first law of
motion. The American satellite or space-craft “Voyager” was guided from planet to planet
on such hyperbolic paths and is now on its way outwards from the solar system on its final
asymptotic straight line.

The rectangular hyperbola (e = 22 ) has properties that are displayed readily in the
co-ordinate system based on the asymptotic lines which are at 45° to the x- and y-axes.
Figure 3 is a sketch showing the x- and y-axes and the two asymptotic lines, shown
dotted, through the origin. which are at 45° to the x- and y-axes.. The asymptotic lines
define the x'- and y-axes which can be seen to be given by a clockwise rotation through
45° from the x- and y-axes. The point P can now have co-ordinates (x, y) or
(', ) and the relationship between them can be seen to be
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where ¢ = cos 45° and s = sin 45°. The values of ¢ and s are both 172" but it
is worth writing the equations in general terms so that for any clockwise rotation of the
axes from x to x’ by an angle 0, these equations (4) are still valid with ¢ = cos 6,
s = sin O. - : :

We can now substitute for x and y in Equation (3) which for ¢ = 2" becomes

2 2 2
X -y =a.

Using the u-igonometrical_rélatidnship F+sf=1, we get
Xy = a’fcs = a2/2 = constant. (&)

This equation shows that when X" tends to zero, y° tends to infinity, thus defining a
“singularity”; this is another expression of the asymptotic behaviour of the hyperbola.
The same occurs when ' tends to zero. Expression (5) is well suited to computation.

Finally, it is easy to demonstrate on water the pattern in the Cover Diagram. Fill a
hand-basin with water and hold two sharpened pencils firmly in one hand with their points
about 10 cm apart. Dip them together into the water somewhere near the middle of the
basin at about 3 times per second. The pencil points dip into the water at the foci. A
few minutes’ practice, to keep your hand steady and dipping rate constant, and the
hyperbolae become clear between the two foci with the circular waves outside. You will
soon learn how to do it and you will be able to vary the distance SS’ and the rate of
dipping to see what happens. Water waves are damped and the hyperbolic pattern can only
be seen near the foci § and §
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There are several good books on various mathematical curves and they nearly all
include the hyperbola. The one I like, especially for its fine sketches of curves, is

LOCKWOOD, E.H., A Book of Curves (1976), Cambridge University Press.
Useful catalogues of curves and their properties are

ARCHIBALD, R.C., Encyclopedia Britannica under Special Curves.
YATES, R.C., Curves and their properties (1947), Michigan.

Try your local library. There are many older books on drawmg curves and computer
programs are easy to write. As an exercise, try the equation for the ellipse

la® + y Yp? = 1.
Notice the difference between this and equation (3). There are close links between the
ellipse and the hyperbola. Try the values for (a, b) as (1, 5), (2, 4), (3, 3), (4,
2), (5, 1).

OLYMPIAD NEWS
Hans Lausch, Monash University

The 34th International Olympiad was held in Istanbul from August 13-24. Six
questions were posed, originating’ (in order) from Ireland, the United Kingdom, Finland,
Macedonia, Germany and the Netherlands

For each of the six team members per country and each of the six questions asked, a
maximum of seven points was possible. Thus the maximum score per team was 252 The top
performers were

1. PR. China 215 8. Hungary 143
2. Germany 189 i 9. Vietnam . 138
3. Bulgaria 178 10. Czech Republic 132
4. Russia 177 11. Romania 128
5. laiwan 162 12. Slovakia 126
6. Iran 153 13. Australia 125
7. USA 151

Australia finished ahead of all other Comﬁ)onwealth countries, and scored its best
ever medal tally since joining the IMO in 1980. Our results were:

Gold medal: Anthony Henderson (year 12), Sydney Grammar School, NSW
Silver medals: William Hart (12), Elizabeth College, Tasmania
. Frank Calegari (12), Melbourne Church of England Grammar
School, Victoria.

Bronze medals: Rupert McCallum (12), North Sydney Boys’ High School,
NSW

William Hawkins (11), Canberra Grammar School, ACT
Simon Schwarz (12), Moriah College, NSW.

[Dr Lausch supplied copies of the questions, but-space limitations have prevented us
from printing them.]
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MATHEMATICS AND GLIDING
Gordon Hookings, University of Auckland

The sport of gliding involves Mathematics in many ways. Firstly, of course, the
designer of the aircraft uses Aerodynamics in deciding the aerofoil characteristics to
adopt, e.g. the best lift to drag ratio. (which also corresponds to the best .achievable
glide slope in calm air; see Figure 1), and the speed at which that is achieved. Then
there are structural considerations and centre of gravity calculations and many design
parameters to be fixed. An extensive course in Aerodynamics is really required to cover
these topics adequately as, of course, a glider is simply an aircraft without a motor. At
least this simplifies the vector diagram representing the glider in flight. There are

D w = weight (vertical)
g D = drag (parallel to flight path)
-W/ |a /L L = lift (perpendicular to flight path)
xx .
®  fiight sk
|
w
Figure 1

only two forces involved: the weight acting vertically downwards and the resultant
aerodynamic force, a composition of lift L and drag D. If the latter is equal and
opposite to the weight, then the motion is unaccelerated. From Figure 1, tan o = %— . A
typical number would be D/Lmax = 1:45 or, as glider pilots like to express it, L/D = 45,
which is interpreted as “for each metre you do down, you go 45 m forward”. This exercise
can be repeated for different speeds, giving a range of values for L/D.

It should be realized that the glider is generally descending relative to the local
air-mass, but if that air is rising at a greater speed than the rate of sink of the
glider, then the aircraft can soar.

Once a pilot has mastered the elementary controls, the next step is to find and
utilise rising currents of air. Most often these are caused by convection which gives
rise to what the glider pilots call “thermals”, or “chimneys” of relatively hot air.
However, air rises- mechanically as wind sweeps over hills to ‘provide “slope soaring” (also
indulged in by seagulls), and a very potent source of lift is in “lee waves”, downwind of
mountain ranges. :
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Every ghder flight is an exercise in optimisation — the pilot -tries to maximise
duration, height or speed across country. The route to be followed is adjusted according
to the pilot’s judgement as to where the strongest lift will be found. A deviation from
the shortest path is justified if, for example, the overall result is a faster speed. As
well as a choice of heading, the pilot can select the velocity through the air. As the
forward speed increases, so does the sinking speed and the curve relating these is called
the “polar” by glider pilots, which shows the combined result of repeating the analysis of
Fig. 1 for different speeds. A typical polar is shown in Figure 2.

s(v)

Oo O
o/
&
<
<
)
<

Figure 2

For each speed, e.g. Vz’ the £ V20P2 represents the angle o of Figuire 1. It is

then clear that the best achievable glide slope (minimum value for «) corresponds to the
tangent to the “polar” from O, and Po represents that point at speed Vo'

An illustration of using the polar to maximise cross-country speed on the assumption
that the general airmass is neither rising nor descending and there is mo wind is as
follows. .

Suppose the glider is flown at speed v for a time ¢ It loses height at the
sinking speed s(v) and consequently the height loss is H = s(v)t. Assuming that this
height is regained in a thermal at a rate ¢, the time taken to return to the original
level is H/c. During this combined operation the distance covered over the ground is
yt. Thus the cross-country speed is X = w/(¢t + Hfc) = v/(1 + s(v)/c) = vc/(c + s(¥)).

Note that this result may be written as X/c = v/(c + s(v)) = tan £ QCO (see
Figure 2).

To maximise the cross-country speed one differentiates with respect to v and finds
that the maximum occurs when s'(v) = [c + s(¥)]/v. A very simple interpretation of this
result is that to obtain the optimum speed to fly, one draws the tangent to the polar from
the point C on the vertical axis (where OC =¢). If P is the point of tangency its
abscissa represents the optimum speed to fly, its ordinate represents the correspondmg
sinking speed and OQ represents the optimum cross-country speed.

An interesting conclusion is that to achieve the maximum cross-country speed, the
pilot must fly faster than the best L/D speed, perhaps against intuition.

The above analysis needs modification to take account of head- or tail-winds and to
cover the cases when the air is sinking or ascending; also to allow for a dlfferem all-up
weight which means a change in wing-loading.
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If the wing loading is altered one can calculate a revised polar to sufficient
accuracy by expanding or contracting the whole polar linearly from the origin. It can be
proved that to carry out this operation, one uses a scaling factor equal to the square
root of the ratio of the new weight to the old weight as shown in Figure 3.

O v
5 >
1 .
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s(v) ¥
Figure 3

If the sailplane is to achieve a very high altitude, one needs to take into
consideration the decrease in air density and pressure. The aircraft must fly faster in
order to produce the requisite aerodynamic force. It will then also sink faster. These
effects can be shown on the polar by simply changing the coordinates of each point in the
ratio of the standard air density to the actual air density. But since the air-speed
indicator is also affected in the same way, the pilot does not need consciously to take
any action but should realise that the actual speed is greater than that indicated.

To get the best glide-ratio in relation to the .ground allowing for a head- or a tail-
wind, assuming zero vertical air motion, one treats the polar of Figure 2 as valid at all
times relative to the (sea-level) air mass. But a head- or tail-wind will slow the
airplane down or speed it up by an amount equal to the magnitude of the wind velocity.
This means the polar must be displaced as implied in Figure 4. 0‘ represents the origin

for a tailwind, v the speed and s(v) the rate of sink, as previously. 0h would be the

origin for a headwind. The pilot, though, would still fly in relation to the surrounding
air, i.e. “his” polar would be that with origin at O.
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s(v) - s(v) s(v)

Figure 4

Since the tangent analysis is still valid for these modified conditions, it can be
graphically seen that when there is a tailwind component, the speed to fly would be slower
than for no wind conditions (P‘ versus Po)’ while the opposite is true for a headwind

®,)-

In a similar way for a rising or sinking general airmass (as opposed to the rising
air in a thermal), the sailplane polar must be displaced upwards or downwards by the
appropriate amount and the best glide speeds re-determined. Figure 5 illustrates the
procedure by showing origin 0$i for the caseé of a sinking airmass and origin 0r for a

rising airmass.

s(v) ¥
Figure §

For an airmass .sinking at 1 m/s the best glide speed indicated is 120 km/h, which
gives a glide ratio only slightly better than 16:1. _ :
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On the other hand, if the airmass is rising at 0.58 my/s the tangent from O is
horizontal and indicates that at a speed of 73 km/h it is possible to have zero altitude
loss. :

It is again graphically evident that in general, if the glider is ﬂyiﬁg in sinking
air conditions, the optimum result will be achieved by flying faster than in still air

(Psi versus Po), and the opposite is true for rising air conditions (P). This also

contradicts intuition to some extent.

From these examples it is'clear that every vertical airmass movement provides a
correct speed-to-fly and these can be displayed by means of a movable ring that can be
rotated about the variometer (rate of climb or descent meter).

Instead of the geometric approach used above by means of tangents to the polar of
Figure 2, it is possible to obtain a reasonably accurate formula for the rate of sink, s,
as a quadratic function of the speed v.

Assume s(v) = @v” + bv + c. Appropriate values for a, & and c can be calculated

by inserting in the equation values of s(v), say s, s, 3, corresponding to the

“best-glide” speed, 180 km/h, and an intermediate speed.

It may be shown that these lead to

Y- (v, v,)(s,=5,) + (v;=v,)(s,-5,)

2 2 2
v](vg—vs) + v2(v3~vl)+ vs(vl—vz)

2 2
b = s, -5, - a(vz—va)

2
c = -Qay, — DvV,.
S3 3 bS

Such expressions enable on-board computers to provide answers to many of the
questions that a competitive glider pilot wishes to know, most importantly, the optimum
speed-to-fly conditions prevailing at that time.

The first person to utilise such an analysis was Dr Paul MacCready, who won a world
gliding championship and also became the designer of the man-powered aircraft that crossed
the English channel from the United Kingdom to France.

The glider pilot does not necessarily have to know or understand this analysis, which

~can be complicated much further, as more and more considerations are taken into account.

In fact, most of them don’t. However, the conclusions drawn from this mathematical/

geometric analysis are simple to understand and follow (with the aid of on-board

instruments), and without doubt determine the flying patterns and the decision-making
processes of glider pilots throughout the world.

k k Kk ¥k %
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CONTINUITY

Mark Kisin, Princeton University, U.S.A.

What do we mean by a continuous function? Most people would agree that the function
in Figure 1 is continuous, but that the function in Figure 2 is not. It seems that the
“problem” with the second function occurs at 1/2, where the function *jumps”.

What precisely do we mean by “jumps”? To answer this question look at Figure 3, and
the graph y = f{x) marked there. Suppose that f{(1/2) = 1, as shown in Figure 3. Now
imagine that the variable x approaches 1/2 from the right as shown in Figure 3. It is
clear from the diagram that f(x) will never exceed 1, while x 1is greater than! 1/2
(i.e. approaching 1/2 from. the right).

What is the situation for a continuous function?

In Figure 4, y = g(x) is shown, and g(1/2) = 1. It is clear that as x approaches
1/2 from the right, g(x) gets as close to 1 as we please. Similarly if x approaches
1/2 from the left, g(x) gets as close to 1 as we please. :

In summary, when f(x) “jumped” at 1/2, there were always f{x) values that were
not close to f{1/2), even if we restricted the x values to be as close to 1/2 as we
liked. ) : .

When g(x) was continuous (i.e. did not jump at 1/2), we could get g(x) as close
to g(1/2) as we pleased by making x sufficiently close to 1/2.

y y 4
| —
! 1
] {
i > i !
0 1 X . 0 12 1 X
Figure 1 ' * Figure 2
yhA = y=f(x)
X
b e
. :| X . E
H . 5
0 12 1 X ~

Figure 3 - Figure 4
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We use the above observations as motivation for the following definition: A function
f is continuous at x if flx) is as close to j(xo) as we like for all values of x

that are sufficiently close to X,

So if we pick any (very small) number € > 0, then flx) will always be within &
of f(xo) e (o) - f(xo)[ < g), provided that x is sufficiently close to X,

(ie. |x- xol < §, for some positive number 8). It should be noted that we may require
x to be very close to X, (ie. & may be very small) but once |x - xO] < 8, then

lf(x)-—j(xo)l < E.

Putting these €'s and &'s back into our definition, we get the following: A
function f is continuous at x if for any € >0 there is some & > 0, so that if

[x - x| <8 then |flx) - flx)] <e

Note that above we assumed that f was defined at jco, and also “around” x (ie.
in some neighbourhood of xo). In what follows we will assume that all the functions with

which we are working are defined on some sufficiently large interval (a, b) (open at
both ends), and we will be working inside this interval. The reader may take the point of
view that if we write down an expression like f(xo) or flx) or A1/2) then we are

assuming that f is defined at x, or x or 1/2 respectively.

We should have confidence that our definition will agree with our intuitive idea of a
continuous function because we have already checked that according to this definition f
(in Figure 3) is discontinuous (not continuous) at 1/2, and that g (in Figure 4) is
continuous at 1/2. (You may wish to recheck this at this stage.)

Many “everyday” functions like Z, x+ 1, sinx, &, etc. are continuous at all
points on the real number line. So far we have looked only at functions which are
continuous either everywhere or are discontinuous only at one point. Using our definition
of continuity we are now in a position to look at some “stranger” functions.

Example 1

sin(1/x) x#0
o- |

x=0

y=!

y= f(x)

1 -

y==1

Figure §
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. As x approaches 0, 1/x gets larger, and does so increasingly quickly, so as x.
approaches 0, sin(l/x) oscillates more and more frequently. So inside any interval
(-8, 8) around O there will be values of x for which Ax) = 1 and others for which
fix) = -1. This means that if we take € to be, say, 1/2, then no matter how small we
take & > O, there will always be values of x such that

i) x=0] = |x| <& bu i) |f0)-A0)] = )| =1>e

So using our definition of continuity, we see that flx) 1is not continuous at 0, even
though it does not appear to “jump” at 0

Example 2
1 [x] 21
- 12 12€ x| <1
foy= { 14 14<|x| <12
27" 27T x| <2
fl0) =0
1 1
1 _1
2 2

Figure 6

This function is continuous at O, since provided we take x sufficiently close to
0, flx) will be as close to O as we like.

To check this strictly against our definition of continuity, choose € > 0. Then
2™ <e<2™! for some positive integer n. Since from the definition of f, if
Jx - 0] = |x]| < 2™ then [fx) = A0)| = |fx)| <27, we can put & = 27, and see
that if |x - 0] < 27! = §, then |[fx) - R0} < 27" <& So f is continuous at 0,
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Example 3.

x if x is rational
fio) = ,
0 otherwise

This function is not continuous anywhere except at 0. We leave it to the reader to
check this, using the definition of continuity given above.

‘When we look at the above.three examples, we see that functions can behave in very
surprising ways, so it is not sufficient to rely just on our intuition when dealing with
notions of continuity.

%k %k k Xk ¥

LETTER TO THE EDITOR

On p. 127 of the August 1992 edition of Function there is a brief but very
interesting report on Armstrong numbers. This is an area that I have given some attention
to recently and I enclose my search for such numbers up o and including m = 1¢7.

You will see that there are 22 entries for 3 < m £ 9 (not the 26 mentioned in the
article). I wonder if I have missed some or whether the-source article in Pythagoras
included some spurious entries. C

I also wonder if Armstrong numbers are widely known or referred to. by this
designation. I recently came across a_delightful little book: The Penguin Dictionary of
Curious and Interesting Numbers by David Wells (1988). This contains several such
numbers, but there is no reference to “Armstrong”. In fact, on p. 201, A3 5 is described

as “the longest known plupérfect digital invariant in base ten”. Possibly there are other
references to Armstrong numbers but under a different title.

Order Armstrong numbers of order m

(m)

1. All 1-digit numbers

2. None .

3. 153 ; 370 ; 371 ; 407

4. 1634 ; 8208 ; 9474

5. 54 748 ; 92 727 ; 93 084

6. 548 834

7. 1741 725 ; 4210818 ; 9800817 ; 9 926 315

8. 24 678 050 ; 24678 051 ; 88 593 477

9. 146 511 208 : 472 335 975 ; 534 494 836 ; 912 985 153

10. 4 679 307 774 )
11 32164 049 650 ; 32 164 049 651 ; 40 028 394 225 ; 42 678 290 603

44 708 635 679 ; 49 388 550 606 ; 82 693 916 578 ; 94 204 591 914

12. None

13. None

14. 28 116 440 335 967

15. None

16. 4 338 281 769 391 370 ; 4 338 281 769 391 371
17. 21 897 142 587 612 075 ; 35 641 594 208 964 132

35 875 699 062 250 035

S.IB. Ayeni
12/46 Arthur St., South Yarra
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HISTORY OF MATHEMATICS

EDITOR: M.A.B. DEAKIN
“Unreasonable” Numbers

The fact that our word “ratio” (now understood as a quotient of two numbers) and our
word “reason” are linguistically related has a long history. The Latin word for “reason”
in fact is ratio and this is where we get our medemn English word “rational”, meaning
“reasonable” in everyday speech.

But in Mathematics, we use the word “rational” in a technical sense, a number being
rational if it is expressible as a fraction formed in dividing one integer by another.

This dichotomy of meaning clearly goes back to a time when the two concepts were seen
as closely related. The concepts to think (to reason, to ratiocinate) and fo count (io
measure in ratios, see below) were seen as connected. Some authorities even suggest that
this connection lies very deep indeed: pre-dating the early Indo-European language from
which Latin, Greek and (later) English have developed. The connection is very evident in
what we can piece together of the work of Pythagoras of Samos (after whom Pythagoras’
Theorem is named).

_Very little is really known of Pythagoras, but we may briefly summarise what is
thought to be fact, sifting it from myth and legend. He is believed to have lived from
about 560 B.C. to about 480 B.C., to have travelled widely in the ancient world (around
the eastern end of the Mediterranean) and to have founded a school (or perhaps more
accurately a form of religious order) in which Mathematics played a leading réle.

His followers were either akousmatikoi (pupils who had to sit in silence and listen)
or mathematikoi (learned ones who could engage in debate and discussion). The latter word
is the source of our term ‘“mathematics”.

The Mathematics studied by the Pythagoreans is believed to have included a theory of .
musical harmony. A vibrating string will produce a note (A, say) if it vibrates so many
(in -this case 440) times per second. If it vibrates at twice that speed, we get the note
(A) an octave higher, and if we vibrate the string at, in this example, 660 times per
second, we get the note E lying between the two. If A and E are sounded together,
we obtain a pleasing chord. Similarly with other proportions, provided those proportions

may be expressed as simple integer ratios' like 2:1 or 3:2 (in the example above). Thus
harmony is seen to depend on simple arithmetic ratios.

The Pythagoreans were almost certainly aware, too, of Pythagoras’ Theorem, at least
in special cases. Now if we take (say) a right-angled triangle whose short sides are each
of length 1, then the hypotenuse will have a length of vZ.

This isn’t quite how the Pythagoreans are likely to have seen the matter, however.
For us, lengths have to be expressed in terms of some sort of unit and we have standard
units like the centimeter which we use ‘when we wish to express a measurement of length.
The Pythagoreans, however, seem to have had a rather more complicated notion — according

TIn real life things are actually more complicated than this. See Function, Vol. 10,
Part 4, pp. 13-19. )
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to which one not so much measured a Single length, but rather compared lengths in pairs.
The hope was that, like the musical harmonies, the lengths could be given as a pair of
integers.

So, if, for example, we had lengths in a ratio 7:5, it meant that some unit length
could be found that went seven times exactly into the first length and five times exactly

into the second.-r In such an event, we say the two lengths are “commensurable”. That is
to say, they may both be measured with a common unit.

Now, the side of a square and its diagonal (essentially the simple right-angled
triangle outlined above) are in fact not commensurable. This is equivalent to the
statement that v2Z is irrational — i.e. not a rational number, or, in today’s terms, not
expressible in the form p/q, where p, g - are integers.

This fact was certainly known in antiquity, and was very possibly discovered by the
Pythagoreans. The first reliable account we have of the discovery comes from Aristotle
who lived from 384 B.C. to 322 B.C, i.e. some 170 years after Pythagoras. In a book we
now know as the Prior Analytics, Aristotle wrote

“ .. if the diagonal of a square is taken to be
commensurable [with the side of the square], odd numbers are
equal to even ones’.

This is thought to be a reference to a proof of the irrationality of vZ which we
write as follows in today’s notation.

Suppose VZ = p/q, and that p/q is expressed in its lowest
terms, so that p, ¢ have no common factor. Then

p=2¢ ' *
so that p"’ is an even number. It then followsTT that p
itself is even. Because p, ¢ have no common factor, g
is thus odd. But if p 1is even then p = 2n (say) and
Equation (*) now tells us that

qz =2

so that (as before with p), ¢ must be even, when we have
just found it to be odd!

Thus vZ is irrational.

There is another proof of v2’s irrationality that I personally prefer. It proceeds
as above and writes Equation (*) as

2= pz/qz_ (**)

T Quite remarkably, this ancient concept was revived by those who in the 1960’s and 1970’s
marketed the “Cuisenaire rods”, also known as “Numbers in Colour”, for use in School
Mathematics. :

ff This is an application of the theorem listed as IX.12 in Euclid’s Elements and
discussed in this column in Vol. 17, Part 3.
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We now suppose p to be decomposed into its prime factors and similarly q. Because
plq is expressed in its lowest terms, no prime on the top row of (**) can cancel one on

the bottom. Thus the integer 2 equals the fraction pz/qz, and this is. possible only if
q =1, ie. vZ is an integer, and clearly it isn’t.

"My reason for preferring this proof is that it very easily generalises. B}" the same
argument we may prove the theorem:

If m is a positive integer which is not the n-th power of

Y s irrational.

an integer then m

The other proof may also be so generalised, but most students find the path to the

generalised version a little harder. I may also prefer the second proof because it was

the one 1 first encountered (in Year 10, in Bamard & Child’s A New Algebra, first

published in 1912). Modern mathematical educators tend, however, to favour the first
proof because it makes no reference to decomposition into primes.

It has been speculated that because the Pythagoreans were interested in ratios of
integers, the discovery of irrational numbers was disturbing to them. Much has been
written on this point; some of it scholarly speculation, some of it unadulterated garbage.
The plain truth is that we know very little about who discovered irrational numbers or
when the discovery took place.

Nor is it completely clear that vZ was the irrational number involved. A case has
been made that it could have been T (or ¢, as in some notations), the Golden Ratio
given by

1= %(1 + V3).

This irrational number is related to the geometry of the regular pentagon and the star-
shaped pentagram formed from its diagonals.

An outline of a geometric proof of the irrationality of T was given in Function,
Vol. 16, Part S, pp. 135-137. This simplifies an earlier pentagonal version that could
(perhaps) have been discovered by the Pythagoreans, who showed interest in the properties
of the pentagon and the pentagram.

Later in history, much later in fact, other sources of irrational numbers also
emerged. If we consider the sequence
I\n
’ 1+ ;)
as n gets larger and larger, we find that the values tend ever closer to a number now
known as e. We find
e = 2.71828 18284 59045 ... .

¢ is the base for the system of natural logarithms that has many advantages over the
common (base 10) logarithms, once so widely taught.

It is not difficult to prove that e is irrational, although it would take up too
much space to give the details here.

e is in fact a basic constant of our number system, and so for that matter is T.
(Although readers of Function will probably have encountered 7 only in a geometric
context) T too is irrational, but the proof takes some sophistication.  In fact, no
proof was known until 1761 when the German mathematician Lambert gave one. Later (1882)
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another German, Lindemann, extended this to prove that the ancient Greek problem of

T

- “Squaring the circle” was impossible.

It was not till 1947 that an “elementary” proof of =’s irrationality was discovered.
The American mathematician Ivan Niven was able to produce a proof using only (relatively)
elementary concepts from the calculus. He rather generously acknowledged ideas from the
19th-Century French mathematician Hermite, but the proof is clearly Niven’s.

We will not present it here — although elementary, it is beyond the scope of
Function, and again it is also rather lengthy. It has been presented in various forms,
but perhaps the best is one that begins with a prior theorem. ’

If r is rational and r # 0, then cos r is irrational.
[Remember, when interpretirig this result, that r is in radians, not in degrees!]

This is the theorem whose proof we omit, but the irrationality of = follows
immediately from it, because if 7 were rational, then cos ® would be irrational; but
cos ® = ~1.

The number system has other constants also besides e and 7. Perhaps the next best
known of these is Euler’s constant (see Function, Vol. 17, Part 2, p. 37). Euler’s
constant is usually represented by the Greek letter <y and it is the limit as n gets
larger and larger of

1 1 1
+-+-+ .. +=-—In
1 3H3F ot n

where /n n is the natural (base e) logarithm of n. It is not known whether 7y is
irrational. This is one of the outstanding problems of Mathematics.

There are others too: e + T and’ er are both thought to be irrational (as is 1),
but no proof is known.

Nowadays, we build both rational and irrational numbers into a single system of “real
numbers”. Some, actually a very tiny minority, have the property that they may be
expressed as exact ratios of integers. These are “rational” and we should now think of
this only as representing this special mathematical property. To modern eyes, they are no
more “reasonable” than (say) v2 is. Probably the Pythagoreans saw things differently,
but Mathematics has progressed a long way since then.

The unsolved problem of (e.g) e+ m is a technical one in Mathematics. Its
solution would tell us whether this number is rational, not whether it was “reasonable”!

Further Reading: Much has been written on the subject, not all of it good. However, a

) very good (probably the best) general book on the History of
Mathematics is Morris Kline’s Mathematical Thought from Ancient to Modern Times. There is
a lot (more than most readers will want) about the Pythagoreans in 'W.B. Knorr’s The
Evolution of the Euclidean Elements, and the ancient discovery of irrationals is discussed
in J.N. Crossley’s The Emergence of Number. The more modern material is covered in Ivan
Niven’s [rrational Numbers. The life of Pythagoras is discussed in the Dictionary of
Scientific Biography.

T"]’hat is to say, it is not possible, by classical Euclidean ruler and compass
constructions, to form a straight line equal in length to the circumference of a given
circle.



148

COMPUTERS AND COMPUTING
EDITOR: CRISTINA VARSAVSKY
Getting The Message Through

Communication is an important aspect of our every-day life. If we look around us we
find that telephones, radios, televisions and fax machines are everywhere. . Their function
is to send messages to and from all over the world. Similarly, in the computer world,
huge amounts of information are sent from ‘the computer memory to.a disk or vice versa,
between computers in a local area network, and within worldwide networks such as Intemet.
All this talk, either between people or computers, heavily relies on the communication
channels used to transmit the information. No matter how ‘sophisticated the technology
used for transmission is, any channel is prone to error which could be introduced through
a variety of means such as hardware failure or interference. Any disturbance in the
channel can cormrupt the information being transmitted, that is, the information received
may not be what was sent.

~ This article is to give you an idea of the mathematics involved in the different
existing techniques to protect against the errors that may occur in the transmission of
information. We will not be concerned about the secrecy of the message, as in the article
“A Security Matter” (Function, April 1993). In that article we introduced cryptology; the
idea was to code a message such that only the receiver would be able to understand it, and
even if the message was intercepted by the “enemy” it would be hard, if not impossible, to
decipher it. The goal here is different: we just want fo transmit the message correctly,
there is no need to hide it from anyone. :

Coding is basically about translaiing information from one form to another. A
typical example is the set of postcodes we have to represent cities; for example, the
postcode 3000 is the numerical equivalent to the city of Melbourne. These codes may be
electronically scanned: at the distribution centres to make the whole delivery system more
efficient. Similarly we have codes for our telephone numbers which identify clusters of
switching networks. In the retail industry, black vertical lines are used to identify
products, making stock and accounting processes as well as our lives much easier. The
Morse code once used in telegraphy. is another example of translating information, using an
alphabet constructed with dots, dashes and spaces. Blind people are certainly grateful to
those who came up with the idea of coding books using the Braille code.

Coding, in the sense we will see it here, goes beyond that. It is important to
translate the information to a more convenient form, but it is also important to get the
message through. The coded information is transmitted and checked at the receiving end,
which decides whether to accept the received information or correct it. In either case
this is translated back to the original form or what the receiver (an electronic device)
“thinks” was the original form.’ :

The most used form for encoding is the binary form, where the information is
translated into strings of zeros and ones. This could-be done in many ways, depending on
the type of information; if our information is, for example, in numerical or alphabetical
form, the universal ASCII code is handy. For example, the ASCII code for the capital
letter “A” is the decimal number 65 or its equivalent binary string 1000001. So we can
match letters and symbols with strings of zeros and ones. For instance, the binary
version of the word HELLO is

10010001000101100110010011001001111
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As a message can become too long to be handled all at once, the most practical thing to do
is to take blocks of shorter strings of .a given length, say three or four bits at a time.

Assuming our information is already in binary form, the next step is to ﬁnd ways of
ensuring that each block or word is delivered correctly Let us have a look at some of
the ways this may be handled.

Repetition codes

Sometimes we use this method (especially teachers!) when we want to make sure that
the message was received correctly: we repeat it several times. This same principle is
applied in coding. In this case the message is decomposed into its individual bits, and
each of them is repeated several times, say three. Thus 1 is encoded as 111 and O
as 000. In our example, HELLO will be transmitted as

111000000111000000000111000000000111000111111000000111111000000111000000111111
000000111000000111111111111

The decoding procedure is pretty simple: take groups of three bits, decode 111 to 1
and 000 to 0. This is all nice but as we said before, errors may occur in the
transmission and each group of three bits may not entirely consist of only ones or zeros.
The receiver may get strings like 101 or 010. Since the occurrence of one error is more
likely than the occurrence of two errors, we can proceed as follows: if the received word
has more zeros than ones we decode it to 000 and if the received word has more ones than

. zeros then we assume that the transmitted word was 111.

For example, the following message was received, and we were told that a 3-repetition
code wds used:

101111001100000111

First we split the message in words of 3 bits: 101, 111, 001, 100, 000, 111. An error has
occurred in the first, third and fourth words, and the message is corrected to

111111000000000111
and decoded as 110001. If the same message had been sent and received as
1001110111000000111

we would have corrected it to
000111111000000111

and decoded as 011001, which is incorrect. This happened because in the first and third
3-bit strings two errors occurred. Our decoding system was able to detect them but not to
correct them. If three errors occur, our system would not be able to detect it because
000 with three errors becomes 111 and vice versa, a legitimate word or code word as it is
called in this field. In summary, this is a double-error-detecting and single-error-
correcting code, because it can detect at most two errors, and can correct properly only
when exactly one error occurs.

[Exercise: consider the 5-repetition code, that is, each bit is repeated 5 times. What is
the maximum number of errors that this code can detect? How many can be corrected?]
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Parity check codes

Another simple code consists in adding a check digit to the information string: 1 if
the number of ones in the string is odd and O if it is even. Therefore each code word has
an even number of ones. For example, if working with two-bit strings we encode

00 as 000
01 as 011 -
10 as 101
11 as 110

appending 1 or 0 to the original string, depending on the number of ones. Thus the set of
code words is {000, 011, 101, 110). The receiver accepts a word as correct if it belongs
to this set, or in other words, if the number of ones is even. Otherwise, if the number
of ones is odd, the receiver can be only sure that at least one error has occurred (it
might have been three). If two errors occur in the transmission it would be impossible -to
detect them with this scheme because the number of ones would be even. What about
correction? What if 111 is received? We know an error has occurred because we have an
odd ‘number of digits, but did it occur in the first, second or third digit? We cannot
say. This is then a code that cannot correct errors, although it can detect one error.

This code is used, for example, when communicating with another computer via modem.
If you have ever used a modem you may well be aware that sometimes there is noise in the
telephone line used as the transmission channel, resulting in the presence of funny
symbols in the middle of the word, which make the message a bit hard to read. In this
sort of transmission a 7-bit parity check is usually used. This means that seven of the

eight bits are information bitsT , the eighth is the parity check. When only one error
occurs the software controlling the transmission will detect it and ask for retransmission
(and consequently slow down the communication). When the line is very noisy, more than
one error can occur: if the number of errors is even the software cannot detect it and the
word (actually letter or symbol) is decoded incorrectly. :

Hamming Codes

Let us consider again repetition codes as described above. Using common sense we
notice that the more times we repeat the bits 1 or 0, the more errors can be detected.
This is because the two code words, a string of only ones and a string of only zeros,
differ one -from another in all the bits, making the “distance” between- code words the
largest. It is also true that a longer repetition code will decrease efficiency as we
have to transmit the same information several times. More complicated codes can be
constructed with better efficiency, while still having a set of code words sufficiently
widely scattered that would permit some correction, if necessary. We will illustrate one

of those, which belongs to the family of so-called Hamming codes.J‘"'L It can be used to
encode 4-bit strings into 7-bit strings, and is a l-error correcting 2-error detecting
code. The following table shows all the 4-bit sirings and their encoded versions, )

T This also explains why not all the symbols can be sent when using a 7-parity check: the
largest number that can be written with seven digits is 1111111 which corresponds to the
decimal 127. Only 127 ASCII characters can be handled in this way.

Tt Richard W. Hamming pioneered the study of error-detecting and error-correcting codes in
1950.



151

Word Code

0000 0000000
0001 0001111
0010 0010011
0100 0100110
1000 1000101
1100 1100011
1010 1010110
1001 1001010
0110 0110101
0101 0101001
0011 0011100
1110 1110000
1011 1011001
1101 1101100
0111: 0111010
1111 1111111

This code then has 16 code words, one for each 4-bit string. What if an error occurs
in the transmission? It could occur in any of the seven bits, so for each code word we
have associated seven 7-bit strings which differ from the code words in only one position.
Here is the list of the code words and their 1-bit variations. '

Word Code word Variations of code words in only one bit

0000 0000000 1000000 0100000 0010000 0001000 0000100 0000010 0000001
0001 0001111 1001111 0101111 0011111 0000111 0001011 0001101 0001110
0010 - 0010011 1010011 0110011 0000011 0011011 0010111 0010001 0010010
0100 0100110 1100110 0000110 0110110 0101110 0100010 0100100 0100111
1600 1000101 0000101 1100101 1010101 1001101 1000001 1000111 1000100
1100 1100011 0100011 1000011 1110011 1101011 1100111 1100001 1100010
1010 1010110 0010110 1110110 .1000110 1011110 1010010 1010100 1010111
1001 1001010 0001010 1101010 1011010 1000010 - 1001110 1001000 1001011
0110 0110101 1110101 0010101 0100101 0111101 0110001 0110111 0110100
0101 0101001 - 1101001 0001001 0111001 0100001 0101101 0101011 0101000
0011 0011100 1011100 0111100 0001100 0010100 00110600 0011110 0011101
1110 1110000 0110000 1010000 1100000 1111000 1110100 1110010 1110001
1011 1011000 0011000 1111000 1001000 1010000 1011100 1011010 1011001
1101 1101101 0101101 1001101 1111101 1100101 1101001 1101111 1101100
0111 0111010 1111010 0011010 0101010 0110010 0111110 0111000 0111011
1111 1111111 0111111 1011111 1101111 1110111 1111011 1111101 1111110

Table 1

We obtained 128 7-bit strings. Are they all distinct? Believe me, they are! So by
changing only one bit in each code word, we generated all possible 7-bit words. Then we
can use the above table for decoding and correcting if at most one error occurs. Take for
example the case where the word 1010000 is received. This is not a code word, but since
1010000 is in the same row as the code word 1110000 (fifth from bottom), we decide that
one error occurred in the second bit and we decode it as 1110.

You may be wondering how that magic set of code words generated all 7-bit strings, or
why we chose those code words in the first place. You may also question the efficiency of
this code, as each received word has to be found in the table, and that may take a fair
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bit of time. Although the theory behind this code is a bit complicated, a few things can
be pointed out here.

Firstly, there is no need to have the code words listed. They are actually obtained
through the following matrix H.

) 0

_ 0
H= 1
0

OO0

0
1
1
1

—_— O

0 1
1 1
0 0
0 1

OOC)»—‘

To encode, for instance, the word 0011, we consider that word as a 1x4 matrix and
multiply it by H using the following addition rules’

1+1=0
0+1=1
1+0=1
0+0=0

In short, the sum of an even number of ones is 0, and the sum of an odd number of ones is
1. Now, multiplication of a 1x4 matrix by a 4x7 matrix will give a 1x7 matrix. [0011]xH
is obtained by multiplying the word 0011 by each row of A, bit by bit:

Ist bit = Ox1 + Ox0 + 1x0 + 1x0 =0

2nd bit = Ox0 + Ox1 + 1x0 + I1x0 = 0
3rd bit = Ox0 + Ox0 + Ix1 + IxX0 =1
4th bit = Ox0 + Ox0.+ 1x0 + Ix1 =1
5th bit = Ox1 + Ox1 + 1x0 + Ixl = 1
6th bit = Ox0 + Ox1 + Ix1 + Ix1 =0
7th bit = Ox1 + Ox0 + Ix1 + Ix1 =0

In conclusion, the process of encoding a 4-bit word consists simply in multiplying that
word by H.

Secondly, decoding is also done through a matrix which is related to H. Observe
that the first four columns of H for the 4x4 identity matrix with ones on the diagonal
and zeros elsewhere. Crossing out that identity matrix, we are left with

101
110
011
111

which we augment in the vertical sense with a 3x3 identity matrix, obtaining

TThis is addition modulo 2 as described in the previous article " titled ‘“Modular
Arithmetic keeps the Numbers Small” (Function, February 1993).
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101
110
011
G=|111
100
010
001

Observe first that if we multiply any code word by G we obtain [000]. Try, for
example, with 0001111:

0x1+0x1+0x0+1x1+1x1+1x0+1x0=0..

You can check the rest. It is also true, but we will not show it here, that all the wor&s
that result in 000 when multiplying by G are code words.

Decoding is done as follows: multiply the received word by G, if the product gives
_ [000] then the received word is a code word and we accept it. If it does not, an error
has occurred and we need to find out in what position. Let us call the received word B.
Since B is not a code word, B X G does not result in [000]. If one error occurred in
the transmission, B differs in one bit with the transmitted word A we are trymg to get
back. Then we can write

A=B+C

where C ' is the error. Now C has a single 1 and the rest of the bits are 0. Then
using the distributive law for matrix multiplication, we have

AXG=B+CxG=BxG+CxG.

Since A isa code word, A X G = 0, and then B x G = — C X G. Remember that we are
working with a particular arithmetic where 1 + 1 = 0; consequently 1 = —1. Hence
BxG=CxG.

Therefore C is a word with a single 1 such that when multiplying G gives the same
result as B X G. Now, there are not many words with a single 1, we can multiply G with
each of thém and see which is the one with that characteristic.
Say, for example, that the word 0000011 was received. Multiply [0000011] and G-
[0000011] x G = [011].

Since the product is not [000], we need to find C. Let us set the table for all possible
Cs:

C CxG
0000001 001
0000010 010
0000100 100
0001000 111
0010000 011
0100000 110
1000000 101

Table 2
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You must have observed that the pattern is pretty simple: as a single 1 is present,
each multiplication by C gives the row corresponding to the position of 1. Now, 011
comes from 0010000, therefore we decode 0000011 as 0000011 + 0010000 = 0010011 which
corresponds to 0010.

[Exercise: Pick up any other word in Table 1, and decode it using this procedure]
What if we receive the word 1001111? Performing the product
[1001111] x G = [101]

we see that 1001111 is not a code word, but neither is 101 listed in the second column in
Table 2. This means that more than one error occurred in the transmission. Trying out
with the different 7-bit strings with two ones in it we find that [0110000] x G = [101],
and also [0001010] x G = [101]. This indicates that the error might have occurred in the
second and third bits as well as in the fourth and sixth bits, but we cannot decide with
certainty. Therefore this Hamming code is capable of correcting a word when only one
error occurred, but if two errors occurred they will be detected but not corrected.

Different matrices with different dimensions will generate new codes. In any case,
there is no need to construct a table like Table 1, coding and decoding will only involve
multiplications by the appropriate matrices.

Coding theory is an interesting area with an increasing range of applications, and it
is still in the making. Its foundation is given by algebraic structures that are beyond
the level of this magazine, but I hope this simple introduction gives you at least some
understanding of the existing techniques to get the message through.

PROBLEMS AND SOLUTIONS

NOTE ON PROBLEMS 14.4.7, 14.4:8, 14.4.9

These three problems came from the “very hard” section of the Kiirschdk competition
(Budapest). We subsequently published a fourth problem from the same source (Problem
15.3.1) and this was solved. - So, although no solutions are yet to hand, we live in hope
that some may be forthcoming.

SOLUTION TO PROBLEMS 15.1.1 and 15.1.2

We. begin with 15.1.2 which asked in how many ways may four distinct integers a, b,
¢, d be chosen from the set (1,2, .., n} (where n is even) in such a way that
a+ ¢ =b + d. Hans Lausch sent us the following solution.

Without loss of generality, let a < b < d < c¢. For each pair a, ¢ the number of
quadruples depends only on ¢ - a.

c-a # pairs (c, ¢) # quadruples for each pair (g, ¢)
1 n-1 0
2 n-2 0
3 n-3 1
4 n-4 1
n-3 3 (/2) - 2
n-2 2 nf2) - 2
n-1 1 (n/2) - 1




Hence the total number of quadruples is given by
Qn-71+@n-112+ .. + 5[’2’-2] + [g_ 1]

2~2
Z(Zn—3—4z)1+ [2—1]

l_

H

22 22

e - 3)1)511 —4 ):11 + [2 - 1]

1t
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=(2,1_3)E;(;;1)_%["—2][€g—1}(n—3)+ [%—1]

(using standard summation formulae)

= 2221320 = 3)(n - 4) - 4(n - A)(n - 3) + 12)

= 222}3(2,1 - 5n)

_nn-2)2n - 5)
= S

Problem 15.1.1 began with the set (1, ?. ., n} asin 15. 1.2 and asked in how many
ways four numbers could be chosen from this set in such a way as to form a rectangle in

which a circle may be inscribed. See Figure 1.

We have AE = AH, etc. Let a= DA,
b = AB,c = BC and d = CD. Then readily we
show that

a+c=b+d-
and so the probiem is the same as the previous
one if n is even.
If n is odd then n -1 is even. We
thus have already '2711("_1)("_3) ways (found

by replacing n by »n-~1 in the answer to the

previous problem. The last choice, n, adds

new ways, and following the details of the

previous problem, we begin with the knowledge
. that for these extra ways ¢ = n.

We thus want triples (a, b, d) such

that Figure 1

a<b<d<n,

- and counting as in the previous problem (we omit the details) we find
such new ways. After some algebra, we find a total of

o = 1(n - 3)
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Ei[n(n—2)(2n—5) - 3]

ways.

This is equivalent to the answer required. [We note and belatedly apologise for a
minor misprint in the answer we quoted for Problem 15.1.2.]

SOLUTION TO PROBLEM 15.2.2 (sent in by Keith Anker, Monash University).

Consult Figure 2. AD, BE and CF are
the angle bisectors of A ABC, with D lying
on BC, etc. We want to find all triangles
ABC for which DF bisects £ BFC and to say
what the angles of the triangle are if (also)
£ AFC = 2/£ BAC.

Let AF=c, FB=c, BD=a, et.
around the triangle. Write CF =f Now

apply the sine rule to ABCF. Figure 2
C - C
f _sin B _sin B.Zcos?=2smB cos —
2 sing sin—f- 2 cos g sin €

which by the sine rule (for A ABC) is (2b cos S)e.
Also, since CF bisects Z.ACB, cz/cl = agf/b. This means that

02/0 = af(a + b).

But now
f—f .E.C_Zbcosg— a .C~2ab cosg
Tc¢, ¢ TI° c atb 1~ " a¥b ’
Thus
C _ fla+b)
€S T ="7ap -
Now apply the cosine rule to A ABC :
2,.,2 2
_a+b’—c
cos C = i
But also
cosC:Zcosz—C-—l.'

2

We thus find
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£2(ab)? _a+b’ct
2a2p? T 2ab

which simplifies to
f 2 = dabs(s—)/(a+b)’, : 6

where s = %(a + b + o).

If now we assume that FD bisects £ BFC, then we also have

from which
ac _ ab
‘a+b T a¥b - ) @

Wé now have in Equations (1), (2), two different formulae for f. Equating them, we
find (after some algebra) that
F=ad +ab+ B
By'thc'cosine rule, this gives C = 120°.

Another way to specify the triangle (though the details are omnted) is to show that
in this case FE bisects £ AFC.

To solve the second part is relanvely easy once we know the angle C. We find that
under the additional hypothesis A = 20°, B = 40°,
SOLUTION TO PROBLEM 15.4.3 (from Ken Evans, Dromana).

How many triangles are there in Figure 3
(at right)?

Begin with the largest and end with the
smallest and thus see that the number is

1+2+3+.‘.+8=36.

Figure 3
SOLUTION TO PROBLEM 15.4.4 (also from Ken Evans).

The problem read:
You do not know how many there are.
Putting groups of three together, two are left;
Five and five together, three are left;
Grouping seven and seven, two are left again.
Tell how many there are.
To solve the problem, let x be the number of objects.
Then : :
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x=3m+2 ’ 1)
x=5n+73 2)
x=Tp+2 3)

for some natural numbers m, n, p.

Now from Equations (1), (2)
3n+2=5n+3
so 3m-5n=1.

This is an example of a so-called Diophantine equation and it is known that if a, b
are relatively prime, the Diophantine Equation am + bn =1 has the general solution
m=M~bt,n =N + at for integral r and M, N some particular solution.

» Our equation has the obvious solution m =2, n = 1, so in general
m=2+5n=14+3
where ¢ is a non-negative integer (as m > 0, n > 0).
Similarly, from Equation (2), (3)
n=4+Tu, p=3+5u
for a non-negative integer u.

Now
n=1+3=4+"7Tu

and so another Diophantine equation results. This has the solution
t=8+Tv, u=3+3v (z2-1

for some integer v. We may now put p in terms of v and so determine x. We find

x = 128 + 105v.
So we have, if v = -1, x =23
ifv=0x=128
ifv=1, = 233, etc.

SOLUTION TO PROBLEM 15.4.6 (also from Ken Evans).
The problem asked for those odd positive integers n which are such that

fo) = o) = X" = 1
and hx) = @+D)™' = X!
have common zeros which include the roots of x> + x + 1 = 0.

These roots are %(—1 + i¥3), where 2 = 1, and since (x—l)(x2+x+1) =x_1 they
both satisfy the equation =1
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The roots of x* —x+1=0 similarly satisfy 2=~
Now every positive integer n may be expressed as either n = 3m, n = 3m+l or

n = 3m+2, where m is a non-negative integer. As we are told that n is odd, we need
only consider the cases:

n=3m where m is odd - ()]
n=3m+1 " where m is even )
and n=3m+ 2 where m is odd. (3

In Case (1), f{%(—l + zvz)] S (D" - ()" = 1=-3 #0.

In Case (2), f[%(-l + zvz)] =l Lz -1=o0

In Case (3), f[%(—l + iv/3)] =-laswh-lazmd-1=o
We thus reject Case (1).

In Case (2), h[%(—l + M«I)]'

Ht-1"=0.

fl

In Case (3), h|i-1+ i3 =-20 £#3) - 1a xw3) = 0.
2 2 2

Thus only Case (2) remains and

n=3m+1=32p)+ 1 (say) =6p + L.

SOLUTION TO PROBLEM 15.4.7 (also from Ken Evans).
We are to prove that the polynomial

[ = F'sin @ — x sin(nor) + sin[(n=1)o)

is exactly divisible by
h(x) = * - 2x cos a + 1
where o is real and n an integer greater than 1.
For cos o + i sin o, write cis . Then
h(x) = (x - cis o)(x — cis(—0)).

But fn (cis o) = 0 by the use of de Moivre’s theorem

(cis d)“ = cis(no)

and so by the Remainder Theorem x — cis o divides j: (x). Similarly x — cis(—a)
divides J(x) and so the result is proved.
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