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About Function

(reprinted from Volume 15, Part 1)'

Towards the end of 1976, Professor G.B. Preston called a mee~ing at the Monash
University department of Mathematics. He explained to those who attended that Victoria
had reached a situation of having. no journal of school mathematics, written fQr school
students and giving access to .good quality exposition of high-calibre mathematical
material. Such journals, he said, were the nonn both iri the U.K. and in many countries of
continental Europe; indeed, other Australian states had them. By contrast, the Victorian
journals that 'once might have played this role had instead turned to other things. He saw
~ need for a specialist journal in this area.

Thus Function was born. Its name was one of many supplied to Professor Preston from
a variety of people enthused by the idea of such a journal. The "supplier" in this
instance was the late Dr. Len Grant, then in the Monash department of Philosophy.
Professor Preston singled out this suggestion in preference to all the. others because, as
he said, "I can think of no idea more central to the whole endeavour of Mathematics".
Thus Function was christened.

Over the years since then, Function has continued to fulfil the aims laid down by
that frrst meeting. The founder editor was Professor Preston himself and he remained
active on the editorial board throughout the 14 years that followed - jointly editing
Volume 14, Part 5 with Dr. Rod Worley.

His retirement at the end of 1990 thus sees the end of an era, but Function itself
continues and remains dedic·ated to the same ideals as those listed by Professor Preston
back in 1976. Essentially these are:

(a) valid and interesting mathematics
(b) high-qualityexposition
(c) access to all.

In pursuit of the third of these aims, Function has always tried to encourage Mathematics
among girls.

The need for an organ like Function has recently been significantly increased by the
introduction of ·the newVCE, covering precisely the years (11 and 12) which Function is
designed to serve.

Late in 1990,· the Mathematical Association of Victoria printed a compilation of some
of its most useful arti·;les under the 'title Composite Function (see p.14). The articles
reproduced there were chosen for their especial suitability for student projects. Each
year, Function publishes more articles, problems, news-items (even cartoons) in the same
vein. Recent issues have discussed symmetries in physics, fractals, supercircles, multi­
dimensional chess, planetary paths and Mathematics for girls.

We hope 'teachers and students alike will continue to use' Function, that it fmds its
way into more and more school-libraries and that, in particular, students and teachers
write for it. . Function can be a very good place to send that good project for wider
circulation and appreciation, or to ask about that question thaCs always bugged you; and
so on.

For details on whom to contact and how to go about it, see the inside front and back
covers.

Michael A.B. Deakin
Chief Editor
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THE FRONT COVER

Michael A.B. Deakin, Monash University

The front cover is an artist's impression of Hypatia of Alexandria (see pp. 17-22).
Hypatia was the fIrst woman currently accepted ·as a mathematician and she .lived in the
late 4th and early 5th centuries of our era.' The picture has no claim to be a portrait;
it was drawn by an artist named Gasparo to illustrate a fictionalised account of Hypatia
in a 1908 reader called Little Journeys to the Homes of Great Teachers.

It has become the accepted picture of Hypatia (just as, ~or example, we have an
"accepted picture" of Jesus of Nazareth, which is equally inauthentic) but we have no idea
of how she really looked. Below is a 19th-century "portrait" of Hypatia by an anonymous
artist. We have come to prefer Gasparo's version.

* * * * *
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SQUARE ROOTS OF MATRICES

J.B. Miller, Monash University

When x and a are numbers, to say that x is' a square root of a means that

x2 = a. As we know, every posi~ive number a has t~o square roots, usually written va
and -w. By convention, va denotes the positive square root.

The equation

(1)

can also be considered as an equation between two matrices X and A (the matrices have
to be square and of the same dimension). The equation is meaningful because there is a

well defmed way of multiplying two matrices, and hence a clear me~ing for X2
• When (1)

holds we say that matrix X is a square root of matrix A. It is not so easy to
formulate a convention that picks out one of all possible square roots to call VA; so we
avoid the use of the sign ,; for the. time being.

The subject is quite old; one: of' the early workers on matrix theory, Arthur Cayley,
published work on the square roots of 2 x 2 and 3 x 3 matrices in 1858, and there has
now accumulated a sizeable literature on the general theory, with applications in
numerical -analysis and statistics. It is by no . means so straightforward. as the theory of
square roots of numbers. Peculiar things happen. Although square roots come in pairs (if

X is a square root of . A then so is ~ X, since (_X)2 =X2), the number of square roots
which a matrix' may have is difficult .to predict. I shall try to illustrate this by some
examples, using 2 x 2 matrices.

. Suppose that A i~ given, we write

A=(a b.) X = (x y).dc' w z '

and we want to fmd all matrices· X satisfying (1). Sincet .-

we need to solve for x, y, = and w "the equations

x
2 + yw= a,

y(x+:) =b,
2

Z + yw =c,

w(x+z) =d.

(2)

(3)

(4)

(5)

(6)

(7)

t Matrix multiplication is defmed by multiplying the rows in the left-hand matrix by the
columns of the right-hand one, for example the i-th row by the j-th colunm gives the
elen1ent in the i-th row and j-th column of the product matrix.



5

Here we have four equations which. are quadratic in four· unknowns. Rather than try to
solve them in the general case, consider some particular cases.

1. Let A = (6 ~ ), c being some non-negative real number.

We put a =b =1, d = 0 in (4) - (7). From. (7), either }i,I =0 or x + ==O. By (5),

x + z = 0 is impossible, so ~1 =O. Then (4} and (6) give x =±1, Z '= ±Ie, and
(5) giv~s y = l/(x:-z). 1'bis shows that there are four square roots of this matrix,
namely

± [ 1I+~]' ± [ 1 I_~]'
O"rc 0 -vc

(8)

unless, by chance c =0 or 1, in which cases there are only two.

To show dependence upon c, rename A as A(e). As c approaches 0 (c ~ 0), two
of the four roots coalesce; as e -7 1, two (a different two) of the roots become
meaningless.

Question: What are the roots of A(O)· and A(l)? When does A(e) have an inverse
matrix? '

(Try solv~g (4) - (7) forhas no square roots at all.(g 6]2. The matrix

this A.)

3. The unit matrix I = (6 ?) has infinitely many square roots, namely all

matrices of the form

[

. X 2 Y]
I-x-- -xy

(with )':;e 0 but x and )' otherWise arbi~~), together with

± (~ _?] and ±l (where w is arbitrary).

Q: What square ropts has t.~e zero matrix O?

- (0 b] .4. ·A = dO' WIth bd.:;e O. Careful examination or' all possible solutions of

(4) - (7) in this case leads to the following cenclusions: no real square root
exists unless bd < 0; and if bd < 0 then there. are the four solutions

X =.[~ 1], where e is either of the two fourth roots of -~.

So when bd < 0 there are 2 square roots of A.

Incidentally, (_? 6] (the case b = I,d =-I) is itself a square root of -1.

This should immediately put us in mind of the complex imaginaI)' number i.
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Q: What are the other real square roots of -I?

A square matrix in which all the elements below the main diagonal (the one from ~e
top left corner to the bottom right comer) are zero is called upper-triangular. For
example, A and X in 1 are upper-triangular.

Upper-triangular matrices are easier to handle in the present context than others.
In 3, the unit matrix (which is upper~triangular) has infmitely many upper-triangular
roots. Let us pose the question: How· many upper-triangular roots does a 2 x 2
upper-triangular matrix have, in general? The fonn of A in this case is as in (2) .with
d =Ot and we look for solutions X in which w =O. The equations (4) - (7) are now
quite simple· to handle, though care is needed in enumerating the various cases. If we
restrict attention to real A and real roots, the reader will be able to show that the

. answer is: A has either 4 distinct square roots, or ·2, or none, or an infmity of square
roots.

We all know that for any two real numbers x and y, necessarily xy =yx; this fact
is so engrained in our use of numbers that it ~omes as something of a shock to learn that
matrix multiplication is not commutative in this way: it is possible, indeed. often. true~

for two square matrices X ·and Y of the same dimension, that XY ':# YX. So .we should
ask about commutativity properties of roots.

It is easily seen that if A has square roots, they all commute with A. (If

A· = X2
, then AX =X2X = (XX)X =X(XX) (associative law) = XX2 =XA. But the roots need

110t commute among themselves.. In 3. above it is easy to fmd a pair of upper-triangular
roots of I which do not commute, so even upper-triangular matrices do not escape this
compilation. .

A last remark: we have assumed almost throughout that all elements of our matrices
are real numbers; if we allow complex elements, there are some modifications to the
theory. An early theorem, due to G. Frobenius (1896), says that for matrices with complex
elements, every matrix which has an inverse also has a square root.

Here are some projects about square roots.

Project 1. Find all possible. real solutions of (4) - (7), without. restriction on the real
numbers a, b, c, d.

Project 2. Show that any re·al n x n upper-triangular matrix A, whose diagonal elements

are all distinct and positive, has exactly· 2° upper-triangular square roots,
all real. (It is also true that !hese are all the matrix square roots of .A, it
has no non-triangular roots; moreover, the roots all commute among themselves;
but these facts are harder to' prove.) (You can get a grasp on the case for
general n by trying flfst the cases n = 2, n =3.)

Project. 3. Show that the 3 x 3. upper-triangular matrix

[
0 10]

G = 0 0 0
0'0 0 c

has an infinity of square roots, but none of them is upper-triangular.
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Project 4. For real pOSItIVe numbers a and b we always nave v'(ab) =v'a.v'b.
Investigate the validity or failure of the equation

v(AB) =v'A:IB

for pairs of upper-triangular matrices A and B of the same' dimension, say 2
or 3. Here it is necessary to interpret the root signs appropriately, in each
case.

Project S. Let A be any matrix of the type described in Project 2. Let U(A) denote
the set of all the upper-triangular roots of the unit matrix I which commute
with A. Show how all the upper-triangular roots of A can be generated' using
just one of them, and the set U(A).

Project 6. Investigate the solutions X of the quadratic equation

X
2 + BX + XB + C =0, .

where X, B and C are 2 x 2 upper-triangular matrices, B and C being
assumed given.

* * * * *

HANDLING POLYNOMIALS WITH A

COMPUTER ALGEBRA SYSTEM
t

Cristina Varsavsky, Monash University

As was already explained in a previous edition (October '91), computer algebra
systems deal with the manipulation of symbolic and algebraic expressions. These systems
are continuously. increasing in efficienc.y and capability.

Since'".fuany·· geometrical andengiheenrtg'prohlems .. ate"· defrned· ··bYPolynonuals,
polynomial operations enjoy intense research. The aim is to develop efficient algorithms
for polynomial greatest common divisors, polynomial factorization, polynomial root
isolation etc.

Although many algorithms already existed to perform these calculations, some of them
are extremely 'costly' or 'time consuming'and are less suitable for computer algebra
than are others. The purpose of this article is to present some of the various algorithms.

Let us start with the formal definition: a polynomial is an expression of the form

p(x) =C xn + C xn
-
1 + ... + C x + C

n n-l 1 0
(1)

where c
j

' 1 $ i ~ n, are the coefficients and n is the degree 'of p(x). The fOUf

basic operations, addition, subtraction, multiplication and division can be performed with
polynomials.

t Our regular computer section is temporarily suspended as Dr R.T. Worley is on leave.
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We will deal with rational coefficients which can be simplified to integer
coefficients, because we can .always multiply the polynomial by an integer in order to
eliminate the denominators.

A fIrst simple example of improving efficiency is evaluating a polynomial p(x) at a
given. point x = Ct. The ..most straightforward way to achieve this is to· replac~ x by ex
in (1). and evaluate each tenn separately. However, this is not the most efficient way;
the Ruffmi-Homer algorithm 'achieves the same result with less calculations using the
following nested form (try to prove it!):

( p(a.) =Co + a.(c
1

+ a(c2 + ... +a(c
n
•1 + (X.Cn) ...») ..

For example; in p(x) = x3
- 3x

2 + 2x +'1 evaluation at x =3 is given by

p(3) = 1 + 3(2 + 3(-3 + 3xl) =7

and we perfonned only three sums and three multiplications while the 'naive' method would
have, taken seven multiplications and three additions. It can easily be shown that in the
general situation of a polynomial of degree nthe number of basic opeiations involved is

2n when using the Ruffini·Homer method and (n2 + 5n + 2)/2 for the ,'naive' method.

The greatest common divisor

One of the most important operations on polyno~als is the greatest common divisor of
two polynomials p(x) ·and q(x) , that is, determining a polynomial with the highest
degree that divides both p(x) and q(x). We can fmd'a greatest" common divisor (g.c.d.)
of p(x) and q(i) with the help of the polynomial remai~er sequence. This process
(Euclidean algorithm for polynomials) is essentially the same as for the g.c.d. of two
integers. Assuming that degree(q(x» < degree(p(x», we' frrst divide p(x) by q(x)
obtaining the fIrst remainder r/x):

p(x) =q(x) .h (x) + r (x) and deg(r (x» < deg(q(x» .
. 1 1 1.

The common divisors of p(x) and q(x) are the same as the common divisors of q(x) and
'1 (X), because -from ,the above expression 'we can see that any divisor of p(x) and q(x)

is also a. divisor of rl(x), and any divisor of r1(x) and q(x) , is a divisor of p(x).

Then
g.c.d.[p(x), q(x)] =g.c.d.[q(x), '1(x)].

We can repeat this process with q(x) and r 1(x):

and consequently

g.c.d.[q(x), r
1
(x)] =g.c.d.[r

1
(x), r/x»).

We continue until we get a zero remainder. The last non-zero remainder is a
g.c.d.[p(x), q(x»).
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For example, applying the .logarithm to

'.p(x) =X
3 -+ X

2
- x-I and q(x) == 2x2 +' 5x + 3

we get the following sequence

x3 + x2 _ x-I =(2x2 + Sx + 3)(.!.x _.~) + (~x + ~)
. . 2 -4 4 4

2x2 + 'Sx + 3 = (~x + ~)(!x + E) + o.
, . 4 4 5 S

Therefore a g.c.d.fp(x), q(x») is ~x·+~.
4 4

Computing a g.c.d~ with, the Euclidean· algorithm can be 'quite complicated; the
coefficients of the remainder sequence can become very large and thus slow down
computations. To convince y~u,. just take fo~ ~xample a

. 10:2 6 4 2 9 21]g.c.d. [x - 2x. + 1, 3x '.+ 5x - 4x . - x + .

The 5th remainder is

'. 262847382927650270734426443 221347727491527013308134715
rs(x) =2258228692717422;>1131603344 - 22S822869271742251131603344x.

New algorithms had to be developed to avoid or at least simplify these polynomial
sequences. One of 'the o~tcomes of the research done on ,this matter is the introduction of
so-called sequences of subresuliant polynomials which reduce. the growth of the
coefficients in the remainder sequences. It is interestirig' to mention that this
development was based on a paper written in 1853 and buried soon after.

Squarefree fact,orization

A polynomial p(x) i's called square/ree if there is no polynomial 'q(x) such that

q2(X) divides p(x). The simplest way to see whether a polynomial is squarefree is

completely factorizing it by finding the roots. For example, the roots of

p(x) = xo4 + 3.? ..... 3i? - l1x.- 6 are 2, -3, and -1 (double). Then p(x) can be
factorized as follows

, 2
p(~) = (x ,'-. 2)(x + 3)(x +. 1)

and it follows that p(x) is not squarefree because the double root -1 implies the
multiple factor . (x + 1).

The squarefree factorization is obtained by multiplying the lLrlear factors with the
same power. In our example,. we multiply the two factors with. power 1, (x - 2) and
(x + 3), and the squarefree fac.torization is

p(x) = (x + 1)2(x2 + X - 6)

being x + 1 and x~ + x -6 .the squarefree fac,tors of p(x):

. The decomposition in squarefree factors has many uses in mathematics. Among others,
its application~ are the decomposition inpanial fractions and .integration of rational
function's. ' '



10

The 4naive' method of fmding the roots to get the squarefree. factors will work only
for degrees two, three and four, because as you know, it is impossiple to solve in general
polynomial equations of degree greater than' four. Fortunately it is possible to compute
the squarefree factors withoyt calculating the roots but using differentiation, "g.c.d.
calculations and division. H~re is a brief description of the algorithm.

Although we do not know how to fmd t~e roots, we know that they exist and that any
polynomial p(x) can be factorized into a product of line~ factors as follows (we assume
that the le~ding 'coefficient is 1):

m m m
1 2' k

p(x) = (x - b) (x - b) . ... (x - bk)

where the b
i
' :are the roots and m

i
the corresponding multiplicities.

The derivative of p is obtained by applying the product rule

m-l m m
p'(x) = m (x - b) 1 (x _ b) 2 ... (x _ b) k

1 1 2 lc

m . m-1
( b) l(X _ b) 2+ m2 X-I 2

+ .

m m m-l
12k+ m (x - b)' (x - b ) ... (x - b

k
) •lc 1 .. 2

You can verify this for two or three factors. What this expression tells us· is . that the
·derivative of p(x) consists of as many terms as there are roots of per) and in each of
those terms we have the same factors as in p(x) all to the same power except one whose
power· is one less. Then we derive

m -1 m -1 mk-l
r(x) =g.c.d.fp(x), p'(x)] =(x -b) 1 (x - b) 2 ... (x - b

lc
)

, 1 _

That is, the g.c.d. of p(x) and p'(x) has the same linear factors of p(x) but their
powers are reduced by one. Consequently, by dividing p(x) and r(x) we get rid of the
multiplicity of the linear factors

( ) m -1 m :r-1 m -1
t(x) =~ = (x - b/ 1 (x - b

2
) 2 ... (x _ b

lc
) k

Then

v(x) =g.c.d.[t(x), r(x)]

will have the same factors of p(x) w~th power equal to or greater than two. Hence

u(x) =~ will give us the product of factors of p(x) with power one. Repeating this
V,Xj

process with rex) instead of p(x) we can get the product bfall linear factors of
p(x) of multiplicity two. Similarly for factors of multiplicity three, and so on.
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Let us apply this algorithm to our example p(x) =x
4 + 3x3

- 3x2
- 11x - 6.

p'(x) =4x
3 + 9x

2
- 6.t - 11

r(x) .= g.c.d.[p(x), p'(x)] =x + 1

t(x) = x3 + 2x2
- 5x - 6

v(x) =g.c.d.[t(x), r(x)] = x + 1

u(x) =x
2 + X - 6

and x2 + x - 6 is the squarefree factor of p(x) with expOnent one. To compute the
product of linear factors of p(x) with power two we follow the same process but with
r(x) instead of p(x):

r(x) =g.c.d.[x + 1, 1] =1

t(x) =X + 1

v(x) = 1

u(x) =x + 1.

which indicates that (x + 1)2 is also a factor of p(x). Since r(x) is already a
constant the process concludes here giving the squarefree decomposition

p(x) = (x2 + X - 6)(x + 1)2..

Real roots

Solving polynomial equations is a problem that has moved many mathematicians for
centuries. They succeeded in solving by radicals the general equations of the second,
third and fourth degree. They demonstrated the impossibility of solving "algebraically"
equations of degree five or more..

After that discovery the problem of finding real roots of a· polynomial was split into
two simpler ones: fITst to isolate the real roots and then to approximate to any desired
degree of accuracy.

Isolation is the process of finding disjoint intervals such that. each contains
exactly one root· and every root is contained in some interval. This problem has been
studied by many famous mathematicians like Descartes and· Fourier and ·intense research is
being done by computer algebraists since the ·birth of the subject.

In order to isolate the roots we frrst need to know their number. We can suppose
that the polynomial p(x) does not have, multiple roots, because as we proved in the
previous· section, the multiplicity can be rembved when dividing p(x) by
g.c.d.fp(x), p'(x»).· CardaJilo and Descanes observed that by just looking at the nUITlber of
sign variations in the sequence of coefficients of p(x), we can get an upper bound for
the number of positive roots. More precisely, i~ V is the nUrr)ber of sign variations in
the sequence c

n
' c

n
_
I
' ... , c

1
' co' and p is the numbe! of .positive roots of p(x)

then
v = p .+ 2m where m is a positive integer.

For example, consider the polynomial p(x) = x
4 + x

3
- x

2 + X - 2. The sequence of
coefficients is [1, 1, -1, 1, -2). Since the sign changes three times we conclude that
p(x) either has three positive roots or it has one. \Ve can use the same. result for
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negative roots by just changing x by -x. .In this case

pC-x) = (_X)4 + (_X)3 _ (_X)2 + (-x) _ 2 =X
4

_ X
3 ~ X

2 - X - 2.

Then the sequence is [1, -1, -1, -1, -2] with only one·sign variation. That means that
ther~ is exactly. one negative root. Consequently p(x) has either one positive, one
negative, ~d two complex roots or one negative and three positive roots. This must be
detennined by further investigation.

. We can obtain the exact number of roots within a given interval by using the Sturm
sequence associated with the polynomial p(x) and dermed as follows:

po(X) =p(x)

P
I
(.>:) =p'(x)

and for i =2, 3, ...:

Pi(X) ::: - remainder in the division of Pi-2(x) by P~_l(X)

which· is very similar to the one we use to calculate a g.c.d.. ; How do we use this
sequence to get the nurriber of roots in the interva.1 (a, b)? Very simple: substitute a
and b into the Srurm sequence and count the sign variations in each of the resUlting
sequences. If we call those numbers Yea) and· V(b),. then the exact number of roots of
p(x) in (a, b) is given by Yea) - V(b). .

Let us apply this algorithm to the polynomial we used before. The corresponding
Sturm sequence is

If we want to know the~num.ber of. roots in. the interval (-3, 3), we evalijate the
Sturm seque.nce at x =-3 and at x =3 and we obtain

[40, ~74, ~, li~i, - Z~~~5]. and [100, 130, ~, ~. _ ~5]

wl)er~ the number of sign variations are three a~d·one respectively and we conclude that
p(x) .has exactly 2 rOOlS· in the interval (-3, 3). But wecannoJ yet say that p(x) has
ex~ctly 2 real rapts, because ·wedo· .not know whether all the roots are within that
interval. Fortunately\ there are some results to bound the roots of a polynomial. One of
them says that any root a, is bounded by

Ia I ~ 2 max J1 c~ . I I. 1 c~ ·2 1

111

, I C;. 3 1

1

/3, .... I ~. 1
11

n n n . n
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In our example any root a is bounded by

Therefore -2 ~ ex ~ 2, and since we already know that p(x) has two roots in (-3, 3), we
conclude that p(x) has exactly two real roots; the other two must be complex~

To isolate the two roots we split the interval into two· sub-intervals.· The Stunn
. 33 256 -27225· .

sequence evaluated at zero IS [-2, 1, 10' ~TI' ---,g"4] and consequently V(O) = 2.

Given that V(-3) =·3 and V(3) = 1 we derive that p(x) has one root in (-3, 0) and
another in (0, 3), and we have a complete isolation of the real roots.

Once the roots are isolated we stan the process of approximation to any desired
accuracy. This is quite simple: if (a, b) is one of the isolating intervals, we

calculate the .middle point c'=~ and determine the signs of p(a) an~ p(b). Those

of p(a) and p(b) are certainly different because there is exactly one root in (a,. b)
and the graph of p(x) crosses the x-axis only once. If p(e) =0 then c is the
roo!., but if pee) ¢ 0 its sign is either equal to that of pea) or pCb). We reject
the interval [a, e) or (c, b) on which the sign does not change and keep the other in
which the root· is to be found. In this way the size of the isolating interval is divided
by two.' We repeat ·this prOCess until the interval is small enough.

In our ex;ample, if we ,want to approximate the root in (0, 3), since we have
p(O) .= -2, p(3) = 100, p(L5):: 5.7 we discard ·the interval (1.5, 3) and split
(0, ).5) ···..m two,. Now p(O.75} == -1.07, then the root is bound to be in the interval
(0.75,'1.5). Splitting again we get p(l.125) == 0.88. Then the root is within
(0.75, 1.125). We keep halving to get as close as we want to the root of p(x).

,This method will give us a root to any desired accuracy but it is also well known for
its slowness. . There are so'me other algorithms to speed up the process of approximation
but as they need new defmitions, they will not be mentioned here.

I hope this article gives you an insight into how polynomials are being handled by
compute~ algebra sY$tems. $ummariziJlg,we can say Jllatit is not just a matter of using
any 'existing- technique. Computer algebraists are working hard on improving algorithms
introduced by earlier mathematicians and also introducing new ones.

* * * * *

Even in the best families

HMoney, mechanization, algebra. The three monsters of contemporary
civilizatIon."

(Simone WeB, sister of the
algebraist Andre Weil)
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ONE GOOD TURN

Kent Hoi, Student, University High Schoolt

Introduction

In the construction of roads and railways particular care has to be taken in the
construction ,of bends. The case of joining two straight sections of road or rail by a
curve is to be considered.

Two roads ~hich meet' the x-axis at 45°.

The ends to be joined are 2 miles apart.

I
~,,~- - ...... ' ... "

-~~'----f--~~~-"'x

First a suitable bend is required so that there is no sudden change in direction.
'This will be so if the gradient. of the tangent to the. curve at the join is equal to the
gradient of the straight section. It, is also necessary to ensur~ that the rate of change
of . the -tangential direction is the _same for the straight section and the curve at the
join, so there will not be any sudden jerk to the steering wheel.

In Summary

In . order to ensure a smooth transition from the straight section, to the curved
section we require:

(a) gradient of the straight section at joint =gradient of the curve' at join;

(b) curvature' .of the curve at join. =curvature for the straight .section -at the
Join =0, Le. point of inflection. -

Find functions- which give' a curve with all the requirements listed above. Then
decide which one is the most suitable for the bend.

Finding

Investigate arcs of non·polynomial functions.

The most obvious non-polynomial function would be a trigonometric function, since
logarithmic functions or exponenti~l functions do not have any turning points, while the
circle, ellipse and hyperbola do 'not have points of inflection. The arc could not
possibly be a tangent function, and the cosine function is only a translation of a sine
function, so we can treat them the same. Since the maximum y -value is when . x =0,
therefore it is most likely to be a cosine graph.

t An excerpt from a VeE project.
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The fIrst - x-intercept of a standard cosine graph is of x =±It/2, This means we are
required to dilate the standard cosine graph by a' factor of 2/tt from the y-axis, so the
dist~ce between the two x-intercepts is 2 units,

y= co~

dy 1t. 1tX
(]X =- 2" sm2 ,

or 1'. ~ =±It/2, and this does not satisfy the conditions listed

we need to dilate the function from. the x-axis as well by the same

2 1tx
Y = i coSZ

dy . 1tx
(JX= -SI"2'

Now this satisfies the frrst condition with the gradient.·

dy . 1tXax =-sln-:-z

d2y 1t 1tX
'-2 =- "Z coSZ'
dx

When x = -1 or 1, the curvature is O. This functio~ satisfies all the conditions.

Investigate an arc ora quartic of the form y =a(x2_1)(x2-b).

Expand the above equation, since it is easier to differentiate.
( 4 2 .

y =ax - (b + l)ax + ab

~ =' 4ax3
- 2a(b' + l)x

'2

1....1 =12ax2 - 2ab - "2a.
d.x 2

The concavity for (-1, 0), (1, 0) must be O.

.Therefore
12a - 2ab - 2a = 0
lOa - 2ab =0

2a(5 - b) =0

a=O or 5-b=O

since' a ¢ 0, :. b =. -5.

When x = -1, ~ = 1, and when x =.1, ~ =-1.
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Therefore
4a - 2ab - 2a =-1

2a - lOa = -1

-8a =-1

a = 1/8

.'. y = (x2 _ 1)(x2 - 5)/8 satisfies all the conditions.

I decided to. check if there were other functions which also satisfy all the
conditions. Since there were no other non-polynomial functions covered in class, I

continued to investigate with polynomial functions. I used the fotrn a(x
2

- 1)(x
2n

- b).
Since the function must be raised by an even power to be synunetrical and this will ensure

a function with an axis of symmetry at x =0, I flIst tried a(x
2 - 1)(x

4 - b) and found

that (x
2 - 1)(x

4 - 9)/16 also satisfied all the conditions! Then I· continued to

investigate with different functions such as a(x
2

- l)(x
4 - b) and found that

1/24(x2 - 1)(x
6

- 13) satisfied the requirements.

x

which satisfied

y

After a further two functions I worked out the following functions
the conditions and plotted a graph with all of them on the same axis.

1 2 2
Y = -g<x ~ l)(x - 5)-

1 2 4
.~ = -Wx - l)(x - 9)

1 2 6
y = zj<x - l)(x - 13)

1 2 8y = ri<x - l)(x - 17)

1 2 100
y =4fu{x - l)(x - 201)

2 1tx
Y = it cos-z.

(1)

(2)

(3)

(4)

(5)

(6)

There is an 'infmite number of different polynomial functions which can satisfy all the

conditions, so long as they are of the form a(x
2-1 )(x2n - 'b).

* * * * *
Editors' Note: Kent has very ably looked at the problem set by the examiners. Indeed,

there are more matters discussed in this project than we can include here.
However, in practice the problem is actually more complicated. The curvature, strictly
speaking, is not

. as the more complicated expression measures the curvature experienced by the driver as the
car travels along the cUnJe. This and other considerations greatly complicate matters.

* * * * *
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HISTORY OF MATHEMATICS SECTION

EDITOR: M.A.B. DEAKIN

Hypatia of Alexandria

The fJIstt woman in the history ~f mathematics is usually taken to be Hypatiaft of
Alexandria who lived from about 370 A.D. to (probably) 415. Ever since this column began,
I have had requests to write up her story. It is certainly a fascinating and a colourful
one, but much more difficult of writing than I had imagined it .to be; this is because so
much of the good l1istorical material is hard to come by (and not in English), while so
much of what is readily to hand is unreliable, rhetorical or. plain fiction.

I will come back to these points but before I' do let me fill in the background to our
story.

Alexander the Great conquered northern Egypt a little before 330 B.C. and installed
one of his generals, Ptolemy I Soter, as governor. In the course of his conquest, he
founded a city in the Nile delta and modestly named·' it Alexandria. It was here that
Ptol~my I Soter founded the famous Alexandrian Museum, seen by many as an ancient
counterpart to teday's universities. (Euclid seems to have been its fust "professorn of
mathematics; certainly he was attached to the Museum in its early days.) .The Museum was
f<?r centuries a centre of scholarship and learning.

Alexandria fell into the hands of the Romans in 30 B.C. with the suicide of
Cleopatra. Nevertheless, the influence.of Greek culture and learning continued. Two very
great mathematicians are associated with, this second period. Diophanrus (who lived around
250 A.D.) wrote .a number of books but most particularly an algebra text that will come
into the story later.. A little less .than a hundred years after Diophantus carne' the great
.geometer Pappus. $hortly after Pappus, however, the Museum fell into a decline.
Alexandria became. a prey to sectarian violence between various factions of Christians,
different groups of Greek "pagans" (including a number of so-called Neoplatonic groups),
Jews and others. .

Riots occurred and did much to damage the Museum, in. particular destroying its great
libraries - the last going up in smoke in· 392 when the temple of Serapis was put to the
torch by·a riotous throng.

The last knowri member of the Museum (very likely its last president) was Theon of
Alexandria, a minor' mathematician and astronomer. -He made few if any original
contributions to mathematics. but his work as an editor has been very useful to later
generations. His daughter, Hypatia, is the heroine of our story. She was' not associated
with the Museum, but .headed tJ1e Neoplatonic school, another institution. She thus
belonged to one of the u pagantt groups, and met her death on this account, brutally hacked
to pieces by a Christian lynch..mob in a year that is usually .put at 415.

t This assessment may, however, need to be revised. Winifred Frost of the University of
Newcastle believes she has found an earlier claimant. We hope to bring this development
to .you in a future issue.

tt The strictly correct pronunciation prob~bly approximates heew-pah-TEE-ah, but it is
usual and acceptable to pronounce the name as high-PAY-sha. (Much as we say "Paris" in
the usual way and don't attempt the French pronunciation. which .is more like par-HEE.)
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After this, and perhaps in· part because of it, the focus of Neoplatonist thought
moved to Athens. In the years that followed, Proclus (to whom we owe the preservation of
much of Euclid's Elements) and other mathematicians frequented the Neoplatonic school in
Athens. The last two names associated with the school are those of philosophers rather

than mathematicians: Isidorus and his pupil Damasciust .. fu 529, the emperor Justinian,
enforcing Christianity, closed the school and Damascius went into ~xile in Persia.

Let us now look more closely at those turbulent times around the year 400. A good
place to, begin rmding out about a mathematician from the past is a l&'volume work called
the Dictionary of S.cientific Biography (DSB). The article on Theon in that work is by
G.l. Toomer; it is authoritative and well-researched. It tells us what 'happened and also
how we know that it happened. There are notes with cle,ar and detailed references to where
Toomer got the information. All this is how a scholarly article should be.

[Th~se articles in Function, by contrast, are popular articles and are not intended'
as scholarly. So in most cases I don't give all my sources; usually they are readily

" accessible,' and in any case readers seeking further infonnation' can always· write to me, as
some have. In the present case~ I will give rather more detail than is my usual custom,
but not to the point of excess. I hope· to prepare a scholarly article on the subject for
publication elsewhere.]

Toomer, to get back to Theon.. tells us that Theon was the author of a number of
UCommentaries". These were editions, with extra not.es. of the works of famous authors.
In many cases, the original works get lost and modem editors have to work from such
Commentaries. Theon wrote Commentaries on Euclid's·Elements (and in places th~se provide
the basis for the modem text), two other books by Euclid, the Data and the Optics, and

two works by the astronomer PtoLemy (abo~t· 100-170 A.D.)tt , the Alma.gestand the Handy
Tabies. Over and above these he wrote a book on the astrolabe, an astronomical instrUment
with navigational applications. This book mayor may not have' been a .Commentary' on an
earlier (now lost) book by Ptolemy. It too is lost, but perhaps not entirely.

So Toomer tells us a lot about Theon. Regrettably the DSB article on Hypatia is not
up to that work's usually high standard. The sources are only perfunctorily indicated,
and in many cases not given, credence is given to a work of avowed fiction,. and some
statements are plain wrong. So I had rather more work to do than I anticipated when I set
out· to . write this article; however, the extra work has led· me· to some very interesting
reading.

Historians distinguish between primary sources (the original documents on which all
subsequent work depends) and secondary sources (those which retell, explain, comment on
and judge the material in the primary sources).. Unless one is oneself expert in the
period, the langu~ge (in .this case patristic Greek) and .the questions of textual
authenticity and interpretation, secondary sources are vital. In this instance, the
sources are rather· hard to come by. I have succeeded in lay~g my hands on all the
primary sources and most but not all of the best secondary ones.

The primary sources on Hypatia come under two headings: (a) the Suda.Lexicon, (b) the
Patrologiae Graecae. The Suda Lexicon is a 5-volume work from the 10th Century A.D. It
is an :alphabetical ·compilation for all the world like an encyclopedia of today. Until
recently it was called the Suidae Lexicon and its supposed author was called Suidas

t Damascius may have some minor claim on mathematical history as an editor of Euclid, but
the case is disputed.

tt Note that this is not Ptolemy I Soter, but a different chap~
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(rather as if some 30th Century writer were to talk of Britannicus .and his wonderful
Encyclopedia!). Anyhow, the Suda Lexicon (the name is now thought to be related to the
Greek for "fortress" - the stronghold of knowledge) is a compilation from earlier sources.

There is quite a long entry on Hypatia in the Suda and this derives from an earlier
such encyclopedia (the Onomatologus of Hesychius Milesius) and also from Damascius' Life
21 Isidorus.' .

Hesychius Milesius was also known as Hesychius the IDustrious. The name Hesychius
was quite common and so one needed to say which Hesychius was being discussed. (In
particular, and .confusingly, Hesychius of Alexandria has nothing to do with. the story.)
Hesychius Milesius' Onomatologus now survives only through one very imperfect copy and
what has found its way into later works like the Suda. Damascius we met. briefly earlier.
His life of Isidorus is now lost, but fragments· survive as quotations in other writings.

The Patrologiae Graecae are by and large in better shape. They fonn a work of over
150 volumes collecting the writings (in Greek)·. of persons· important in the early Christian
Church. The most scholarly edition comes with a parallel translation into Latin. Of the
texts in this collection that concern· Hypatia, most are letters from Synesius, one of her
pupils, but who either was or became a Christian, indeed a bishop. There are also letters
from Synesius not to Hypatia but making mention of her. The other major source in the
PatrologiaeGrae~ae is a passage in the Ecclesiastical History by Socrates Scholasticus,
who lived only shortly after Hypatia. (This is not, of course, the Socrates; he was· some
850 years dead by this· time.) The remaining referen.ces are meagre. There is a sentence
in the 6th Century Chronicle of John MalaIas and a short paragraph in an early 5th Century.
chronicle by the ecclesiastical historian Philoslorgius. It is to Philostorgius that we
owe the opinion that Hypatia was a better mathematician than her father Theon, and it's
possibl~ .that he had many more interesting things to. say - but we don't know. The version
of Philostorgius that has come down to us is an abridgement by the 9th Century scribe
·Photius.

Photius himself wrote a sentence on Hypatia. It will endear him neither to women nor
to mathematicians. It went: .

"Isldorus greatly outshone Hypatia, not just because he was a .man and
she a woman, but in the way a genuine philosopher will over a mere
geometer." .

It is believed that this sentence is in fact copied from Damascius' Life, the lost work
that in part informed the Suda.

. The last and least of the Christian fath~rs with anything to say is Nicephorus
Callistus who lived in the 14th Century and whose account merely paraphrases Socrates
Scholasticus.

So - there are our sources. What do they tell us?

As always, much less than we'd like to know. But a good deal is agreed. Hypatia was
a public figure who taught philosophy and mathematics. She attracted a large following
and probably held some kind of official post. She· was unmarried - in fact detenninedly
celibate. She was a Neoplatonist, born prot.Jably sometime around 370 and murdered in
(almost certainly) 415 by a mob of Christian fanatics.

There are arguments over details: which of the many brands of Neoplalonism did she
profess? Which Christian faction killed her and why? Was Cy,ril, the bishop of
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Alexandria, implicated in her death? And so oo.t

I will not dwell on these matters, but tum rather to what we can learn of Hypatia-' s
mathematics and what the sources tell us of that.

·Precious little really, I'm afraid. That she was a mathematician is widely agreed.
She is variously described as a philosopher, a mathematician, a .geometer and an
astronomer. What we would like to know is what as a mathematician, geometer or
astronomer it·was that she did. .

The most explicit statement is a 12-word. passage in the Suda. Yes, just 12 words
(and almost half of these subject to' disputed readings or various interpretations).
However, there is a general. consensus as to what they say:

"She wrote a Commentary on Diophantus, [one on] the astronomical Canon,
and a Commentary on Apollonius's Conics."

Take these in reverse order. Apollonius, who lived around 200 B.C., was a very great
geometer. He codified much of what we know about the conic sections (ellipse, par~bola,

hyperbola). Regrettably, Hypatia's Commentary on this work is totally lost.

When it comes to the "astronomical canon", we are on slightly flIllier ground. Most
scholars agree that what she wrote was a Commentary on one of Ptolemy's works: either the
Almagest or the Handy Tables. It will be remembered that Theon, Hypatia's father, wrote
Commentaries on both these works. Various authors have suggested that Hypatia
collaborated with him in one or other. or both of these enterprises.

Theon's' Commentary on the Almagest has twice been edited in modern times: once last
century and once this. The 20th Century edition is a work of great scholarship. Its
editor, a Professor Rome, suggests that what Hypatia did was to revise her father's
Commentary on Book 3 of the Almagest. An insc~ption by Theon is preserved in the best
manuscripts saying that he is using the text as revised by 'my philosopher-daughter,
Hypatia'.

Neugebauer (a historian of Mathematics whom we met "in Function, Vol. 15, Part 3),
hO\\lever, thinks that this is not the work referred to in the Suda, which he thinks is a
now lost Commentary on Ptolemy's Handy Tables.

The remaining work. attributed to Hypatia is her Commentary on Diophantus. Most
writers assume that Hypatia:s· Commentary was an edition of his major work, the
Arithmetic.

x2 + )'2 =25

has solutions (0, ±5), (±3, ±4), (±4, ±3),. (±5, 0).

By "arithmetic" we should understand "number theory", which used to be called Uhigher
arithmetic". DiophanU;1s has given his name' to several branches of modern mathematics. A
diophantine equation, for example, is one to be solved in integers. Thus, for example,
the diophantine equation

But I digress. Diophantus's Arithlnetic, like Euclid's Elements, was a collection of
13 "books". W.e know this from the introduction. Of th~se 13, however, we have only six
(presumed to be the flIst six). .

t We may dismiss a further ground of dispute. She "vas not Isidorus's wife, although the
Suda says at one point that she was. The passage is almost certainly spurious (some blame
Photius) .. Besides, Isidorus was either unborn or in nappies when Hypatia was killed.
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Diophantus's writings were collected and edited by the 19th Century French scholar,
Paul Tannery. .' Tannery put forward the suggestion ,·that it was these six books on which
Hypatia "commented". This' could have been: because Books 7·13 were already lost by
Hypatia '.s time, but.Tannery preferred the alternative· view that... Books 1-6 were preserved
because Hypatia commented on them.' (Recent· research based', on Arab tr~slations has
complicated this theory however; it is the subject of great controversy.) Tannery and
Heath,: however, suggestthaJ what has come down to ~s is in. fact not Diopha~lt~s's original
but Hypatia's Commentary. If this is so then we are.muchindebte4 to Hypatia,. for without
her we would miss' most: of the. surviving work of Diophantus. .

·But.now,. if this is right, then what survives of 'Dioph~tus's work would incorporate
whatever comment Hypatia wrote, and so we would ·have a small legacy. of her. ~athematics
hidden in the work of Diophantus. In 1885, Sir Thomas Heath brought out the frrstEnglish
edition "of Diophantus. This. suggests th·at the most obvious . place.. to look. for such
interpolated .material is at the start of Book ~. .. Problems 1..5 of Book 2 are mere
repetitions of problems that ,already appeared in Book L Problems 6, 7 look "differenf'
from Problems 8, 9,· etc. '.. '.

It seems "very ~uch as if what we see is .an edition designed as" a student text.
Problems 1-5 could ·be seen as urevision~'. Then Problems 6, 7 are "exercises" before we
move on. to the "new theory" of .Problems 8, 9, etc. " Thus, if w~ d<;> see Hypatia's hand in
Diophantus's Arithmetic, she poses (in. essence) the problem of ~lving for. x, y the
simultaneous equations

x - y "= a,;. (x2
_ ),2) - (x - y) =b,

where . a) b are known. This is Problem 6. 'Problem '7 is essenti~ly the same.

Hardly, I'm afraid,' stuff to raise one's voice about.
. .

.The 'other ~urceof.specific informatio.n on. Hypati~'s mathematics is the writings of
Synesius. Of Synesius' letters "to Hypatia, six and a little bit survive. She is
mentioned in a number of others - the precise number depending on which editor one
believes. Two of these letters are relevant to an evaluation of Hypatia's mathematics.

One is Letter 15. It is puzzling. He writes that he is 4'in such a bad way" that he
ha~ to have a "hydros~open. .He 'asksher lOI11~~ hiIll one aIld seIld.'S quite detailed
instructions . and specification-so Clearly he greatly' respects her abilities - indeed
relies on them.

But .what is he· talking about? What is a· ·'hydroscope".? And why should he be in such
urgent need of one? The 'question has. attracted attention for over_ 300 years at least.
Nonnally a "hydroscope" impliesa. water-clock,. but why should he be so desperate for a
water-clock? .FerlJ1Ql, the 17th Century mathematician, suggested that wh.at Synesius needed
(being very in) was a hydrometer to' me&sure th,e density. of drinking ~ater or medicine of
some sort. Now, certainly, the letter has a text which is compatible with this story.
But does one really judge drinking water or measure medicine by fmding its density? Was
he 'perhaps making his own medicine? The whole matter leaves me. perplexed.

Finally \ve return to the astrolabe. The term uas~olabe" is applied to a wide
variety of astronomical or navigational instruments. (For ,an accessible anicle on the
astrolabe see Scientific American, Jan. 1974.) Essentially all the various instruments
that went by the name were models of the heavens. Some were Uannillary spheres" - large,
and necessarily clumsy, 3-D structures. Other, later, varieties were portable 2-D
instruments in which geometric projections made for what were handy dedicated analogue
computers.
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This account comes from Neugebauer who suggests that Theon's "}ost" work on the
astrolabe is alive and well - the'. common core to various suspiciously similar works which
he sees as. Commentaries on an earlier work: Th~on's. It may well be that it was Ptolemy
who showed how to construct the handier 2-D instrument and that Theon's book in its tum
derived from Ptolemy. This seems to Neugebauer the most likely course of events.

In any case, Synesius wrote a covering letter· (it isn't listed as a letter and is to
be found elsewhere in his writings - however, it is a letter) to one Paionos to accompany
the gift of an astrolabe. In it, he states that he designed the astrolabe himself but
with help from Hypatia and had it crafted by the very best of silversmiths. The
implication is that the knowledge derived by (probably) Ptolemy was passed on through
Theon to Hypatia and thus to her pupil Synesius,

This then exhausts all we know of Hypatia's mathematics. It is commonly said that
Theon was a transmitter of mathematics rather than a creator of it. He edited the works
of others~rather than developing theories of his own. The same would seem to be true of
his daughter. She was widely respected as a teacher - ,eminent, influential, even,
charismatic in her day. But we have no evidence that she· was anything more than this.

There has been an often stated view that she was a better mathematician than Theon.
This derives from the passage in Philostorgius, which may however mean merely that she was
the more widely acclaimed in her day. Indeed, we could argue that Theon was in fact the·
greater. ln640 or 642, the Arabs conquered Alexandria. What texts we have of Greek
mathematics often come to us through Arab translations· and Commentaries. This is true of
Diophantus's Arithmetic and also of some of Theon's work. It is not unreasonable that
there is' a principle .of selection here - the best work is what has survived; the Arabs
saved what they thought worth saving. One would not like to push this notion too far,
~onetheless a good proponion of Theon's work survives and almost none of Hypatia's.

Whatever judgement we make of her contribution to mathematics, she was certainly a
.remarkable woman. She certainly was a mathematician,' a philosopher and a charismatic
teacher. It would be nice to know more of her.

* * * * *

A True Equality

Th~ .German university toWn of Gottingen is famous for its
mathematicians and theoretical physicists, among them the very great
mathematician David Hilbert (1862-1943). Overlooking the town are two
hills known as die Gleichen (the equals). Hilbert was fond of saY!ng
that- this was not because they were the same height t nor because they
presented the same aspect to the' viewer.

"Why the name then?", people would ask.

Hilbert is said to have attributed the name to the
incontrovertible fact that they were the same distance from one
another!

* * * * *
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LETTERS TO THE EDITOR

A letter from Peter Grossman and Keith Anker appeared in F-unction, Vol. 15, Part 5.
It concerned the geometric mean and showed that it could be viewed as a special case of
the more general "power mean" described by-K.McR. Evans in Function, Vol." 15, Part 4.
Regrettably the letter was so badly misprinted as to be virtually incomprehensible. We
decided the only recourse was to print it again - this time as it should have been. Our
sincerest apologies to both the authors, and also to our readers'!

The Geometric Mean

In his concluding remarks~ K. Evans (Function, Vol. 15, Part 4) pointed out that
three of the four means he had discussed (the arithmetic and hannonic means and the root
mean square) are special cases of the power mean (of two positive numbers Xl' x

2
)

def~ed by

(1)M(n, XI' x
2

) ={~ fin

Specifically, the arithmetic and harmonic means and the root mean square correspond
to the cases n = 1, n =-1 and n = ~ respectively.

We would like to point out that there' is a sense'in which the fourth mean considered
by K. Evans, namely the geometric mean, can also. be regarded as a special case of the
power mean, corresponding to n =O. Of course, we cannot just put n =0 in Equation
(1), since' the expression would be undefined; however, it is the case that

lim M(n, X) x) =,;x-:x
n-tO t 2 1 2

(2)

where the right...hand side is the geometric mean of xtand x
2

'

If we are prepared to take for granted that this limit ,exists, then Equation (2) can
be established as follows. First observe that

{ x7 : x~rn
[ X7/2x~/\x7/2x~n/2 + x:m2x~/2)rn

Therefore it is sufficient to show that

1,
/

J.

l/n
y-n 2

-----. [ynh +
11m

2

where v > o.
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. [vnl2 + v-nl2 ] linLet L =hm ·Now put· m =-n to fmd
2

.' [V- m12 + v mI2 ']-1Im
L = 11m '------

m~O, 2 [
. [v-m/2+ v'm/2 ].l/J

n ]-1 -1
11m' .. = L
nZ-70 2.

Hence L2 = 1. Since the limit clearly cannot be negative, we must have L => ·1.

Peter Grossman, Keith Anker
Monash University, Caulfield Campus

* * *" * *

More on Averages

x =G(a, b)

); =.A(a, b)

=::: H(a, b).

Exercise: Use similar triangles to prove that

Notice also .that ::S; x .:S; y, i.e.

H(a, b) $; G(a, b) :s; A(a, b).
c

b ~

In Function, Volume 15, Part 4, p. 99, a diagram illustrates the ~onstnlction of the

geometric mean, G(a, b) ::: V(Q5'5, of two positive numbers G, b.' The diagram can be

extended to show the' arithmetic mean" ~(a, b) =,~ , and the hwoni'c" mean,

(
.) b- 1 ]-1

H(a. b)::: ~ . This extensio~ appears in Note 75.1~ in The Matftematical Gazette

(U.K.), Volume 75, No. 472, ]une1991,. but was knowri to Pappus of Alexandri~, a
mathematician of the 4th century A.D..

o

Geometry abounds with illustrations of the geometric mean and various power means

[
n bn ] lin

M(n, Q. b) = a"2 ' n E R \ {OJ,

ofrwo positive numbers Q. b. The following are exercises for the reader..
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o

In the figure AD n 7JC = {E}.

If AB = a, CD = b, EF =x, prove that

x ='iH(a, b)

::;: ~M(-l, a, b).

b

F C

What is the locus of E as the length AC changes?

A

B

a

(1)

(2)

F

E

c b A

ABC is a triangle right-angled at C.

rrJ .L AlI. A square' CDEF is shown on side

"ClJ. ,If Be =a, CA =b, CE ::;: ~, prove that

x =M(-2, a, b).

The next three exercises have been adapted from "Japanese Temple Geometry Problems",
H. Fukagawa and D. Pedoe, 1989, Charles Babbage Research Centre, Winnipeg, Canada.

K. MeR. Evans

In the diagram of Question 3 a tangent to the
. ~~

larger circle is drawn parallel to AB. A

third circle, centre S, radius length c, is

drawn touching this tangent and the other two

circles. Prove that

a = 2G(b, c).

)' = 2.M(-!. a b).
4 2"

In the diagram of Question (3) a third

circle, centre R, radius length y, is drawn
~~

touching the other two circles and AB.

Prove that

x =2G(a, b).

Two circles with centr~s . 0, Q and radii

lengths a,' b touch at P and have a common
~4

tangent AB as shown. If AB = x, prove

that

(3)

0,
I
I

a:
I
I
I

A B
+--- x~

(4)

°1
a1

I

A C B

(5) 0 E

0
I

I

a:

A B
a>b

[Problenl (4) reLates very closely to uThe Kiss Precise", Function, Vol. 15, Pan 4. , Eds.}
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PROBLEMS SECTION

EDITOR: H. LAUSCH

We cordially welcome our subscribers in 1992. and hope they will enjoy this section 0/
Function by trying their hands and minds on the problems or by puzzling fellow subscribers
with their own problems. At the moment there is no slwr(age of imaginative solutions and
new problems that readers sent in (mainly during the later parts· of 1991). Thank you all
for your contributions!

Solutions

One solution, by John Barton (North Carlton). to the following problem has already
been published in Function, Volume 15, Part 4. Here is a different solution by Andy Liu
(Edmonton, Alberta, Canada):

Problem 15.1.3. A person sits for an examination in which there are four papers with a
maximum of m marks for each paper; show that the number of ways in whicl1 a total of 2m

marks may be obtained is ¥In+l)(2m2+4m+3).

Solution. Represent the 2m marks by 2m circles, and use 3 strokes to divide them into

4 parts. The number of ways of arranging 2m circles and 3 strokes in a row is

[ 2m +3 3 ). However, we must 'rule out those cases where we have at least m + 1 circles

between two consecutive strokes. We fIrst remove m + 1 circles. Now there are

[ m +3 3 ) ways of arranging m - 1 circles and 3 strokes in a row. We can add the

m + 1 circles back into any of the 4 parts. It follows that the desired answer is

[2m; 3 ) _ 4[ m; i)= (m+l)(21f+4m+3) .

And Seung-lin Bang (Seoul, Repu.blic of Korea} counted the marks quite differently - with
the same result, of course:

Solution. Let x. (i = 1, 2, 3, 4) b~ the points obtained from the i-th paper. Then
l '

Xl + x
2

+ x
3

+ x
4
=m, 0 S; x S; m, i =L 2, 3, 4. ,Let Xl + x

2
=1 and

x
3

+ x
4
=2m - 1. Suppose 0 ~ I $ m - 1.

The number of solutions (XI' x
2
) of the equation XI + x

2
=1 is (l r1 ) =1 + 1

and the number of solutions (x
3

+ x
4

) =2nl - 1 is 1 + 1. It follows that the number of

solutions (Xl' Xi' x
3

, x
4

) of the equations Xl + x
2
=1, x

3
+ x

4
=2m - 1, 0,$ Xi $ m,

i = 1, 2, 3, 4 is (1+1/.
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We conclude that the number of required ways is

mI· "
2 i 0+1/ + (m+l/ =m(m+ 1~(2m+l) + (m+l)2

1=0

_ (m+l)(2m 2+4m+3)
- 3

Known by the name. "Steiner-Lehmus Theorem", the next problem is a "classic". Garnet
J. Greenbury (Up. Mt. Gravatt, Queensland) proposed it to Function. Quite overwhelming
were readers' responses, ~eing often not just u silnple" solutions but little treatises,

. containing interesting historical facts. .

Problem 15.1.5. If the bisectors of two angles of a triangle are equal, the triangle is
isosceles. - We want a Euclidean proof [Trigonometric proofs are acceptable.]

We begin with a solution submitted by Andy Liu, who comments: HThis is essentially
Exercises 13, 15 and 16 in Section 2.1 of Howard Eves' A Survey of Geometry. Although
heavily algebraic, it does not use trigonometry, co-ordinates or anything beyond Euclidean
geometry." I

Solution.

a. STEWART'S THEOREM. "Let D be a point between B and C. Then

AB2CD + ACBD =AD2BC + BC.BD.CD for any point A.

Proof First note that if A coincides with any of B, C or D, equality holds by
virtue of Be:= BD + CD. Suppose A coincides with a point H between C and D.
Th~ "

and

HD
2
BC + BC.BD.CD =HD2(BD+HD+HC) + (BD+HD+HC)BD(HD+HC).

It is routine to verify that these two expressions are equal. Eq~ality .can be established
in the same way if A coincides with a point H such that C is between Dand H.
Finally, suppose A is any point not on the line Be. Let H be the foot of the
perpendicular from A to Be. Then

AB
2 + ACBD =HB2CD + HC'BD + AH2(CD+BD)

= HD2BC + BC.BD.CD + AH2BC

=AD2BC + BC.ED.CD.
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b. ANGLE-BISECTOR FORMULA. Let the bisector of L BAe intersect Be at D. Then

AD2 =ABAC[l _ BC
2

].
(AB+AC)2

Proof We have \F(BDAB) = \F(CD,AC) and BD + CD =Be. He~ce BD =~~~~§
and CD =~~~~§. The desired result follows from Stewart's Theorem.

c. STElNER-LEHMUS THEOREM. Let the bisector of L ABC and L ACB intersect AC
and AB at E and F resepectively and let BE =CF. . Then AB =AC.

Proof. By the Angle-Bisector Formula,

. BE2 =BAoBC[l _ AC
2

.] and Cp2 = CA.CB[l _ AB
2

]'.

(BA+BC)2 (CA+CB)2

From BE2 =CF2 \ve have

(AB-AC)[AB(AC+BC)2 + AC(AB+BC)2 + AB.BC.CA + Bc;3].BC(AB+BC+CA) = O.

It follows that AB =AC.

K.R.S. Sastry (Addis Ababa, Ethiopia) introduces his proof ~lith remarks that might be
useful to Function readers:

U/ am 'writing about 15.1.5, th~ Steiner·Lehmus Theorem. It deserves a discussion in
the History section of Function [any volunteer authors? Ed.]. Here is some backgrou~d

material that 1 think readers 'will find of interest.

In 1840 Professor Lehmus asked the Swiss geometer Steiner for a proof of 15~1.5.

Steiner soon found on~ but did not publish immediately. In 1850 Lehmus found his Ol-vn.
The first published proof was in 1842 by the Frenchman Rougevain. See Mathematics
Magazine, a publication of Ma.the~aticfllAssociation of America rMAA)~ volume 47 (March
1974), p. 87, ~On the Steiner-Lehmus Theorem' by Mordechai Lewin for other details.

In an intervie'w for the Two-Year College Mathematics Journal of MAA (now College
Mathematics Journal, CMJ) published in Vol. II, Number 1, January 1980, pag'e 10, the
celebrated geometer H.S.M. Coxeter says: uThere has been an enormous number of proofs of
that, 1 should think over a hundred."

In fact, in response to a request fronz Tony Trono of Burlington High School, U.S.A.,
in the Reader Reflections Section of the December 1980 issue 0/ the Mathematics Teac~er

(published by the National Council of Teachers of Mathematics of the V.SA.) he received
80 different proofs franz around the world. There have been a number of incorrect proofs
0./ the Steiner-Lehmus Theorem. For one that is in print, see "Fallacies, flaws and
flinzflan2, FFFZ, The Steiner-Lehmus Theorenl" on p. 50, vol. 20, No.1, in the Januarj' 1989
issue of eMJ.



Solution.

Suppose BE and CF. are the

internal angle bisectors such that

BE ~ CF.

We wish to show that AB =AC.

Let BE extended meet the parallel

through C to BA at E'.

Similarly the point F' is defined.

If (the angle at) B is different

from (the angle at) C~ then suppose

that B > C.
B

A

c

29

Then AC > AB. Also A + B > A + C and hence eF' > BE' or FF' > EE', whence

CF =BE. (1)

Now the triangles ABE and CE'E are similar. Therefore ~:: ~ ='~. Likewise

AF AC . CF AB BF BE FE". AB FF' , , , ,
FB= Br :: Fr' Hence~ . At' =E'E' . rr' I.e. fIT:' =re because BF = Be = CE

and BE = CF.

AB FF'
But from (1) A'C < ,1 while ~ > 1, so B ~ C. Similarly B ~ C, and the theorem

follows.

Our contributor adds: "In fact the analogous result for the external angle bisectors'
is not necessarily true. See Mathematics Magazine, vol. 47, p. 52! (January 1974). Here
is the example by (the late) Prof. Charles Trigg. .

Consider triangle ABC inwhichL BAC' =132°,L ABC =3tt,L ACB :: 12°. Let AE,
CD be the' bisectors of the exterior angles 'at A and C, respectively, terminated by the
s(des BC, BA (extended) at E and D. Then AE = CD, but ABC is not isosceles."

Editor's historical comments: Jakob Steiner (b. 1796 in Utzenslor! near Solothurn, d. 1863
in .Bern) was the son of a Swiss farmer. "'Among the mathematicians .of Berlin l./niversity
there have been several 4originals' , among whom Jakob Steiner was 'the oddest', writes
Kurt-R. Biermann in his history of·Berlin University (Die Mathematik und we !:?ozenten an
.der Berliner UniversiUit 1810-1933, Berlin 1988). The German mathematician Daniel
Christian Ludolf Lehmus (b. 1780 in Soes!, d. 1863 in Berlin), taught at Berlin University
in 1814/15; from 1826 onwards he was instructor at the Berlin Artillery and Engineering
School.

We hope to present more contributions on the Steiner-Lehmus Theorem in subsequent
issues.

A solution to another of last year's problems has been provided by Dieter Bennewitz
(Koblen!, Germany): .
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Problem 15.4.1 (from Matht?rndtical Spectrunl). A man has 3 sons. The age of the youngest
times the sum of the ages of the other two is 1495; the age of the second son times the
sum of the ages of the other two is 1767. How old are the sons?

Solution. Let x < y < Z be the respective (integer) ages of the 501:'S. Then

It follows that

x(y + z) =J495

y(x + z) = 1767.

z(y - x) =272.

The number 272 can be written as a product of two positive integers in the
following says:

272 = 272 . 1

= 136 . 2

= 68 .4

= 34 .8

= ]7 . 16.

Hence z =272, 136, 68, 34 or 17.

If z =34, then" y - x = 8, "so that" 1495 = x"(y + z) =x(x + 8 + 34), which is a
quadratic equation; x =23 is the only positive solution; we obtain immediately y =3i,
z = 34. All the other cases do not result in integer solutions.

~robl~ms

Problem 16.1.1 (Juan Bosco Romero Marquez, Valladolid, Spain). Solve the following

equation for integers x and y with y ~ x > 0: y - x =yX - r.

Garnett J.. Greenbur)' selected the following Lewis Carroll puzzle for our readers
young and old:

Problem 16.1.2. A bag contains one counter known to be either white or black. A white
counter is added,' the bag shaken and a counter drawn out which proves to be white. What
is now the chance (probability) of drawing a white counter? )

* * * * *
The 32nd International Mathematical Olympiad

The 1991 International "Mathenzatical Oly111piad (IMO) took place in July at Sigtuna,
about ha~lay betrveen the capital Stockhobn and the old city of Uppsala. Teams of up to
si.x students from 55 countries sal the conIest. It consisted of two four-and-a-half-hour
examinations held on subsequent days. Altogether 20 gold medals were awarded, 51 silver
and 84 bronze. Each student, who missed out on a medal but obtained a perfect score for
the solution to at least one problem, received an honourable mention. Nine stu(jents
headed the list with perfect scores (42 marks. i.e. 7 marks for each of their solutions to
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the six problems); four of them were from the former USSR, one being Yevgeniya
Mallinikova, who won her third Gold. In the unofficial ranking of countries, the USSR
cam.e first (241 out 0/ 252 possible points), second was the People's Republic of China
(231), and Romania ended up third -(225). The team from united Germany took fourth
position (222). The list continues with: 5. USA (212), 6. Hungary (209), 7. Bulgaria
(192), 8. fran and 'Vietnam (191), 10. India (1987).

Given· an unprecedentedly strong cOlnpetition, the Australian team did· very well,
indeed, in achieving 20th place (127), only one behind Austria and the United Kingdom (142
points each). Function congratulates

bron:e medal winners: Anthony Henderson (year 10, 30 points), NSW, .Sydney Grammar
School; . .

Angelo di Pasquale (year 12, 25 points), Vic, Eltham College; .
Joanna Masel"(year 12, 22 points), Vic, MetJwdist Lcidies' College;

and

winners of an honourable mention:

Luke' Kameron (year 12, 18 points), NSW, KlWX Grammar ScJwol;
Justin Sawon,{year 12, 18 points), SA, Heathfield High ScJwol.

Here are the problems of the 1991 IMO:

FIRST DAY

1. Given a triangle ABC, let I be the centre of its inscribed circle. The internal
bisectors of the angles A, B, C meet the opposite sides in A', B' , C' respectively.
Prove that

1 AI.BI.Cl 8
4 < AA'.BB' .Ce' ~ T!'

2. Let n > 6 be an integer and aI' a
2
, ..., a

k
be 'all the natural numbers less than

n and relative prime to n. If

prove that. n must be either a prime number or a power of 2.

3. Let S = {I, 2, 3, ..., 280}. Find the smallest integer n such that each
n-element subset of S contains five numbers which are pairwise relatively prime.

SECOND DAY

4. Suppose G is a connected ~graph with k edges. Prove that it is possible to label
the edges 1, 2, 3, ..., k in such a w~y that ~t each vertex which belongs to two or more

edges the greatest common divisor of the integers labelling those edges is equal to 1.

S. Let ABC be. a triangle and p. ,an interior point in ABC. Show that at least one of
the angles L PAB, LPBC, L PCJ~ is less than or equal to 30°. '

6. An infmite sequence xo' Xl' X
2

' ... of real numbers is said to be bounded if there

is a constant C such that IXi I s C for every i ~ O.



32

Given any real number a > L construct a bounded infmite sequence xo' xl' X
2
' ...

such -that
Ix. - x.11 i - jf a ~ 1

1 J

for every pair of distinct non..negat.~ve integers 'i, j.

* * *" * *
SOFIA SOPHISM

According to the Concise Oxford Dictionary, a sophism is ·'a false argument intended
to deceive". Here is a nice little sophism from Sofia, the capital of Bulgaria. It is a
"proof' that every right-angled triangle is isosceles. Devised by Alexander Kyuchukov, it
appeared in the Bulgarian magazine Matenlatika, no~ 6 (1990). We got it from the
South-African publication Mathematical Digest No. 83 (1991).

Starting with triangle ABC, we construct LDAC = (X, and LDBC =P as shown. Jom
DC and extend it to meet AB in E.

o

A &00- B

Since the angle bisectors of a triangle are concurrent, DC bisets LD.

So LADe = i<1800 - 2a - 2P) = 90° - a - ~.

Now LACE = a + LADe (exterior angles), and it follows that LACE = 90° - p.

We now use the fact that LC .= 90°, so that 90° - P= a. Therefore LACE =a., and
AE = EC. A similar argument shows that BE =EC. So E is the midpoint of AB.

So the angl~ bisector DE is also a median, and it follows that triangle ADB is
isosceles. It may now be shown that LDAB = LDBA t and hence a = ~. So triangle ABC is
isosceles. .

The epithet usophisticated" is generally regarded today as complimentary, but it was
not -always so. Coming from the same root as u~ophism" it used to mean deceitful or
misleading. Can you find the sophisticated step in Kyuchukov's uproof'?

* * * * *
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