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THE FRONT COVER

.Michael A.B. Deakin, Monash University

Start by drawmg two circles in a p1a.ne. A numbe( of cases may arise. Figure. 1
shows one" such" case and Figure 2, 'which is also our cover diagram, another. There"are yet
other cases you might" like to fmd and explore for yourSelf.

p

Figure 1

p

Figure 2
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The circle centred on A has radius a, and that centred on B has radius b.
From a point (p we draw tangents ·PQ, PR to the circles and we so arrange x.natters that
PQ =PRo We want to know

What is the set of all such points P?

To answer this, look at Figure 1. PQ2 = PR2 .from the data. But PQ2. ~ PA2 _ AQ2

and PR2.=PB2 - BR2. So

From this w~ deduce

if S is so chosen. that LPSB is a right angle.

Thus

This equation enables the point S to be uniquely detennined. Thus, fmd this S
and draw a line through S and perpendicular to AB. All points P on this line satisfy
the requirement.

In the case of. Figure 2, we must modify this slightly: all points outside the
circles satisfy the requirement.

The line PS is called the radical axis of the two circles. Where· there are three
circles there are three radical axes and they all meet in a point O. [Canyon prove
this?]. Figure 3 shows one .of .several possible ..cases.

Figure 3
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COMPUTER ALGEBRA

Pam N~rton and Robyn Arianrhod, Monash University

Computers were initially developed to carry out long numerical computations. People
. quickly realised the· potential of the new technology, and business and management

applications soon became predominant as far as the volume of processing assigned to them
is concerned. Scientific applications are still the most prestigious, and often require
the most powerful computers.

It is now over 30 years since the computer was· frrst used to perfonn algebraic
calculations; although many people are still unaware of this capability. However, the
possibility had been foreseen by Ada Augusta, Countess Lovelace, in 'the 19th century. The
Countess helped Charles Babbage to develop his "Analytic Engine", one of the forerunners
of computers. She wrote: "Many persons imagine that the nature of its processes must be
arithmetical and numerical ... This is an error. ·The engine ... might bring out its'
results in algebraic notation, were provisions mad~ accordingly." .

·Conipute~ algebra packages have been used in. a· large number of different areas in
science and engineering.. The most extensive use has occurred in the fields where the
algebraic calculations necessary are extremely tedious and time-consuming, such as general
relativity, celestial mechanics and quantum mechanics. Before the advent of computer
algebra, such hand calculations took many months to. complete and were error-prone.
Personal workstations can now perfonn much larger calculations without error in a matter
of minutes.

General-purpose computer algebra systems deal with the manipulation of symbolic and
algebraic expressions, such as polynomials and rational functions. In the traditional
computer languages, such as FORTRAN, BASIC and PASCAL, amathematical formula can
only be evaluated numerically, once the variables and parameters have themselves been
given numerical values, and then the result only has a· relatively small number of
signific811t digits (depenc:1Jngon .the macbincan4 tbeparticular .impleme11tatiop), and may
be inaccurate due to roundoff errors.. In computer algebra systems, the same formula may
be .evaluated numerically with unlimited precision, and it can also have algebraic
operations carried out on it, such as differentiation, integration, factorisation,
expansion and series approximation.

Computer algebra systems are interactive· and incremental. That is, the user enters a
command, and if it is not syntactically correct, 'the package will indicate that an error
has occurred, and usually give an indication of where the error occurred and what it was.
If the command is correct, the package will execute it and return the result to the user.
The· user can use previous expressions and results to build new expressions, and hence
solve problems in a step~by-step fashion.

Integers can have unlimited size, and fractions are represented exactly as quotients
of ~ch integers. Real numbers with as many digits as required are usually available.
There arepre-defmed identifiers with pre-assjgned values and properties to represent

i (= 11-), e, 1t, etc.

General-purpose computer algebra systems are usually designed to meet the following
two requirements:

to provide a set of basic commands which carry out routine manipulations;
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to offer a progranuning language which allows the user to build procedures to
perform various required taSks.

Most of the current .systems have been written in various. dialects of the list
processing language LISP~ although two of the more recent packages (MATHEMATICA and
MAPLE) have been written in the language· C.

Computer algebra systems.of various sizes and complexities have been available for
some years. There have been considerable developments,' however, in recent years in tenns
of the development of systems suitable for use in the teaching of mathematics. Computer
algebra systems demand very large. amounts' of computer time.;md memory, and it is on~y the
ste~dy fall in hardware costs that has made their use for undergraduate teaching possible.

The main general-purpose computer algebra systems available today are SCRATCHPAD,
MACSYMA, REDUCE, MATHEMATICA,.MAPLE and DERIVE (asuccessortomuMath).
SCRATCHPAD is a fairly recent ffiM research system, requiring a large ffiM mainframe to run.
MACSYMA is 'a well-established scientific and engineering workhorse, with many libraries of
routines available. It has often been termed an 'expert mathematical system', .and h~s

been developed on DEC and VAX. mainframes and minicomputers. MATHEMATICA is widely
available on a range of machines,' from the CRAY to the Macintosh and mM-pc (80386). It
incorporates a ,significant graphics· package along with both numerical and algebraic
computations. REDUCE is alSo available on.a wide range of machines, including IBM-Pes.
It has been used especially-by high-energy physics and relativity researchers, but it does
not have a graphics capability. MAPLE was designed as a teaching system, 'and is now
available for a wide range of machines, including Macintosh and ffiM-PC (80386). It offers
graphics, particularly on workstation and microcomputer versions, as well as numerical and
algebraic computations. DERIVE is a very simple, menu-driven (and hence user-friendly)
system with. graphics capability, designed especially for education purposes, and is only
available for mM-pcs or compatibles.

To demonstrate how easy these computer algebra systems are to use, we now give a few
sample commands using the language MAPLE, together with the computer's response and some
comments on .the output.

Please note that this is ~'working output". It. could be printed out more neatly, but
this misses the point. We want to use MAPLE like a sophisticated scratch-pad arid this is
an example of such use.

i find the prime factors of an integer;
> ifactor(123454321);

2 2
(41) (271)

'factor a poynomial over the rationals:
> factor(x~4-4):

2 2
(x - 2) (x + 2)

f solve an equation:
> roots := solve(x"'3+xA 2=S*x+2,x):

1/2 1/2
roots := 2, - 3/2 + 1/2 5 , - 3/2 - 1/2 5

TIt 2 -3±V5 Th 1e roots are , ' z- . ey so ve

x3 + x
2 = 5x + 2.
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> roots[l]i
2

> roots [2]:
1/2

- 3/2 + 1/2 5

> roots[3];
1/2

- 3/2 - 1/2 5

# change the precisiori;
> Digits := 20;

Digits := 20

> evalf(roots[2]);
-.3819660112501051518

-3±V3 . 1·This is z-- to 2.0 decimal paces.

> Digits:=10;
Digits :=. 10

> evalf(roots[2]);
-.381966011

# expand a polynomial;
> expand'( (12*x) "'5) ;

5
248832 x

#define a function;
> f := x/«x+1)*(x+2»;

x
f := ---------------

(x +1) (x + 2)

1

x + 2
+ 2

1

x + 1

* express f as a partial fraction decomposition;
> convert(f,parf~ac,x);

* evaluate limits;
> limit(sin(x)/x,x=O);
bytes used=410936, alloc=163840', time=2. 240

1

The numerical evaluatio~ took 2.24 units of CPU time.
f calculate sums;
> sum(rA 2,r=1 .. n);

3
1/3 (n + 1)

2
1/2 (n + 1) + 1/6 n + 1/6

* differentiate a function;
> diff(sin(a*x"'2),x);

3 2
12 + 22 + + 2 = (n+ 1) _ (n+ 1) + n+1... n --r- ---z- ~.

2
2 cos(a x ) a x
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t indefinite integration and definite integration:
> int (In (~) /x,x) i

2
1/2 In(x)

J<ln xf#- => ~ln x)2 [+ oonst].

> int(ln(x)/x,x-1 .• 2)i
bytes used=813416, alloc=286720, time=4.730

2
1/2 In(2)

I load the linear algebra package for matrix calculations:
> with(linalg);
> a: =array ( [ [1,2,3] , [0,1,4"1 , [1, 1,1] ] ) ;

[ 1 2 3
[

a '= [ 0 1 4
[
[ 1 1 1

> det (a) ;
2

> inverse(a);
3/2 1/2 5/2

2 -1 -2

1/2 1/2 1/2

i solve a system of linear equations ax=b;
> b:=array([1,2,3]);

b := array(l •. 3,[1,2,3])

> linsolve(a,b)i
bytes used=1213700, alloc=385024, time=7.770

array(l .• 3,[7,-6,2])

> writeto(terminal);

Computer Algebra and Einstein's Equations

To get a feel for the immense importance of computer algebra in scieptific research,
consider Einstein's theory of gravity. This is based upon the replacing .of· our ordinary
concepts 0' space and time by a four-dimensional "space-time" which is. warped. by the
presence of matter. The complicated geometry. of this. "space-time" is described by
Einstem'sequations. Their appearance is deceptively simple. They are written "

RJ1V =o. (1)

However, J1 is a shorthand symbol and may take the values 1, 2, 3, 4 and the same
is true of V. Thus, Equation (1) is not just one equation, but· a set of sixteen·

... t .
equations , I.e.

t Actually ten, because R
21

is the same as R
12

, etc..



136

R
11

=0, R
12
~ 0, .H, R

14
=0, ..., R

44
=0.

But now each of these equations is much more complicated than it looks. For example,

R11 is the· sum of fouf separate termst

and each of these terms is itself the sum of more tenns. E.g.

R
2 =r -~. +r r l +r r

121 11,2 12,1 12 11 22 21

(2)

(3)

As if this were no.t enough, each of the symbols r 2' r etc. is itself the sum
4 11,2

of more tenns. E.g.

2fiZ1 =g31(glZ,I+g11,2-gZ1,1) + g32(gZ2,1+gZl,2-gZ1,2) + g33(g32,l+g31,2-g21,3)

+ g34(g42.1+g4i,2-gZI,4)

All in all, there are about a thousand separate terms in the eXl'ression for

alone!

(4)

It is the various quantities represented by the different symbols involving g that
we wish to fmd. These represent the curvatures of the "space-time" as it is buckled by
the influence of matter.

Without going into any more detail, we hope you can see that dealing with Einstein's
equations isa very tedious, time-consumirig and complicated process in which it is
extremely likely that one will make "careless" mistakes! The development of computer
algebra packages which can execute - in a. matter of minutes - all the sums, products and
derivatives of the symbols involved in Einstein's equations makes life incomparably easier
and more pleasant for relativity workers. It also enables. us to tackle new problems that
would have been impossible without symbolic computation packages. Thus, the development
and application of such packages is at present an exciting and major research area.

* * * * *

t Don't worry about the meanings of all these different symbols. Just appreciate the
enonnous value of a comp~ter algebra program 'Yhich does so much of the hard work!
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Our thariks to Pete Biran fo( this cartoon.
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HYPERSPHERES

Karl Spiteri, Student, University Of Melbourne

A sphere of radius a and centred on the origin has the equation

and from this it may be detennined that its volume is given by

4 3
V = 3"1ta .

(1)

(2)

The sphere is a three-dimensional object which has a two-dimensional 'analogue, the
circle. A 'circle of radius Q, centred on the origin, has the equation

and its area, the two-dimensional equivalent of volume, is given by

A = 1ta
2

•

We may imagine a one-dimensional analogue of Equations (1), (3):

2 2
X = a .

which is a line-segment of length (the one-dimensional analogue of volume)

L = 2a.

What happens if we go up to 4, 5,... dimensions?

In four dimensions, we would have, ana1ogousl~ to' Eq~ations (1), (3), (5),

(3)

(4)

(5)

(6)

(7)

ana this 'equation defmes a four-dimensional hypersphere. We can use calculus to fmd a
four-dimensional hypervolume (H

4
) . for this hypersphere. The result is

Similarly in five dimensions we fmd

2
H 81t S. s=n- a .

(8)

(9)
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In general we fmd

H =V ann n

where Hn- is the hypervolume in n-dimensional space, and Vn is some number depending on

n.

Here is a table for V:n

n Vn

1 2 =2

2 1t = 3.14 ...

3 41t = 4.18 ...:r-
4 1t2 = 4.93 ...r
5 81t2 = 5.26 ...IT

6 1t3 = 5.16 ...0-

7 161t3 = 4.72 ...llB

-8 1t
4

= 4.05 ...24

9 321t4 = 3.29 ...943"

10 1t
s

= 2.55 ...T2U

It is interesting to note that V at frrst increases, reaches a maximum at n ~ 5n -
and decreases thereafter. See the graph overleaf.

I was interested to get a general formula for Vn. We may use calculus to prove the

formula

(12)
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We may also use Equation (11) to give'a formula for V0' which is rather hard to

imagine. We fmd however that Vo = 1.

When n is odd, n =2m - 1, for some m. Looking at the odd entries in the table
we see that they suggest the formula

2m1tm-1
Vn = 1.3.5 ..... n .

Since n =2m - 1, m =~n+l). So

~n+l) i(n+l)
'Vn = 2 'It / 1.3.5...·.n

(13)

(14)

This .fonnula may also be rigorously proved, but I will not do this here.

Equations (12), (14) allow us to show that Vn ~ 0 as n ~ 00 and t:his feature is

shown in the graph above. We can check this numerically also: V
100

= 1t
so/501 andthis

figut'e works out to be less than 2.4 x 10-4°. (In 100 dimensions, a hypersphere occupies

only a miniscule fraction of the hypercube that surrounds it!)

'The graph suggests that it.may be possible to investigate Vn for fractional n,

but 1 .have not looked closely at this. However, I did investigate Sn' the

generalisation of surface area. Sn (for integral n) is maximised when n =7 and it

also b'as a limit of zero as n ~ 00.

Strange and interesting things happen in multidimensional worlds: very often
contrary to our "3-D intuition".

Volume

6

5

4

- 3

2

2 4 6 8 10 12 14 16 dimension
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LIFE IS NOT MEANT TO BE ALWAYS PALINDROMIC

Hans Lausch, Monash University'

Spelling words from back to front may be fun, when one is very young. If that fun
persists for an intolerably lengthy' period, it" is called dyslexia. This phenomenon is
deeply rooted in history as a concomi~t of many cultures. In the days of the Roman
Empire, it was noticed that ROMA was read AMOR by (lyslectics; and vice versa. Almost
certainly, numerous Romans "struggled with the pairings IV - VI, IX - XI, XL -LX etc. Of
course, we· have. our own problem when confronting the unlucky number 13 and having to
read it as "thirteen" instead of "ten-three"; reading "24" is much' easier! Some comfort
migbt be derived from observing that sChool students speaking German are worse off. Even
"24" has to be read by them as "viemndzwanzig", literally "four-and-twenty" which is
truly Shakespearean.

Living in 199t is a veritable blessing. Back-to-front is as good as front-to-fro~t in
the reading of 1991.. Morevoer, 1991 is the produclof the primes 11 and 181, which are
equally good in this regard. When it comes to words, would anyone dispute the symmetries
in "madam"? And there "are whole sentences of that sort, too. My colleague John Stillwell
has kindly written out for me a couple of sentences which pffer no fresh infonnation to
readers, "should they run over them again, backwards and letter-by-letter: the
programmatic "A man, a plan, a canal - Panama!tt and the de9icated "Nonna is as selfless as
I am, Ron."

"Running back again" is one meaning of the English word "palindrome", related through
classical Greek to "palingenesis", re-creation, and to "hippodrometf

, hor~ run. " Feeling
fainiliar with palindromes, be they numbers, words or sentences, we" wish to generate them
from non-palindromes. Prima facie, numbers are excellent material for such experiments·.
The smallest interesting number for ourex.periments is 12. Turned around, it becomes 21.
Adding these two numbers creates "compensation" and, not surprisingly, we get as sum "the
palindrdmic number 33. Our scheme fails when we reach 19,8s 19 + 91 = 110; this is 011
read backwar4s.Continuing,we"add once. more, J10 -+011, .and note, with satisfaction, the
result: the palindromic number 121. rry 59: 59 + 95 = 154; keep. going:
154 + 451 = 605; fmally 605 + 506 = 1111, what a palindrome! After a series of
trials, we may" ask whether·every number sooner or later gives rise to a palindrome in this
way. I do not know the answer.

So far we have worked in the decimal system. Switching·to the simplest number
system,. the binary, the question remains valid. The only digits in the binary system are
o and 1, and 'binary addition is easily learned. Just as in the decimal system, one
number is placed beneath the other; the work starts at the right-hand end, and attention
must be given to the transfer of occasional "carries", I.e. of ones. ·The example

111011
+ "1110

1001001

includes all points which require attention.

Let us· try to generate palindromes.as before, this time in·binary. Commencing with
1101, say, leads to the following sequence of additions:
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1101
+ 1011

IIUOO
+ 00011

non, a palindrome!

Or, if we choose 11001 as our "seed", our calculation, although not as short, isstill tennfuated by a palindrome:

11001
+ 10011

lUTIOO
+ 001101

lTIOOI
+ 100111

ITOUOOO
+ 00000'11

rruourr~

Nonetheless, there is a number that does not. cause. a binary palindrome, however oftenwe repeat. our procedure. . It is 10110, whose decimal equivalent ironically - ispalin4romic 22. How can we see this? The initial four additions are:

10110
+ 01101

lUOUIT
+ 110001

mroIOO
+ 0010101

rnmJOI
+ 1001011

10110100.

So far, so bad. We shall write a sequence of n ones as 1(n) and a sequence of n

zeros as O(n); in this new notation, our latest sum reads 101(2)010(2).

We now demonstrate that four further steps applied to 101(n)010(n), where n is
any integer greater than 1, will produce .101(n+1)010(n+1) with no palindrome arising
intermediately. Our procedure in this case will therefore .create fourpattems ofbinary numbers which get ever longer and never palindromic.

To facilitate the subsequent additions, we present 101(n)OlO(n) in the equivalent
form 101(n_2)11010(n_2)OO. The fIrst two steps are:
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+

lOl(n_2)1 l010(n_2)OO
+ OOO(n_2)10111(n_2)Ol

110(n_2)10001(n_2)OI
+ 101(n_2)OOOI0(n_2)11

1011(n_2)10IOO(n_2)OO

or, re-written, 101(n_2)110100(n_2)OO.

The third and fourth steps yield:

101(n_2)110100(n_2)OO
OOO(n_2)OlOlll(n_2)OI

110(n_2)OOI011(n_2)OI
lOI(~_2)101000(n_2)11

l011(n_2)110100(n_2)OO,
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which, simplified, reads 101(n+l)OI0(n+lr And this is the. number we have been after.

Thus life is not meant to be always palindromic - in bin~ at least.

* * * * *
COMPUTER SECTION

EDITOR: R.T. WORLEY

This computer section contains an article submitted by Karl Spiteri, and he dedicates
it to Dr J. Upton, one Qf his frrst-year lecturers at Melbourne University, who died
earlier this year. Karl's program requires arithmetic'- to be .done to a higher precision
than that available with DonnaI computer languages such as standard BASIC, so he ..treats a
number as an array of digits, storing each digit in a separate array location. Arithmetic
is· done by mimicking the standard long multiplication/long division routines.

The idea for this work was completed in year 12 (1989), yet the program was modified
late last year. In year 12 I came across a book by M~ Gardner, in which was contained
a problem which I solved by this program. The problem concemeq factorials, namely:-

"How many trailing zeros are there in 10001 ?ft

Martin Gardner's book contained printouts of all the digits in various factorials. I
wrote a program to do this, and from this arose other ideas.

The program is written in BASIC, and can easily be modified to suit any machine. As
submitted it runs on an mM PC. The fundamental idea is to use arrays to store individual
digits of numbers in to allow manipulation. There is room for modification and
improvements, ~ch as
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• Storing mote than just one digit per array location.
• Graphing the number distribution.
• Printing out the result in square, hexagon, triangle or diamond· pattern (as

in Gardner's book).

The fundamental method used in the program is as follows. The program calculates in
turn 2!, 3!,. 4!,...,(N;;.I)!, N! by using the property that I! = I x (I-I)!. The digits of a
number are stored in an array. For example, 8! =40320 is stored as

~digits(3)

" .r-digits(1)

<~E]~E[J
The number of digits (5, in the case of 40320) is stoted in the variable LENGTH. To

progress to 91 = 9 x 8! this number is multiplied by 9 in the standard "long
multiplication' way.

."!ElM
3 0 2 1 ~ Carries

x9

...~

Multiplication is perfonned by

NEXDIG =DIGIT(PO) * 9 + CARRY

where CARRY is the amount carried forward from the previous digit multiply. This is broken
down' into the digit

DIGIT(PO) = NEXDIG MOD 10

and the. carry forward to the next digit

CARRY = NEXDIG \ 10

(note that 'Y in IBM BASIC is integer division - for example 10 \ 3 = 3). There may be
carry out of the top digit, in which case the length of the number increases.

The number of trailing zeros could be determined easily by counting their number.
However there is a simple formula. which it is quicker to use. This is based on repeated
division by 5. For example 999! has 246 trailing zeros since

199+ 39 + 7 + 1 =246.
and

999/5 = 199.8
199/5 = 39.8·

. 39/5 = 7.8
7/5 = 1.4 (we stop here as 1 < 5)
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The factorial program can easily be modified to calculate l/(n!)- instead of long
multiplying the digits of a large integer by n. we long divide the digits of a decimal
number by n. However while an integer has an obvious length a decimal number such as In :;:::
0.142857142... has no obvious length~ In this case we need to specify the number of digits
to be used. For example, if we represent In using 10 digits we would use a. representation
similar' to the one factorial program used, except that we read the digits from· from right
to left with an implied decimal point after digit(I), and that there is a fixed length.

~digits(3)

'" c:.gits(1)

~
imagined

decimal point

The second program calculates the sum

111 1
1 + IT + If +-Jr + 0.. + liT

which is a close approximation to Euler's number e if· n is large. The reciprocals of the
factorials are calculated as above, and added. The length used for the numbers is four
more than the number of digits of e that are required to be ·printed. Analysis of the error
caused by truncating at this many digits shows that the last digit .of the sum printed will
nonnally be correct, and can only be 1 too small if it is not correct. This' assumes that
the limit of 1142 on the number of terms is enforced.

10 REM +++++++ I I I I 1 I 1+++++++++++++++++++++++++++++++
20 REM ++ FACTORIALS ++++ by Karl Spiteri ++++++++++
30 REM ++++++++++++++++++++++ I I 1'1 I t I I +++++++++++++++
40 REM ++ modified for FUNCTION by R.T.Worley +++++
50 REM+++++++++++++++++++++++++++++++++++++++++++++
60CLS
70PRINT"PACfORIALS. By Karl Spiteri"
80 DIM DIGIT(3000): REM allows up to 1142!
90 PRINT "This program calculates the factorial of a number you enter"
100 PRINT "(nt =n(n-l)(n-2)...3.2.1 )": PRINT
110 INPUT"Ellter the number";NUMBER
120 IFNUMBER<O THEN PRINTItOnly numbers >= 0, pleaseu

: END
130 IF INT(NUMBER)<>NUMBER THEN PRINT"Only whole numbers, please": END
140 IF NUMBER> 1142 THEN PRINT"Sorry - numbers> 1142 not allowed": END
145 TIME$="OO:OO:OO"
150 REM Initialise (BASIC sets all array elements to zero - assume this)
160 DIGIT(I)=1
170 LENGTH = 1
180 REM Calculate factorial
190 FOR 1=2 TO NUMBER
200 GOSUB 1000
210 NEXT I .
220 REM print number, number of digits and trailing zeros
230 GOSUB 2000
240 REM print occurrences of each digit
250 FOR 1=0 TO 9

. 260 GOSUB 3000
270 NEXT I
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275 PRINT "elapsed time:";TIME$
280 REM done
290 END
999 REM multiply digit array by i (assumes i*lO+carry < max integer)
1000 CARRY = 0
1010 FOR PO=I TO LENGTH
1020 NEXDIG=DIGIT(PO)*I+CARRY
1030 DIGIT(PO)=NEXDIG MOD 10
1040·CARRY = NEXDIG\10
1050 NEXT PO
1060 REM Carry out of last digit increases length
1070 IF CARRY=O THEN GOTO 1200
1080 LBNGTH=LENGTH+l
1090 DIGIT(LENGTH)=CARRY MOD 10
1100 CARRY = CARRY\10
1110 GOTO 1060
1200 RETURN
1999 REM print number and calculate number of trailing zeros
2000 TZ=O
2005 PRINT'.'factorial('t;NUMBER;tt) is
2006 GOSUB 4000
2010 N=NUMBER\5
2020 12 = 1Z+N
2030 N=N\5
2040 IF N>1 THEN GOTO 2020
2050 'PRINT NUMBER;"! has";LENGTH;"digits and";TZ;"trailing zeros:'
2060 RETURN
2999 REM cal~ulate and print number of instances of digit i
3000 NO = 0
3010 FOR PO=l TO LENGTH·
3020 IF DIGIT(PO) = I THEN NO = ND+1
3030 NEXT PO

\ 3040 PRINTttthere wereft;ND;"occurrences of digitft;I
3050 RETURN
3999 REM print number itself
4000 D$="0123456789" .
4005 FOR PO = LENGTH TO l·STEP -1
4010 PRINT MID$(D$,DIGIT(PO)+I,l);
4020 NEXT PO
4025 PRINT .
4030 RETURN

10 IUBM +++++++++++++++++++++++++++++++++++++++++++++
20 REM ++EULER'S NUMBER ++++ by Karl Spiteri ++++++
30 REM+++++++++++++++++++++++++++++++++++++++++++++
40·· REM ++ modified. for FUNCTION by R.T. Worley +++++
50 REM+++++++++++++++++++++++++++++++++++++++++++++
60 CLS
65 PRINT"Euler's Number [e]. By Karl Spiteri"
90 PRINT "This program 'calculates the approximation to e given by"
95 PRINT"l + 1/(1!) + 1/(2!) + 1/(3!) + ... + l/(n!)"
100 PRINT: INPUTItWhat value of n is to be taken";NTERMS
115 IF NTERMS < 2 THEN PRINTttAt least 2, please":ENU
120.INPUT"How many decimal placestt;PLACE
130 PRINT"Working...1t

135 TIME$ = It00:OO:O(y'



140 PLACE = PLACE+5
150 IF PLACE> 1142 THEN PRINT"Sorry - places> 1137 not allowed": END
155 IF PLACE < 6 THEN PRINT"at least one place needed":END
160 DIM,TE~(PLACE),E(PLACE)

170 REM Initianse(BASIC sets all array elements to zero - assume this) .
175 B(I)=2: TBRM(l)=1
180 REM Calculate terms and add on to e
190 FOR DIVISOR=2 TO NTERMS
200 008OOJOOO: OOSUB 2000
210· NEXT DIVISOR
220 -REM print re~lt
230 GOSUB 3000
275 PRINT "elapsed time:";TIME$
280 REM done
290 END
999 REM divide digit array by divisor (assumes digit array is number<10)
1000 CARRY = 0
1010 FORPO=l TO PLACE

. 1020 TOTAL = CARRY*10 + TERM(PO)
1030 TBRM(PO) =TOTAL\DIVISOR
1040 CARRY:;: TOTAL MOD DIVISOR
1050 NEXT PO
1060 RETURN
1999 REM add number less than lOin termO to number < 10 in e(). Result < 10
2000 CARRY = 0
2010 FOR PO=PLACE TO 1 STEP-l
2020 TOTAL = E(PO) + CARRY + TERM(PO)
2030 E(PO) = TOTAL MOD 10
2040 CARRY =TOTAL \ 10
2050 NEXT PO
2060 IF CARRY>O THEN PRINT"Error - result overflowed": END
2070 RETURN .
2999 REM print result
3000 D$="0123456789"
~QJQ·:·:PlUNT.MID$(D$,E(1)+1,1);
3020 PRINT '''.'';
3030 FOR PO = 2 TO .. PLACE-4
4010 PRINT MID$(D$,E(PO)+l,l);
4020 NEXT PO
4025 PRINT
4030 RETURN

* * * * *
Thinking Mathematically'

Mathematics is a subject which one can learn best by creating it
oneself, by being excited about -learning it, by knowing its great
achievements of the past and its great promises for the future, by
willingness to climb .intellectual mountains and by eagerness to
fonnulate mathematically problems of physical, social, biol~gical and
management sciences.

J.N. Kapur
(fonnerly President of .the

Indian Mathematical Society)
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LETTERS TO THE EDITOR

Graphical Construction of Complex Roots

I was interested to read the article on Tanaka's "Shadows" (Function, Vol. 15,
Part 3), the more so as I had a similar 'idea some years ago. This was published in
The Australian Mathematics Teacher, Vol. 36, No.3 (Oct. 1980).

In that article, I showed that the parabola

y = (x - a)2 + b2,

which has complex roots a ± ib, intersects the line y =2b2 at the points a ± b. The
article then goes on to show that the cubic

with roots c, a ± ib intersects the line

at the points c, a ± b.

You will notice the similarity between the two methods.

My effort was prompted by something I read in The Australian Mathematics Teacher
round about 1950 or perhaps before.

Gamet J. Greeribury
Brisbane

The Geometric Mean

In his concludmg remarks, K. Evans (Function, Vol.lS, Part 4) pointed .out that three
of the four means he had discussed (the arithmetic and harmonic means and the root mean
square) are special cases of the power mean (of two positive numbers Xl' X

2
) dermed by

(1)

Specifically, the arithmetic and harmonic means and the root mean square correspond
to the cases n = 1, n =-1 .and n =2 respectively.

We would like to point out that there is a sense in which the fourth. mean. considered
by K. Evans, namely the geometric mean, can also be regarded as. a special case of the
power mean, corresponding to n = O. Of course, we cannot just put n = 0 in Equation
(1), since the expression would be undefmed; however, it is the case that



limo M(n, xl' x2) = VXtXi
n~

where the right hand side is the geometric mean of X 1 and x
2

•
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(2)

If we are prepared to take for granted that this limit exists, then Equation (2) can
be established as follows. First observe that

[

(X Ix )n12 + (x Ix )-n/2 ]
=V'XX 12 12 •

1 2 . 2

Therefore it is sufficient to show that

Inn [_vn_I_2_; v_-_n_12 ] I/n = n

where v > o.

. [ vn/2 + v-n/2 ] lin
Let L =hm . Now put m = -nto fmd

2 .

[

V -m/2 +2 V
ml2 ]-l/m

L = 1im
m~o

Hence L2 = 1. Since the limit clearly cannot be negative, we must have L = 1.

Peter Grossman, Keith Anker
Monash University, Caulfield

* * * * *
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HISTORY OF MATHEMATICS SECTION

EDITOR: M.A.B. DEAKIN

From Two To Three To Four And So On

In the first of these columns this year (Function, Vol. 15, Part 1, pp. 19-21),
I looked ~t the very earliest beginnings ·of counting. We saw that the fIrst counting
systems went: one, two,- many. Every culture in the .world knows these concepts;
every language has words for them. However, not ·all cultures have made what one
influential author (Menninger: author of Number Words and Number Symbols) calls
"the step to threet

'.

The rest of this article is speculative - like the earlier column it predates
history, the era for which written records are available. Some parts are more speculative
than others and I will try to" indicate at each stage what is securely known, what is clear
deduction from that, .and what is speculation going rather beyond what the available
evidence can tell us. ."

Let us begin with the Australian language Gumulgal. ·Gumulgal is spoken in far North
Queensland and it has the following number-words:

4 =ukasar-ukasar.3 =ukasar-urapon1 = urapon 2 =ukasar

Two points may be made:

(a) The number 2 (u/casar). acquires a special status. Anthropologists refer to
GUlllulgal as having "a base of two. This is not quite the same use of the term

"base" as that technically employed in Mathem~ticst, but it has a reasonably
close similarity to that use;

(b) Gumulgal may be classified as a "one, two, three, four, many" language.

Put these two points together. It looks very much as if an early "one, two, ,many"
language evolved into today's more developed Gumulgal.. As· Menninger puts it: the two,
once a limit of counting, .now becomes a base, and the limit of counting is shifted out to
four. More recent linguistic research among Australian languages (the best basic material
for this work) verifies this almost to a certainty.

. This leads to a further question. In the earlier article I found evidence, still
persisting after all these millenia, of our own ancestors' use of a "one, two, many"
system in its faint echoes in today's English. Is there, correspondingly, evidence of
"one, two, three, four, many" system?

The answer is - yes, there is; but we have to go outside English to fmd it. Recall
from the earlier article that English is but one of a· very large number of related
languages, together making up the Indo-European family of languages. So is there evidence
among the Indo-European languages of there once having been a limit ·of counting of four?

tSee Function, Vol 9, Part 1, pp. 8-12.
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And there is -.overwhelming evidence in fact. We saw earlier that our early
ancestors, speaking a language now called; Proto-Indo-European (PIE) changed the form of
the word according to· whether. it was singular,. dual. or .plural (one, two or many). The
fonn also varied .with ·the gender (ma.sculine, feminine or neuter - i.e., approximately,
male, female or inanimate) .of the thing the word descri!Jed~ To complicate matters
further words have changes in their pronunciation and spelling depending on their status
(called case) in a .sentence. Thus, compare:

I asked her to call !lis dog
She asked me· to call his dog
He asked her to call my dog

etc., etc.; etc.

Even over and. above these complications, we distinguish naming-words (technically
called "nouns" or "pronouns"), such as I've been talkipg about till now, from "adjectives"
(describing-words) like "red" or "nice" or "small", etc. All the complications described
above apply also to adjectives.

Now here comes the crunch. A describing adjective in pm had to agree with its
described noun in. respect of number (one, two, or many), gender and also case. So if we
talk of (e.g.) a happy man, the word· happy must· be singular and masculine to agree with
man (as opposed to men, woman or women) and must also agree as to case - Le.. its value in
the sentence. .

So, after the disgression, back to numbers. Are our number-words nouns or
adjectives? That is to say, do we have· things called "twos" or two-type· things? Let us
leave the' philosophers to try to sort out the ultimate truth, if any, .behind this
question. The plain fact is, however, .that PIE-speakers had,. rightly or wrongly, a clear
answer to it.

Their answer went like this

The numbers 1, 2, 3, 4 were adjectives;

The numbers 5, 6, 7, ... were nouns.

How do we know this? .. Well, start with Sanskrit, the best preserved and most faithful
descendant of PIE. In Sanskrit, if masculine things were being couDted; the fIrst four
numbers went: ekah, ·dviJ trayah, .chatvarah. If the objects were feminine, .. however, the
numerals were eka, dvi, iisrah, chatasvarah. Relics .of this exist in the Celtic
languages (e.g. Welsh has pedwar (masculine) / pedair (feminine) for Ufourn).A remnant
may be found in French: un (masculine) / une (feminine) for "one". We had it in English
until relatively recently. "Two" is the feminine form; .the now archaic' 1ftwain" was
masculine. These considerations never apply to numbers above four.

Other Indo-European languages distinguish the frrst four numbers from the others in
different ways. In Bengali, the .number words for two, three and four. modify when they
compound with nouns· (as number-words may in that language). In the main, those for five,
six, etc..do not.

Menninger notes similar breaks in Latin in the naming of children and in aspects of
the calendar.

But by fat the clearest case comes from the Slavic languages. It even has a
technical name, being called the "Slavic. squish". ("Squish"" believe it or not, is a
technical tenn in ·linguistic theory.) It takes a number of fonns - for more detail, see
Menninger or Language and Number by J.R. Hurford. Two examples will suffice. In Czech
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one says "Two and two are four" but tfTwoand three ·is five" The total modifies the
previous word. . In Russian, they say "One housetf

, but "tWo, three or four of house" and
"five, six, etc. of hou~es".

All these linguistic peculiarities are seen as constitUting strong evidence .for the
suggestion that four was once the limit of counting. It seems reasonable to assume that
it became·a limit of counting by pressing two into service as a base, much as in Gumulgal.
However there is no direct evidence for this.

The PIE word for four was *kwetwores (the .asterisk indicates that this is a word
reconstructed by linguists - there is no direct evidence for it as writing was not
invented back then). There have been many attempts to see where this word comes from, but
they are highly speculative and do not carry ~onviction. However, despite this
dissappointment, it seems most·' likely that· the limit of counting was reached via a
doubling of the previous limit (two) which was pressed into service as a base.

There is some very slight evidence that this process recurred: four becoming· the base
and eight the limit of counting. The PIE word for eight was *oktou and this,
grammatically, is a dual form. It means "two oks", whatever "oks" might have been. The
dual, as we saw in the earlier article, has all but died out in modern Indo-European
languages. . However in Lithuanian it survives with judu (masculine) and judv; (feminine)
meaning "you two". The case of *oktou looks very similar.

The only trouble is that we have absolutely no idea what, if anything, an IIok" might
have been. It doesn't seem to relate in any obvious way to *kwetwores and other
suggestions like "hand not counting thumb" are totally unsupported by any direct evidence
whatsoever.

11tere is another faint suggestion of eight's once having been the .limit of counting.
'This is the PIE word *newm for "nine". This is almost identical with the PIE word for
Itnew" (compare the Latin novum) and this would suggest that the original meaning oftfnine"
was "the new number".

According to the foremost authority on the PIE numerals, Szemerenyi, we do not for
the l1l()s~:RaI1 hav~ anY i.9-ea where me ~113 nU:lIl~r-'Y()rd~ c()me ft:olD~· I~ only a few cases
does he offer suggestions. One of these· is the newm - novumcorihection. .His ten.tative
acceptance of this is all the more interesting because in taking this stance lie is in part
disagreeing with his own theory, which is that the PIE base ten system was preceded by a
base five system.

The PIE word for "five" was *pf!nkwe and those who, like Szemerenyi,· argue for an
earlier base five system tend to see this· as related to our words "fmger", Ufisttf and the
like. This is '.highly disputed. Some linguists, relying especially on .the Slavic
languages, accept the connection; others discount it.

I have myself put forward a (very tentative) suggestion as to another origin for
*p~nkwe. In PIE the .suffix -kwe could be added to the end of a word to give the same
meaning as that achieved in English by putting· "and" before the word. Thus *penkwe should
mean "andpenlt or very possibly "and pem" (m's become n's before k). So what is pen- (or
pem)? .,

Well PIE had tWo words for "one". There was *oykos (alternatively *oynos) and there
was 8lso *sems. (*sems is the origin of our word "simple" meaning literally tlone-fold". It
also crops up in words like tfsemi-fmal" in' which it adopts a special meaning, often
associated with it,. "one of a pair". *sems becomes hems in Greek and so, again as Qne of
a pair, we have "hemisphere" and the like.)
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Suppose *sems, following standard rules of phonetic change (see the earlier article),

became *pem. Then *penkwe would mean "and one". That is to say tt(four) and one".

Rather remarkably, something very like this has happened in our oWn counting numbers
and shows the effect of going~yond ten. We say "eleven" and "tw~lve1t instead -of
following the usual pattern, which would give "oneteen" and "tworeen" r~psectively.

"Eleven" derives from ein..lif, which means and sounds like "one left (over after ten)";
similarly "twelve" derives from zwO-lif, i.e. "two left".

Thus my suggestion is that *penkwe is .similar, but relates to a limit of counting of
. four. '

There is, to sum up, evidence that at one stage the limit of counting was four. This
is quite widely accepted, and it is' very plausible that at flI~t this used a base of two.
It is also very clear that now we use a base of ten. What is far from clear is what
happened in between. -Did four become in its tum a base, as I suggest? Or did a new base
of five arise, as Szermerenyi thinks?

We don't really knoW the answer to this. There is some very sketchy evidence in
favour of the base four theory and some (in my view even sketchier) evidence for base
five. This latter, of course, leads more readily to base ten. Ten is a logical base to
use. Mathematicall¥ it is good (see Function, Vol. 9 Part 1, pp. 8-12), and we do have
ten fmgers. Only two cultures of 'advanced numeracy (the Babylonians: Function Vol. 15,
Part 3, pp. 85-91 and the Mayans: function, Vol. 12, Part 4, p. 98) have ever used any
base other than ten.

It is entirely possibly that there were several routes _to base ten. Possibly there
was a period during which :different bases co-existed. ,This happens in Kuallua (the
language spoken around Rabaul) where two and jive coexist as bases. Some Indo-European
languages show signs of bases other than ten~ French has vestiges of a base twenty
system. Welsh (Function, Vol. 8, Part 1, pp. 18-25) shows glimpses of a base nine, and
the related Breton language of both six and nine as bases.

The more we fmd out, in other words, the -less we seem to know.

* * * * *

Modular Arithmetic?

Lucette [perea] was forty-six, half a dozen years younger than [her husband]
Jean Paul Sentenac ... was fOUf years older than Perea and younger than Lucette by
ten .

Leonard Gribble, Notorious Crimes, pft87.

* * * * *
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PROBLEMS AND SOLUTIONS

The specialist editor of this. section is away overseas and so we use the column to
give solutions to some long outstanding problemso Eds.

SOLUTIONS

Problem 12.1.1 (proposed by F.e. Klebaner).

It is a well known fact that if -1 < q < 1 then 1 + q + q2 + ... qn tends to

1r=q as

Let (an) be any sequence of numbers that converges to q. Show that the limit of

the sum does not change if we replace q by on' q2 by a a and so on; qn wen n-l .
replace by an an_t ato

Namely show that

SOlution. This problem requires two things to be shown. First it must be
established that

tends to a limit at all as n ~ co. This is actually the hard part and neither Dr0

Klebaner dnot wehaveobeenable ~toproduce a proof that'is both complete and elementary.
However, if we abbreviat~ this expression by the notation Sn ' .then we may also' write

It now follows that

S=I+oS.n n n-l
(*)

This equation does allow a fairly ready proof that the limit exists (via a technique known
as the d'Alembert ratio test - we omit the details) if -1 < q < 1. Once it is known
that the limit exists, we have Sn ~ S (say) as n ~ co. No~, as n ~ co, an ~ q.

Thus Equation (*) may be approximated by

S=I+qS (t)

and this approximation can be~ome arbitrarily good merely be taking n large enough. The
solution of Equation (t) is S = 1 / (1 - q) as required.
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Problem 12.3.1 (proposed by Michael A.B. Deakin}o

Today (28.3.'88) I visited Calcutta's Birla Museum of Science and Technology and saw
a device. which consisted of a lozenge-shaped base on each leg of which stood a
triangle,

o 8

-B'

A B-

A

all four triangles being congruent. On this base, a double cone rolled with its axis
parallel to BO. It appeared to roll ttuphill!t - as it came to equilibrium- with the
axis vertically above BD. What condition(s) must hold for this motion to occur?

Solution. Figure 1 gives a 3-D drawing of the base, and Figure 2 shows a view from
above.

A

Figure 1

toe

Figure 2

Use notation as shown in Figure 2. Then

d =x sec 9 w = x tan 9.

When the cone has its axis as shown in Figure 2, that axis will ~ at a height y above
the plane ABeD. This is made up from two· components: the height y1 of the frame at

that point and the thickness y2 of the cone. See Figures 3, 4 for diagrams that allow

us to calculate yl' Y2. Use the notation of those figures.
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a
A

h

Figure 3

From Figure 3,

and from Figure 4,

y =a + d tan <i
1 " .

y2 = (h - w) tan 13·

Figure 4

Now, putting all the equations together, we get '

Y = Y1 + Y
2
="(h - x tan 9) tan J3 + a + x sec 9 tan a

Le.

y= (h tan J3 + a) + x (sec 9 tan a - tan 9 tan p).

Now the axis of the cone must really roll downhill, and so the coefficient of x
must be negative. That is to say:

sin ~9 tan P> tan <l.

This is the condition under which the· device can operate.

Although the cone rolls, as it must, downhill, -the optical illusion that it rolls
uphill is very strong. Devices· not unlike this are sold from time to time in Melbourne
toyshops.

Problem 12.3.2 (proposed by Michael A.B. Deakin).

If n is a non-negative integer, then n! is a defmed integer, given by O! = 1,
I·! = 1, 2! =2, 3! = 6, etc. Let n? satisfy n?! = n!?, . where n? is to take
positive integral values (or zero). What values can n? in" fact take?
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Solution.

Since 01·1 =0!1, 01! = 11

and since. 11! = If1, 11! = 11

Thus 11 is a number satisfying the equation

n! = n.

(1)

(2)

(3)

There are only two such numbers: 1 .and 2. Thus either I? = 1 or 11 = 2. If
11 = 1, then by Equation 1 we have '01! = 1 and so 01= 0 or 1. If on the other hand
11 =·2, then 01! = 2, and so 01 = 2.

Now 21! = 2!?, so 21! = 21 .

In other words 2? satisfies Equation (3) and so 2? = 1 or 2.

Thus for the frrst three values of n we have the possibilities:

(4)

o

o or 1

2

11

1

2

21

1 or 2

1 or 2

a total of 6 separate solutions so far.

For higher values of m~ thepossiblities are infmite. 3 is not a factorial number
and so ·31 may be assigned arbitrarily. Set· 31 =m. .Similarly put 41 =p, 51 = q.
The next number, 6, is a factorial number: and so we have, because 6 = 31,
61 =3!1 = 31! =m!. Similarly 241 =p! and 120? =ql. Thus we may continue,
assigning valu~s·qarbitrarily,exceptin'lbe .·caseofthe factorial .numbers:" 1, 2, 6,24,
120, 720, 5040. 40320, 362880, etc. and, as we have seen, there are also restrictions on
the value of O?

Prob.lem 12.4.1 (pro~osed by A.W. Sudbury).

From each of the three vertices A, B, C of a triangle, a ray is drawn in the
direction of the interior ·of ABC. Let (Xl' <X

2
' 13

1
, 13

2
, 'Y

1
' 1

2
be the angles as

indicated in the diagram below.

c

A

8
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Fmd a trigonometric equation, involving only the angles a., a:1' 13., P:1' -Y1' Y:1'

which holds if· and only if the three rays intersect in one point. Demonstrate
directly from their defmitions that the orthocentre, in-centre, .circumcentre and
centroid satisfy your equation. .

C

Solution (by the editors).

Look at the amended diagram
at the right. FIrSt we ·use the sine
rule in the triangle ABC.

A....---=-------------..,;;aB
Z

We have

AB BC ~
sln(y +Y ) = sln(a +a) = sln(1i +11) =d (say).

.:1 1:1 1:1

[d is, in fact, the diameter of the crrcle passing through A, B and C.]

Thus

etc.

Now use the sine rule again in the' triangle AXB.

AB d sin(Yl+Y:1)
=sIn LAX8. = sIn (.a +P +11 )

212

Thus

Similarly
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Therefore -

BX sin (1
1
+1

2
) sin <X2

r:x = sIn 01
1
+13

2
) sIn at . (*)

We now proceed by using ·Ceva's Theorem (see Function, Vol. 12, Part 5, pp. 147-152),
which says that -if (and only it) AX, BY, CZ pass through a common point, then

BX CY AZ·_ 1
-CX'jff'11Z- .

Use Equation (*) and similar equations for the other ratios in this formula and
simplify. The result is

This is the required formula.

It is clear that this holds for the in-centre (a
l

= (12' etc,). We leave it to the

reader to see that it holds in the other cases mentioned. It is best in doing this to
work· from Ceva's theorem directly.

Problem 13.2.2 (taken from the Argus in the 1930's from its Educatio~ Column).

A man who had no watch-was about to leave for a friend's home when he noticed that
his clock had stopp~. He went to the home of his friend, and after listening to. a
wireless programme for a couple of hours, returned home and set his clock. .How could
he do this with any degree of accuracy without knowing beforehand the length of the
trip from his friend's place?

-Solution. Clearly' we have to supply some furtherinf0ntlation over and above.what the
wording actually specifies. There· are several pOssible Itsolutions" to this problem, all
depending on our supplying some fi:uther (but plausible) informatio;n about the case. This
one (not the one the editors fIrst thought of) is that ~pplied by the Argus.

Before he left, the man wound his clock but he did not adjust it. He did however
take a note of the time recorded ~y it. Thus, when he returned, he knew the total time
he'd been away. This was two hours plus twice the travel time. From this data he would
be able to deduce the travel time. Assuming that he also took note of the time when he
left his friend's place, he could then add the travel time to that and so set·his clock.

Just one new problem this time.

Problem 15.5.1

. In an Australian Rules match, the Galahs beat·. the. Goannas. One fan noticed that the
Galahs scored as many goals as the Goannas scored behinds and vice versa.. He. also noticed
that the total points score of the Galahs (read from right to left) equalled that of the
Goannas (but read from left to right).

What were the' scores registered by the teams?

* * * * *
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