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AVERAGES: SOME GEOMETRICAL AND

PHYSICAL INTERPRETATIONS

K. MeR..Evans, Drom.ana, Vic.

1. Arithmetic Mean

The arithmetic mean A(x, x
2
), of two numbers x, x is defined by

.1 1 ·2

X + x
A(x x) = 1 2

l' 2 2

.This mean is the most comm9n1y used average of two numbers. Two geometrical
illustrations are given below.

In Figure 1, BCDE is a trapezium with EH parallel to T5C. X is the mid-point of
DE and XY is drawn parallel to E1J.

With lengths as shown, it can be proved that

x + x
1 2

X =---r-- =A(x
1
, x

2
)·

Note that the result is true whether or not DEB is aright angle.

In Figure 2, if M is the mid-point of "HC, then.

x
o

y

8E

X 1-- o1X_---~

'X2
D_---...--~C

'Figure 1 Figure 2
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2. Geometric Mean

The geometric meant G(x
1
, x'2,), of two positive numbers xlt x

2
is dermed by

TIlree geometrical illustrations fo~ow.

In··Fi~e 3, the lengths of intervals A"B, 1fC. are given. Construct a semi-circle on
diameter AV and .draw 1J1J perpendicular to~. .

Using similar triangles (shown), it can be proved that

x =-lii6'= G(a,b).

Three squares are drawn as shown in Figure 4 with vertices A, B, C collinear,. It
can be proved that

b =..rae = G(a,c).

ABC
+-- a ---++- b -+-

Figure 3 Figure 4

In Figure 5, AP and P1J have given lengths. A circle is drawn through A, B and
. a tangen4 rt, is drawn fro~: P.

T

):a

A ~------¥-------"""---....;:I.... P

!
I

T

Figure 5

It can be proved that x =..fii5 =G(a,b).
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A physical illustration of. the use of the geometric mean occurs in fmding the
weight, W (unknown), or an object with a balance having anns of unequal lengths a,b
and scale pans of unequal weights wa' w

b
• (See Figure 6 opposite.)

Initially, the empty pans are in balance ~

wa =wb
Ii b

(1)

Put the object in the right-hand pan, and put a standard weight, W
t
, in the

left-hand pan so that the pans are balanced. Then

lJsing (1) we obtain

Wa =Wb.
1

(2)

Next put the object in the left-han~ pan and put ~. standard w~ights, W:2' on the

right-hand pan so that the two pans are again balanced. Then

Using (1) we obtain

Multiplying left-sides and right-sides of (2) and (3) gives

(3)

i.e.

i.e.

'.-
WlaW:~b =WbWa

WW =. w2

1 :2

W=v'Ww-
1 2

=G(W
1
, Wz)·

(dividing by ab)

(W> 0)



a b
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w, + Wa

W+Wa

a

a

Figure 6

b

b



102

3. Harmonic Mean

The hannonic mean, H.(x
1
, x,) of two positive numbers xl' x

2
is dermed by

The procedure for calculation is:

Find the reciprocals of Xl' X2

Find the ~thmetic mean of the reciprocals

Fmd the reciprocal of the arithmetic mean.

The expression for the harmonic mean can be simplified algebraically to

2x
1

x
2

H(x1, x2) = x + X
1 2

and it can also be written simply using index notation

Figure 7

A geometrical illustration is the following.

In Figure 7, MEC is right.angled at
c. A 'square is inscribed as shown. It can
be proved that

ab
x = 7:l+O

':':.

Bolfoo"----- a
____-... C

and hence the semi-perimeter of the square is

2ab
2x =7:l+O =H(a, b).

.Notice that the result remains true in
the more general case (Figure 8) where MEC
is not necessarily right-angled, but the
inscribed figure is a rhombus, Le.

2x =H(a, b). Figure 8
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A physical illustration of the use of the hannonic mean is shown· in Figure 9.

A car travels from A to B at VI km/h and then from B to' A at v2 km/h.

~v1km/h
Ao-------------: B

< d km---------JI>
+-- J12km/h

Figure 9

We assert that the average speed for the total journey is H(v1,v
Z
) km/h.

Proof Let AB= dkm

. Let v km/h be the average speed

Let th be the time taken from A to B
1

Let tzh be the time taken from B to A.

Now

2--- =H(v.t,v..) ..
1 +.!.. ~

VI 1'2

A second physical illustration occurs in optics. See Figure 10. An object At in
front of a spherical mirror centre C,; has image B along the ray AC.

Figure 10
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.. If the distances of A,B from the mirror are u, v respectively, and if r is the
radius length of the mirror; we shall show that

. .

r =H(u,v).

In the figur~, an incident ray of light, AP, meets the mirror at P and is
reflected back along PB. We use ~ law of optics which states that the magnitude of the
angle of incidence, APe, is equal to the magnitude of the angle of reflection CPB. We
shall also assume that the angle magnitudes a,~, 1, 0 (see Figure 10) are small.

We frrst [rod some connections between a, fl, 1, 0

From a APe,

From.:1 CPB,

~ = a + o.
'Y = f3 + o.

(4)

(5)

Elimination of 0 (by subtraction) gives

i.e.

f3-r=a-p

A _ ex + r
tJ-~

=A(a., r).

[This is an interesting but incidental result.]

From l1 ARB, 1 = ex + 20. (6)

(This may also be obtained by eliminating 13· from (4) and (5).)

Next we fmd some connections between u,V,r.

By the sine rule in tJ. APe

sin S _ sin ex
u-;:r--r- . (PC =CO = r)

'..
Since the angle magnitiides are small and are· measured in radians, sin 0 01: 0,

sin .x ~ a
s _ a.

u::-;-r· (7)

This is one connection between u, r but with the auxiliary variables a, 0 which
must be eliminated. We now seek another with v and the same auxiliary variables. By
the :sine rule in .:1 BPC

sin 0 = sin(1t - 1)
r -v r

= sin y
r

= sin(a + 20)
r (from (6»
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Again since 8, y are small, we have"

o a + 25---r - v r
a . 20=-+­r ,r

_0_ =_0_ + 20
r-v u-r r

_1_ =_1_ + ~
r-v u-r r

Solving this equation for r gives

2uv
r = u + .v =H(u,v) .

4. Root Mean Square

(using (7) to eliminate a)

(dividing by 0)

The root mean square, R(x
1
, x,}, of two numbers Xl' x

2
is defmed by

The procedure for calculation is:

Find the squares of Xl' x
2

Find the arithmetic mean of the squares

Find the square root of the arithmetic mean.
':-

A geometric illustration is shown in Figure 11 overl~af.

ABeD is a" trapezium with A11 parallel to IfC, EF is drawn parallel A1I so that
area ABFE = area EFCD

It can be proved that

1 2 2 )
X ="(~ + q ) ~



106
o c

A

p

x

q

Figure 11

B

5. Some concluding remarks

(a) It can be shown that, for any two positive numbers Xl' X
2
'

(b) The index notation suggests a generalization from three of our defmitions. We
derme the power mean,M(n, xl' x

2
), of two positive .numbers Xl' x! by

for any real n.

Thus

M(l, Xl ~ X
2

) = A(x
1
, X

2
)

M( -1, Xl' Xl) = H(xf' x2)

M(2, .;(1' x
2

) = R(x
1
, x

2
) •

(c) As a further generalization, we leave it to the reader to defme all the means for m
positive numbers

(d) As an exercise we leave it to the reader to prove all the geometrical illustrations
mentioned in this article.

* * * * *
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SPIN OUT AND THE CHINESE RINGS

R. Cowban, 81 Martin St~, Gardenvale

Figure 1

SPIN OUT: Initial Position

tBill Ritchie, SPIN OUT, Binary Arts Corporation, 703 Timber Branch Drive, Alexandria,
VA22302, USA..; a mathematical puzzle, made of plastic, with an accompanying leaflet:
available at toyshops.
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Figure 2

SPIN OUT: Intennediate Position

Figure 3

SPIN OUT: Final Position
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My grandsOn found out how to solve the puzzle rtsight unseen" in less than half an
hour. It took me somewhat longer, but in the process I learned that the underlying
strategy for solving this puzzle is the same as that for solving another famous puzzle,
known as the Chinese Rings. These are illustrated in Figure 4.

Figure 4: The Chinese Rings

There is what mathematicians call an isomorphism, or complete correspondence, between

the two puzzlest . Although they look different they may both be analysed mathematically
in the same way, using binary arithmetic, as we shall see.

'.-
A .description of the ChineSe-Rings puzzle is given. in several books, of which perhaps

the best-known is Maurice Kraitchik's Mathematical Recreations (published by Dover, New
York). On page 89 of that book, we read:

fThis statement requires one very minor qualification. In the case of the Chinese Rings,
it is physically possible, in certain special circumstances, to remove two rings at once
- in other words,. to make two moves together. This is not PQssible with SPIN OUT.
However, the analysis of the Chine~ Rings given in this article neglects this feature,
and so the isomorphism is complete.
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The Chinese Rings are a toy) conslstmg of a fixed number of rings
(usually from 5 to 8) hung on a bar in such a way that the ring on me
right hand end can be taken off or put on at pleasure, but any other
can be taken off or put on only when the next one 90 its right is on,
and all the others to its right are off. The order of the rings is
fixed. Only one ring can be taken off or put on at a time) except that
the two -rings at the extreme right can be put on or taken off

together.t .

Figure 4 shows the case of ten rings but I shall here concentrate on the case of
seven rings, corresponding to the sev~n shapes in SPIN our. Denote the configuration of
the ring by a set of asterisks (*) and zeros (0) in order: * if the ring is on the bar)
o if it is off.

Figure 5 shows) in- its 'second column, the sequence of moves beginning with the
initial position (all rings on the bar) and ending with the final position (all ~gs off
the bar)..

Sequence in
the positions
of the rings

Initial position

2nd

3rd

4th

23rd

29th

84th

last

Locations of the rings
(* = ON, 0 = OFF).

* * * * * * *
* * * * * * 0

~***O*O

* * * * 0 * *

0*00000

0*00*0*

000000*

0.000000

Figure 5

Binary notation

1010101

1010100:

1010011

1010010

0111111

0111001

0000001

()()()()(X)()•

tThis last clause is the detail referreo to' in the previous footnote. It is neglected in
the analysis given below.
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The same sequence of moves will free the two frames from one another in SPIN OUT.

According to whether the number of rings (or disks for SPIN OUT) -is even or odd the

number of moves required' to solve the puzzle is either ~2n+l - 2) "or ¥2n+1
- 1),

where n is the number of rings. Thus in the case of n = 7, we need 85 moves, but if
n = 10, we need 682. (Can you prove that the formulae quoted always give whole
numbers?)

These formulae are proved in Kraitchik's book (pages 90, 91), where they are
attributed to a certain M. Cros. Here is how it is done.

Reading from the left at'each particular stage of the puzzle, allot, a 1 to the
first ring still on the bar. Then allot a O' to the next ring still on the bar.
Continue in this way assigning 1's and O's alternately to/the rings still on the bar.
Next complete the pattern by allocating to each of the remaining places (corresponding to
rings off the bar) going from left to right, the digit 1 or 0 that is already
immediately to its left. If the ring on the extreme left is off the bar, the first digit
is O. '

Thus if we have,

0*00*0*

we frrst assign 1's and O's to the three asterisks

0*00*0*
101

and then fill in the pattern

0*00*0*,
1 1 100 1

and fmally, because the left hand ring is off, reach the string of digits: 0111001. In
this way, we construct the third column of Figure 5.

The entries in Figure 5 thus formed are binary numbers; Le. numbers expressed in
base two. Thus tl:te initial number 1010101 ,means

(1 X 26
) + (0 x 25

) + .(1 X 24
) + (0 X 23

) + (1 X 22
) + (0' X 21

) + (1 X 2f)
.. "

Le. 85. Now. check the various binary numbers shown in Figure 5. Each is one less than
its predecessors, until the fmal position is·' represented by the number zero. Thus 85
moves are required to complete the task of removing all the rings.

This proof generalises to n rings and you may care to construct it for yourself.

Ritchie, wh9 procduces SPIN OUT, tell us that it was invented by an American,
William Keist~r tea pioneer of switching theory and design at Bell laboratories". During
the late 1930s he .'sought electrical analogues of the Chinese Ring puzzle and "stumbled
onto a general series of binary code sequence puzzles. ... He designed a set of code
sequence puzzles on paper which he then solved mathematically, using Boolean algebra, a
precursor. of today's computer languages".

Continued on p. 123.
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BOOK REVIEW

Gender aild Mathematics: An International Perspective, Edited by Leone Burton
(Cassell Education., 1990, $55.95, 162 "pages).

REviEWED BY:

ROBYN APlANRHOD, 1v1onash University

One of the most exciting things about recent research into gender and mathematics is
tha't it challenges women and men to re-examine both the nature of mathematics itself, and
the standard methods of teaching and learning it. The international perspective of this
provocative and informative collection of research articles adds a "cross-cultural
dimension to such an examination.

, ,The articles' are generally both readable and scholarly (no mean feat!) and offer a
variety of· anecdotal, statistical and speculative rnat~rial which I can only briefly
describe here. Let me say, however, that my feeling on reading the 'book is one of
excitement at the possibilities for perceiving, describing and doing Ill:athematics. Not all
the fmdings are in agreement, but that only adds to the challenge of trying to sort out
what I really think about mathematics. I am· -sure that teachers would benefit similarly
from pondering. the challenges offered here, and that they could guide their students in
some useful and fascinating group discussions on their perceptions of and needs from their
mathematics classes.

Several of the articles discuss the "ster~otypical image of mathematics as closed and
complete, and suggest" ways of involving students in an open-ended process of doing
mathematics in an effort t() avoid teaching students -to merely generalize memorized
techniques. As reported in the articles by Helen Verhage (the Netherlands),
Evangelie Tressou·Milonas (Greece), Mary Barnes and Mary Coupland (Sydney) and
Beth Marr and Sue Helme (Melbourne), such approaches have been overwhelmingly successful
in encouraging girls and mature-age women students to enjoy maths and to feel good about
both the subject and their ability to succeed in it. (This is a real achievement, as the
evidence presented in this bo~}c and elsewhere does point clearly to the fact that boys (at
least in Western cultures) are: rnuchmore confident abo~t their mathematics ability than
are ,girls. It certainly seems true of my peers; what about yours?}" These articles
describe innovative approaches to teaching methods - grollp work, individually-paced work,
computer-aided learning, and "hands-on" approaches. such as both boys and girls' doing
embroidery in order to later examine the symmetry involved in the stitches' ~ and to
curriculum design: culture- and gender·inclusive topics such as· studying symmetry by

examining embroideryt, Islamic ,and Celtic art, Chinese tangrams, etc.; using female and
non-Anglo names ~ text books; books; and making maths more relevant to girls.

How does one make maths relevant to girls without merely reinforcing traditional
roles? Consider, for example, the work of Mary Barnes and Mary Coupland. In their

tNote that discussion is also offered as to whether such choices only reinforce
traditional gender roles.
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article, they quote previous work on ·the different ways in which men and women defme
their identity: men in terms of autonomy and separation, women in tenns of relationships,
responsibility and care; in response, to this suggestion, they have desigrieda "humanizedtt

introductory calculus course which ~eks to include women's concerns in its motivation.
Calculus, . they say, is generally introduced in purely abstract tenns concerning gradients
of tangents to curves, ttand no reasOn -is ,given why this might be important or
interesting". When applications are introduced, they can be summarized as being about
"profits, weapons and machines". (The a{ticle by Maire Rodgers discusses girls' attitudes
to mechanics.) Mary Barnes and Mary Coupland introduce "responsibility and care" into
their introductory calculus course by using human-interest applications 'of calculus (with
the help of computer-programs to do_ the more complicated mallis) to such topics as world
population -growth, populations of endangered species, disposal of radioactive waste, and
the build-up of pollutants in lakes, rivers and the human.· bloodstream.

Despite the success of the pedagogical and curricular inndvations described in these
articles, some cautionary notes are also sounded. Frequently girls - especially those
from lower social classes (Tressou-Milonas) - are. ·unwilling to participate in new,
open-ended approaches to mathematics. Often girls have been rewarded for being less
assertive than boys, or perhaps they just feel insecure in mathsclasses,and if they are
suddenly"plunged into open-ended situations which require higher risk-taking and
uncertainty" th'an they are used to, they may find "the current move towards
'problem-solving and real-life mathematics' [leaves them in an even worse situation]"
(Maire Rodgers).

It is also interesting to note that some previously-reported (Western) findings, such
as _the importance for girls' success of single sex maths· classes and female maths
teachers, were not born out, in the cross-cultural study, involving 14 European, Pacific
and Asian countries, carried out by Gila Hanna,· Erika KUndiger and Christine Larouche.
The authors suggest that perhaps these variables are significant· when operating in
conjunction with other (unknown) societal factors. -

There are four articles which report various people'sdiscussions on' their
experiences with and attitudes -to mathematics: in those by Lyn Taylor and by
Joanne Rossi Becker, male and female mathematicians and graduate students talk about how
they .actually do mathematics,and how they feel about it (humbled, for example!);
secondary students discuss their motivations and interests in the articles by
Zelda Isaacson and by Maire Rodgers. I found it very interesting to compare my
experiences with those discussed here, ana suggest that these articles could fonn the
basis of useful discussions amongst male and female students.

Several articles include statistical data, so that in addition to being intrinsically
interesti~g, they could provide excellent material for student projects or~xercises in',
interpretation of. data: those by Hann, Ktindiger and Larouche, by Tressou-Milonas, by .
Gilah Leder (on gender and classroom practice), by Berinderjeet Kaur (on girls and maths
in Singapore), by Prudence Purser and Helen Wily (on the numbers and professional
destinations of male and female maths graduates in New Zealand), and by
Giuseppina Fenaroli and her co-workers (on women and mathematical research in Italy).

There is plenty here that would interest students, although they may benefit more
from teacher-guided group discussions than by individual reading. The articles are
different in approach - solne providing anecdotal evidence and Qthers providing
statistical data - and in direction; some are more readable or interesting or relevant
than others. As a whole, however, they provide an excellent, accessible and
international overview of current research. in the field of gender and mathematics.

* * * * *
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COMPUTER SECTION

EDITOR: R.T. WORLEY

In computer drawing packages one needs a method of drawing smooth curves. For
. example, the curve in Figure 1 could be drawn with a drawing package. To do this, one
needs the ability to solve:

Problem 1. Given four points A, B, C and D, draw a smooth curve starting out from A
and ending at D. The curve must leave A in the direction of B, and reach D from
the direction of C.

Figure 1

This problem is not really well posed, for there are many such cUrVes, and we really
haven't even said what we mean by:the word smooth. The graph of a polynomial function

y =f(x), .for example y =3x2
- 2x + 1, is one sort of curve we would call smooth.

However not all curves can be the graph of a function - a function takes a single value at
a given value of x, So anycuri'ethat intersects the y-axis, for example, in two or
more places, is not the graph of a function. We can get around this by allowing both x
and y to be polynomial functions of a variable t (thought of as the '~ime' variable ­
at time 0 we are at A, and we progress along the curve from A to D as t· increases
from 0 to 1). In other words, we consider curves for which there are polynomials
px(t), p/t) such thal the point.;t = (x, y) on the curve is given by .

x =P(t), Y =P (t),x y
o~ t ~ 1.

D = (p (1), p (1».
x· y

and the ending point isThe starting point is A = (p (0), p (0»,
. x y

We call· such a curve a polynomial curve.

The simplest polynomial curve is the straight line from A to D. This is given by

y = (l-f)yA + tyD

where A = (X
A

' Y
A

) and D = (x
D

' Yo). Since the rules for the x and y coordinates

of points are similar, we write the rule as



P =(l-t)A + rD. (1)
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If we put I = 0, we get the starting point P = A, and if we put t =. 1 we get
the end~g point P = D. We generalise this iciea to get a curve from A to D.

. If we look closely at (1) we can regard it as a 'blending' of the points A and D.
The point A has blending coefficient '(I-t) which is 1 when t =0 and 0 when
t = 1, and the point D has blending coefficient t which is 0 when t = 0 and 1 when
I = 1.

Suppose we now take a third point C. The lines AC and CD are given by
(l-t)A + IC, and (l-t)C + tD. We blend these using the same blending coefficients
(l-t) and t to obtain

P = (l-t)(l-t)A + te) +l(l-t)C + rDI.

This simplifies to the ~quation

P = (l-t)2A + 2t(1-t)C + t
2D.

(2)

(3)

This gives· curves such as those illustrated in Figure 2. Notice that the curves
always lie within the triangle ADe, and that the curve starts out from A in the
direction' of C, and the curve enters D from the direction of C.

Fig2a

Fig2c

Fig2b

Fig2d

Figure 2

With two points B and C, as well as the starting and ending points A, D, we can
blend the curves from A to C and from B to D of type given by equation (3), by
writing

P = (i-t) {(1_/)2A +·2t(I-t)B + t
2C} + t{ (1-t)2B + 2t(1-t)C + ?.6)
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which .simplifies to

P = (1_t)3A + 3t(1-t)2B + 3l(1-t)C + rD. (4)

If 'we draw some examples of these curves, experimenting with different positions of
B and C, we can see (Figures 3,,,4) that this curve has the properties required to solve .
Problem 1 (this fact can be proved mathematically). If we experiment (see Figure 3, in
which AB is 1/3, 1 and 2 times CD in length, and Figure 4, in which AB is 1, 3/2
and 2 times CD in length) with various positions of B, while keeping the direction of
AB unchanged, we discover that the length of AB has an effect on the curve - the longer
AB, the further the curve goes in the direction of 'B before heading off towards D. In
some sense, the .points B, C exert a 'pull' on the curve. We see very clearly that we
can draw many curves to solve problem 1, simply by varying the lengths of AB and CD
while keeping their directions unchanged.

Fig3a

Fig3c

Figure 3

Fig3b

Fig4a Fig4b

Figure 4

Fig4c
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One can take further points to exert a ~pull' on the curve, leading to ~uations

similar to (4). The corresponding equations can be obtained by extending the blending
idea. However the cubic curve (3) defmed by two end points A, D and two control points
B, C nonrially can give the type of curve we want to draw.

An" interesting feature of the Bezier curves, as the curves described above are
called, is that they;can be drawn simply by plotting mid~points. The simplest example is
the straight line (1). To draw the line we plot the point corresponding to t = 1/2. This
is simply Nt = (1/2)A + (l/2)D, 0 the midpoint °of AD. Next, we plot the points

corresponding to t = 1/4 and t =3/4. These are the points M'l = (3/4)A + (1/4)Dand

M= (1/4)A + (3/4)D. A simple calculation shows that M =(l/2)A + (l/2)M, the
. 3 2,0;' . 1

midpoint of AMI' and that M
3

is the midpoint of MOlD. Likewise the points

corresponding to t = 1/8, 3/8, 5/8, and 7/8 are the midpoints of AM
2
, M

2
M

I
, MtM) and

M
3
D. This gives rise to the following algorithm for drawing a straight line.

procedure line(A,D:point)
var M:point;
begin

if ~ufficientlyDifferent(A,D)then begin
M := MidPoint(A,D);

oPlotPoint(M);
line(A,M);
line(MJ»
end

else beogin
PlotPoint(A);
PlotPoint(D)
end

end;

This algorithm requires the type 'point' to be defmed, a function that gives the
midpoint, a procedure that plots points, and a function that tests if two points are
different enough that the midpoint will not be either of the two end points. It is
interesting to watch this in action drawing a line. I should point out that this is not

, the best way of drawing a su:~ght line - it is simply a curious method that leads to the
method of drawing the Bezier- ;curves given by equations (3) and (4).

If we take t = 1/2 in equation (3) we get the point

N = (1/4)A + (l/2)C + (1/4)D
1 0

which I will' call the mid3point of A, C and D. If we take t = 1/4 in equation (3) we
get the point

N =(9/16)A + (6/16)C + (1/16)D,
2 .
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which (after some calculation) we discover can be written· as

(1/4)A + (l/2)(l/2)A + (1/2)C)) + (1/4)N.

which is mid3point(A, midpoint(A, C), N
J
). This leads to the following way of drawing

such a curve.

procedure Bezier3(A,C,D:point)
var N:point;
b~~ .

if SufficientlyDifferent(A,C,D) then begin
N := mid3point(A,C»);
PlotPoint(N);
Bezier3(A ,midpomt(A,C),N);
Bezier3(N,midpoint(C,D),D)
end

else begin
PlotPoint(A);
PlotPoint(D)
end

end;

.Simil~ analysis can be done for· equation (4), leading to the defmition of the
mid4point of A, B, C, D as (1/8)A + (3/8)B + (3/8)C +. (1/8)D and a plotting routine

procedure Bezier4(A,B,C,D:point)
var S:point;
begin

if SufficientlyDifferent(A,B,C,D) then begin
S := mid4point(A,B,C,D);
PlotPoint(S);
.13ezier4(A,midpoint(AA),mid3point(A,B,C)$);
Bezier4(S,mid3point(B,C,D),midpoint(C,D),D)
end

else begin
.PlotPoint(A);
PlotPoint(D)
end

end;

One of th...e prime advantages of the above meth04s of drawing Bezier curves is that the
basic operations used are just addition and division by 2. Both of these operations are
fast operations for a computer to perform, so the drawing can be done very quickly. As
presented, the algorithms are recursive, and although easy to write in Pascal, they are
difficult to write in standard BASIC.

The Bezier curve given by equation (4) can be used to draw a curve which is extremely
close to a quarter circle (and hencet using four such curves, a full circle). The Berier
curve starting at A =(1,0) in the direction of B = (1, 4(12-1)/3) and entering
D =(0, 1) from the direction of C = (4(12-1)/3, 1) lies between the circle of radius 1
and the circle of radius 1.0003. It is, to within an error of .030/0, a quarter circle.

* * * * *
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HISTORY OF MATHEMATICS SECTION

EDITOR: M.A.B. DEAKIN

The Four Circles Theorem

The issue of Nature (the scientific periodical) for June 20, 1_936 contained the
following verse.

The Kiss Precise

For pairs of lips to kiss maybe
Involves no trigonometry.
'Tis not so when four circles kiss
Each one the other three.
To bring this off the four must be
As three in one or one in three.
If one in three, beyond a doubt
Each gets· three kisses. from without.
If .three· in one, then is that one
Thrice kissed internally.

Four circles'to the kissing come.
The smaller are the benter.
The bend is just the inverse of
The distance from the centre.
'Though their intrigue left Euclid dumb
There's nownQ ne.ed for rule of thumb.

Since zero bend's a dead straight line
And concave bends have minus sign,
The sum 0/ the squares of all four bends
Is half the square 0/ their: sum.

To spy out spherical affairs
An oscular surveyor
Might "fmd the task laborious, "
The sphere is much the gayer,
And now besides the pair of pairs
A futh sphere in the kis~ing shares.
Yet, signs and zero as before,
For each to kiss the other four
The square of the sum of all five bends
Is thrice the sum of their squares.

F." Soddy.

Its author, Frederick Soddy, is best remembered as a chemist. He won the Nobel Prize
for Chemistry in 1921 for his discovery of isotopes, whose name "isotope" is also due to
him. Soddy's interests extended well beyond Chemistry, however, and embraced Mathematics,
Economics and Social Respon~!.~ilityin Science.

This is an example of his interest in Mathematics and the verse, or rather its fIrst
tWo stanzas, describes the theorem depicted on the cover. To see quite what the theorem
says, look at Figures 1 and 2 overleaf. The three circles centred at A, B, C each touch
(kiss) the other two, thus generating three distinct points of mutual tangency. We 1)OW

seek to introduce a fourth circle, tangent to each of the other three.
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Figure 1 Figure 2

-This fourth circle may be drawn in either of two ways: it may nestle between the
other three as mF!gure 1 (lto.ne ~ threetl

) or el~ encircle the others .as in Fig\1re 2
("three in oneil). These are the only two configurations possible and the fust stanza of
Soddy's ver~ describes the situation in detail.

The second stanza gives the relation that must hold between _the radii of the various
circles if they are. to be mutually tangent in either of these ways.. The smaller a circle

- is, the more violently it curves. Its -curvature (bend) is dermed as 1/r, .where r is
the radius (uthe inverse of the·distance from the centrelt

). -

H we l~t £1' £2' £3' £4 be the- curvatures of the fOUf circles, tl:ten we have the

Four Circles Theorem:

(1)

This fonnula applies directly to Figure 1 and it also applies to Figure 2 if we make £4

negative ("concave bends have a minus signU
); the "concavity" here refers· to the mode of

tangency.

The third stanza gives an extension to spheres. The fmal two lines give the theorem
in this case.



121

The material was suggested to us by Professor Ian Rae, the Dean of Monash
University's Faculty of Science, and by Professor Bert Bolton, recen~yretired from the
Otair of Theoretical Physics. Their interest in the topic inspired me to fmd out more
about the theorem. I had in fact seen it before, in Martin Gardner's Scientific American
column for· April 1961. Gardner used· these columns as the basis for a number of books of
popular Mathematic.s and the book that includes the Four Circles Theorem is called
Mathematical Circus.

Sadly perhaps, Soddy's discovery of the theorem is not the fIrst. The honour of
discovery goes to Rene. Descartes, the.originator of coordinate geometry. It occurs in his .
correspondence with Princess Elizabeth of Bohemia, .who was one of his. pupils. In a letter
dated November, 1643 a fonnula equivalent to Equation· (1) is' given, together with an
indication of its proof. It uses tr.~" diagram reproduced on the .·cover of this issue of
Function and gives formulae for AD, AX in tenns of the IJdii of the various circles.
From this, and some heroic algebra which is not reproduced in the letter, Descartes was
able to derive his result.

The theorem was rediscovered in 1826 by Jacob Steiner, a major figure in the
revitalisation of Geometry around that time. Later still in 1842, an English amateur,
Philip Beecroft, also rediscovered it and gave a somewhat ,simpler proof" He seems not to
have published· this, but it is given in H.S.M. Coxeter's Introduction to Geometry. Soddy,
if I understand Gardner aright, did not have a proof of the re~lt, though he may have
been the' fIrst person to state the corresponding theorem for Spheres.

A number of proofs of the theorem are now known. All are somewhat involved for
presentation in Function, but we give here. an argument (short of a complete proof) devised
by. the 20th Century geometer Daniel Pedoe, "but incorporating an i,nprovement due to
Coxeter.

If we assume that a simple algebraic relation gives £4 in tenns of £1' £2' £3'

then (because there are f"H.'O possibilities for £ ) it seems likely that this relation is
4

quadratic. Moreover, by symmetry, it must be that this relation will not alter if we
rename the various circles. One algebraic expr<:?ssion with this property is

£ + e + e .+ £, a second is t? +£2 + £2 + £2.A11" other symmetric functions of the
1 2 3 4 1 2 3 4

curvatures 'either involve cubic (or higher) terms, or else depend on these two.

So the required fonnula must connect

e? + t? + e2 + e2
with e + e + e + e .

1 1. '~..... 3 4 1 1. 3 4. ,

Moreover it must be consistent in the units in which it is expressed. (See Function, Vol.
10, Part 1, p.14.) Thus we require

e? + £2 + £2 + £1. =k(e + £ + £ + E )2 (2)
1 2 3 4 1 2 3 4'

where k is a constant. There is no other possibility meetit:lg all the conditions

imposed. This is because the left-hand side must be me'asured in units of length-2 and so
also, therefore, must be right. Thus £} + £2 + £3 + £4' which is measured in units of

length-1 needs to be squared.

In order to evaluate k, choose a very simple case: the simplest possible,
illustrated in Figure 3. Here two of the circles have degenerated into parallel straight
lines with zero curvature ("zero bend's a dead straight lineH) whose point of contact is
at 00. We now have £1 =£2 = 0, £3 = £4 = £ (say). Substituting these values into

Equation (2) produces the value k::= 1/2 as claimed by Soddy and th~ ·others.
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Figure 3

The extension .to spheres soon led to versions of the theorem for four and higher
dimensions. By January 9, 1937 various people (at least three of them) had p~oduced

announcements of n-dimensional versions of the theorem, all of them couched in verse and
all stating, but not proving~ the general case. Nature on the date just mentioned
published one of these. It took the· form of a fourth stanza to Soddy's verse. The author
was a Mr. Thorold Gosset. and his stanza ran as follows.

And let us "not confme our cares
To simple. circl~s, .pbmes .and spheres
But rise to hyper flats and bends
Where kissing. mUltiple appears.
In n-icSP8:ce the kissing pairs
Are hyperspheres, and Truth declares­
As n + 2 such osculate
Each':"'with an n + 1 fold mate
The square of the sum of all the bends
Is n times the sum of their squares.

There is some reason to beleive that Gossetd~rived a proof of this result prior to
Soddy's announcement of the result in the case n = 3. However if he did his proof
remained unpublished and it was ~oxeter who frrst published a rigorous mathematical proof.

We thought to look at the case n::: 2 by other means. By use of Heron's fonnuia
(which gives the area of a triangle when the lengths of its sides are known), it is
possible to deduce the formula



± £4v'£2£3 + £3£1 + £1£2 ± £)v'e3£4 + £"£2· + £2£3 ± £2"'£..£1 + £1£3 + £3£4

± £3"£1£2 + £2£4 + £.£1 = 0
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(3)

The object is to deduce Equation (1) from this. Coliil McIntosh, who used computer
algebra packages to ~a1yse the Beijing Theorem (Function, Vol.1S, Part 2,. p.48), also
looked at this problem. Getting rid of the square roots in Equation (3) produces a
polynomial equation of 16th degree and._this he succeeded in factoris~g. One factor gives
Equation (1), another gives a result that is readily seen not to· be applicable, the third
and fmal possibility is very difficult and still has not been analysed. .

"The Kiss Precise" was not Soddy's only ventpreinto m~thematicai verse. Shortly
after publishing this, he prOduced a second such effort, entitled ".The Hexlet". This also
generated interesting geometrical work and Professor· Bolton· writes that it, may have
practical applications.. However, that work, though related, is another story.

Evidently the use of verse as a medium for· scientific publication was more acceptable
in the 1930s than in more recent years. In 1967, Pedoe noted that Sir Alexander Oppenheim
a few years previously had discovered "an attractive theorem in geometry" which Pedoe's
wife had put into poetic fonn, "but Nature rejected the joint offering".

* * * * *

From p. 111.

He further writes:

SPIN OUT's solution code sequence is exactly the same as the Gray
binary code, a binary basic counting system named after Frank Gray a
coJleague of Keister's at Bell Lab. . Gray created. this code iTi the

.1930's to provide an error correcting technique for electronics
communication. It. is still used today as a basis for electronic
switching and for computer logic.

It is interesting to reflect that, long before the modem era of electronic digital
computers, .the groundwork f9f their design and .study was being laid by engineers and .
Iil.athematicians - by the application of Boolean algebra and binary codes to the design of
communication networks, to· problems in logic and to the creating of mathematical toys and
puzzles.

* * * * *

CORRECTION

. On p. 81 of Vol. 15, Part 3 a number of fonnulae were misprinted. )Correct is

In(l + y) = y "- (1/2)y2 + (1/3)y3 _ .•• + (_1)n+l yn + E

with consequent change to the two succeeding formulae.
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PROBLEMS AND SOLUTIONS

EDITOR: H. LAUSCH

SOLUTIONS

. Problem 12.4.2. (Communicated by M.A.B. Deakin, from Chiang Mai, Thailand). The
game NORTH-EAST is' played on the rectangular array of points in the plane with integral
coordinates (n, m), where 0 ~ n S N, 0 S m S M. Player A selects a point (p, q)
and removes all those points for which n ~ p,.m ~ q. Player B then ·selects a point
(r, s) and removes all those points still left for which n ~ r, m ~ S, .etc. The loser
is the player who takes (0, 0). The problem is to show that A has a winning strategy.

Solution (by the proposer). Let A move fIrst. Suppose A takes the point
(Nt M)

..

II ..
II

•
Ii

II

Either (a) this is a winning strategy, in which case we are done;

or (b) it is a losing strategy, and· now B can win by choosing some
.n(S N), m(~ M).

But in case (b) A could have made this move in the frrst place and so forced the win.

Note that this argument uses the winning strategy theqrem (see Function, Vol.5, Part 4,
p.9).
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Problem 15.1.3 A person sits. for an examination in which there are four papers with
a maximum of m marks for each· paper; show that the number of ways in which a total of

2m marks may be obtained is ~m + 1)(2m2 + 4m +·3).

SOlution (John Barton, North Carlton) We count the number of ways of getting a
total of m + r (0 S r ~ m) on three papers, .the fourth paper then providing the
remaining m - r.· There are two distinct "regimes" shown below separated by a line.

Paper I Paper II Paper III

0 f om

r + 1 m ·1

m r number = m .. r + 1

s r - s m

f-S + 1 m .. 1

m r- s number =m .. r + s + 1 .

0 m

m 0,. number =m +1

r + 1 0 m-1

m ... 1 0 number =m

r+t 0 m... t
1.-: .......
~ ,

m-t 0 number= m - t + 1

m 0 r

0 number =r + 1
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The total for the fIrst "regime" is

(m - r + 0 + 1) + (m - r + 1 + 1) + (m - r + 2 + 1) + ... + (m - r + r + 1)

1=(r + l)(m - r.+ 1) + 1'r + 1)(2m - r)(m + r + 1).

The total for the second "regime" is

(m - 1 + 1) + (m - 2 + 1) + ... + (m - (m - r) + 1)

1 1=(m - r)(m - 1) - ~m - r + 1) ="i<m - r)(m + r + 1).

1 2 2 .
Adding these, we get i{ m - 2r + 2mr + 3m + 2), and this has to be summed with respect

to r for 0 ~ r ~ m. We get

-i<m2 +·3m + 2)(m + 1) - m(O' + 1 + 2 + ... + m) - (0 + 12 + 22 + ... + m2
)

= km2 + 3m + 2)(m + 1) - !m2(m + 1) - !m(m + l)(m + !)
2 2 3 2

by uSe of two standard results. We may now simplify the result to give the. expression
quoted in the problem .statement. .

PROBLEMS

Problem 15.4.1 (from Mathematical Spectrum). A man has 3 sons. The age of the
youngest times the sum of the ages of the other two is 1495; the age of the second son
times the su~ of the ages of the other two is 1767. How old are the sons?

Problem 15.4.2 (K.R.S. Sastry, Addis Ababa, Ethiopia). A parallelogram ABeD (with
diagonals AC and BD) ,is called self-diagonal if the sides ~eproportional to the
diagonals, i.e. AS: AC = Be:-; BD. Prove that the parallelogram ABeD is self-diagonal
if and only if AC + BD = V1(AB + BC).

Draga'5 choice

Many other c.ountrieshaye school magazines devoted to mathematics. In the ancient city of
Ljubljana, known· as Emona in Roman times, the Association of Mathematicians, Physicists
and Astronomers of Slovenia has been instrumental for the last 18 years in producing the
periodical Presek. It is, 0/ course, written in Slovenian, a .Central European Slavonic
language. Draga Gelt, artist of the Department of Earth Sciences at Monash University,
who in the past has made contributions to Function through her art work, has read a number
of Presek issues and recommended that the following problems be put before the readers of
Function.
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Problem 15.4.3 (submitted by Sandi KlavUr; Presek 18, part 1, 1990/91). How many
triangles are there in the figure below?

Problems. 15.4.4 and 15.4.5 (Presek 17, part 1, 1989/90) are from ancient China:

Problem 15.4.4

You do not know how many there are.
Putting groups of three together, tw~ are left.
Five and five together, three are left;
grouping seven and" seven, two are left again.

Tell how many there are.

The author of this problem is Mr. Sun, who recorded it in his book during the fourth
century. Do not be satisfied with your frrst solution. There are many solutio~s.

Problem 15.4.5 A city has· a· circular wall. We do not know its circumference or its
diameter. The city has four gates.. Outside, a tall tree grows, 3 Ii north of the city.
If we leave the city through its southern gate and then walk eastward, ,we have to walk 9
Ii .before we can see 'the tree. Calculate-the circumference· and the "diameter of the
fortress.. (1. Ii =612 metres.)

YEAR TWELVE INTERNATIONAL

Here are problems from. the Entrance "Examination of the Polytechnic of Athens.

Problem 15.4.6 Detennine those odd positive integers n which have the property

that the common roots of f (x) = (x + l)n - x n - 1 and h(x) =(x + l)n-l _ xn-}.

contain the roots of x2 + x + 1.

Note that for solving this problem, some basic knowledge about complex numbers is useful.

Problem 15.4.7 Prove that the polynomial.

fn(x) =x sin a - x sin(na) + sin(n - 1)a
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is exactly divisible by

h(x) =X
2

- 2x cos a + 1 ,

where a is a real number and n is an integer greater than 1.

MATHEMATICAL OLYMPIADS

Members of the team that is scheduled tf) represent Australid at the 32nd International
Mathematical Olympiad in Sigtuna, Sweden's first capital where the country's first coin
was minted, have gone through, i!1tensiv~ preparations since the 1991 Asian Pacifi~

Mathematics Olympiad (APMO). Beside the APMO, there are a number of multinational
competitions such as: the Nordic Mathematical Olympiad (Denmark, Finland, Iceland,
Sweden), the Austrian-Polish Mathematics Competition, the Hungarian-Israeli Mathematics
Competition, the Balkan Mathematical Olympiad (Albania, Bulgaria, Cyprus, Greece, Romania,
Yugoslavia), the Maghrebine Mathematical Olympiad (Algeria,' Tunisia, Morocco), .the Gulf
Mathematical Olympiad (in 1988 and 1990, 'with participating countries Bahrain, Iraq,
Kuwait, Oman, Qatar, Saudi Arabia and the United Arab Emirates) and the Iberoamerican
MatheJ!Zatical Olympiad (since 1986). The latter competition is of special interest to
Australia inasmuch as Colombia and Mexico are in it as well as in the APMO. Function,for
once,: is klJeping a good eye on the Iberoamerican competition and will gladly receive
solutions to', the problems posed at Valladolid (Spain) on 25 September 1990.

Problem 1 (Argentina). Let f be a function, dermed for non-negative integers and
satisfying the conditions: -

(i) if n = i-I, for j = 0,1,2, , then f(n) =0;

(ii) if n:¢; 2j
- 1, for j = 0,1,2, , then f(n + 1)= j(n) - 1.

(a) Show that for all integers n ~ 0, there exists an integer k ~ Osuch that
j(n) + n = 2 - 1.

(b) Find /(21990
).

Problem' 2 (Colombia). Ina triangle ABC, let I be the incentre and D, E, F the
points of tangency of the incircle with the sides Be, CA, AB respectively. Let P be
the other point of ~tersection of the line AB with the incircle.

I .......

If M is the mid-point of EF, show that P, I, M, D are either concyclic or colinear.

Problem 3 (Spain). Let .fin) = (x + b)2 - c be a polynomial, b and c being
integers. .

(a) If p is a prime such that pic and p2tc, show that, for all integers n,

,p'l 1 f(n).

(b) Let q '¢ 2 be a prim~, and suppose that qf c. If q I I(n) for some integer n,
show that for each positive integer r, there exists an integer n' such that

qr I f(n').

Time allowed: 4h30min. Each problem is worth 10 points.
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