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FUNCTION is a mathematics magazine addressed principally to students in the upper
forms of secondary schools. . .

ft is a ‘special interest’. journal for those who are interested in mathematics.
Windsurfers, chess-players- and -gardeners all have magazines that cater to their interests.
FUNCTION is a counterpart of these. .

Coverage is wide — pure mathematics, statistics, computer science and applications
‘of mathematics are all included. Recent issues have carried articles on advances in
mathematics, news items on mathematics and its applications, special interest matters,
such as computer chess, problems and solutions, discussions, cover diagrams, even
cartoons.
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Articles, correspondence, problems (with or without solutions) and other material for
publication are invited. Address them to:

The Editors,

FUNCTION,

Department of Mathematics,
Monash University,
Clayton, Victoria, 3168.

Alternatively correspondence may be addressed individually to any of the editors at
the mathematics departments of the institutions listed -on the inside back cover.

FUNCTION is published five times a year, appearing in February, April, June, August,
October.  Price for five issues (including - postage): $16.00% single issues $3.50.
Payments should be sent to the Business Manager at the above address: cheques and money
* orders should be made payable to Monash University. Enquiries about advertising should be
directed to"the business manager.
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THE FRONT COVER
Michael A.B. Deakin, Monash University

The diagram reproduced on the front cover and opposite is taken from an older text of
classical mechanics: E.A. Milne’s Vectorial Mechanics.

It depicts a somewhat unusual situation: a sphere of radius a is rolling around
inside a fixed vertical cylinder of radius b (where, of course, b > a).

Two forces act on the sphere. First there is its own weight which may be regarded as
a vector — Mgk acting vertically down, and passing through the centre of the sphere.
Second, there is the force exerted on the sphere by the cylindrical wall. This passes
through the point of contact as indicated, and has two components: an inward one which
acts to keep the sphere confined by the cylinder and a vertical component due to the
action of friction at the conmtact (it is friction that causes the sphere to roll rather
than to slide). The vector sum of these components is called R. (An older notation

is used for k.)

The other letters on the diagram represent other quantities: i is a unit vector from
the centre of the sphere towards the point of conmtact, G is the centre of the sphere, M
is its mass and g is a constant called the acceleration due to gravity.

The problem is to calculate, from Newton’s laws of motion, what happens. This is a
study in the field known as Three-Dimensional Rigid Body Dynamics, which can be quite
complicated and now is not widely taught, although it was once very fashionable. (This
precise problem was set for us as an exerciss when I was in my second year at
University.)

1 will not give the analysis which takes about two pages of vector calculus, somewhat
beyond the secondary syllabus and using equations not now familiar. However, the
conclusions can be given and they are surprising. :

Concentrate on the motion of G. This turns out to travel around the axis of the
cylinder at constant angular velocity. In the vertical direction, we might expect that
the sphere would gradually spiral “downhill”, so to speak. However, it doesn’t, or to be
more precise, in this slightly idealised model it doesn’t. {, the height of G above its
average level, varies sinusoidally with time. So the sphere moves round and round on the
surface of the cylinder travelling up and down in a sine-wave as it goes!

In real life, the sphere -would not be quite rigid and would suffer small
energy-losing ‘deformations that ultimately would cause the motion to run down, but the
rigid approximation is actually quite a good one.

The answer seems so much at variance with “common sense” that many people, on first
hearing it, query it. .

However, it explains a real-life phenomenon. You may have seen it on TV. A golfer
putts the ball toward the hole - it seems to go in, indeed it does go in, but it rolls
back out. What has happened is that when the ball entered the hole, its motion was such
that it commenced to roll around the side of the hole. Initially its vertical motion was
downward, but then (because of the sinusoidal motion) it came- back up. If when it comes
back to the top, the lip of the hole is very slightly lower than it was where the ball
went in, the ball rolls back out of the hole!



Three-Dimensional Rigid
Body Dynamics is now not very
widely studied and so we see
cases where people who should
know better have claimed that
such violations of “common
sense” revealed limits to
Newton’s laws of motion.
Various cranks have made such
claims in respect of
gyroscopes, when there is a
fully developed and perfectly
adequate theory to explain all
the phenomena they adduce.
Yet again I saw a letter to
New Scientist saying that
snooker balls hit with “side”
- violated Newton’s laws. They
don’t: they travel along
parabolic arcs exactly as
theory says they should!

A RADICAL PROBLEM
Peter Grossman, Monash University

A great deal of school mathematics is devoted to leaming techniques for éimplifying

..Mg} ‘
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mathematical expression: expanding and factorising polynomials, finding common
denominators, cancelling common factors, collecting terms, and carrying out various other

manipulations, all with the aim of making an expression as simple as possible.

Radicals

This article is about expressions containing radicals: square roots, cube roots, and

so on. No doubt you have learnt some techniques for simplifying expressions of this kind,

and would have no trouble when presented with something like:

or:

If you think this is all pretty basic, here’s a more difficult one for you to try.

vi0

V5

V34 + VIS5

3vV3



36
Express the following number in the simplest possible form:

V342V .- , 1)

After looking at this expression for a while, you will probably conclude that it isn’t the
kind of problem where you could apply any of the techniques you have learnt, and you might
suspect that it can’t be expressed any more simply than it already is. (We could use a
calculator to find a numerical approximation, of course, but we are not interested in
doing that here.) i . :

Surprisingly, Expression (1) can be simplified:' it equals 1 + vZ. = Knowing the
answer, it's easy to check by squaring it that it’s correct. However, we are still left
with a problem: how could we have discovered the simplified form of Expression (1)?

There has been a lot of interest recently in the problem of finding algorithms for
simplifying mathematical expressions. ~Such algorithms are used in computer algebra
software: programs for manipulating mathematical expressions rather than (or in addition
to) decimal numbers. Commercially available computer algebra systems can be used to carry
out many of the techniques you have learnt to do with pen and paper, including doing exact .
~ arithmetic with arbitrarily large numbers, ~solving .equations, differentiating and

integrating, manipulating vectors, matrices .and complex numbers, drawing graphs of
functions, and many, other more sophisticated mathematical techniques. A computer algebra
system needs an armoury of techniques for simplifying expressions without approximating
them if it is to work properly.

Returning to our problem, let

x = ”3+2\/2 .

Then 2

X =3+272 (squaring both sides)
SO

*-3=2v2
and thus 2 2

x-3=8

which, upon expanding and reafranging, becomes:
' F-6f+1=0. 2)

The key to simplifying (1) is the fact that Equation (2) can be factorised by coﬁxpleting
the square on the first and last terms of the left-hand side as follows:

-1 +22=0.

Therefore
@ -1 - @) =0
S0 2 2
-2 -Dx" +2x-1)=0
and hence

P -2-1=0 or ¥+2x-1=0. 3)
Using the quadratic formula, Equations (3) are equivalent to

x=1%2VZ or x=-1%V2%
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_Only one solution, 1 + V2, is the required simplification of (1). The other three
solutions occur because of the squaring (twice) of both sides of the equation.

This example suggests that the problem of simplifying expressions containing radicals
(i.e. expressions involving n" Troots) is closely related to the problem of factorising
polynomials, which in turn is related to the problem of solving polynomial equations. It
will therefore pay us to take a closer look at polynomial equations, which we now do.

Polynomial Equations and (some of) their Solutions
The simplest example of a polynomial equation is a linear equation:
' ax+b=0. )
The solution is of course:
x=-bla. ()

Notice that we can solve the equation in terms of its coefficients '@ and b wusing just
the operations of subtraction and division.

Next is the ;luadratic equation:
a’ +bx+c=0 \ (6)

for which we have the well-known solution:

b + Vb*dac

X = e ———— @)

In contrast to the linear equation, the operations of addition, .subtraction,
multiplication and division are not sufficient to allow us to obtain the solution, and we
need to use a radical (in this case the extraction of a square root) as well.

Can we solve polynomial equations of higher degree by radicals? The expression “by
radicals” means we want to be able to calculate the solution from the coefficients of the
polynomial, using only the operations of addition, subtraction, multiplication, division
and extraction of n" roots, where n may be any positive integer.

This problem exercised the minds of a number of mathematicians in earlier times, and
they succeeded in obtaining solutions for cubic (degree 3) and quartic (degree 4)
equations. You have probably not seen the formula for the solution of a general cubic
equation, and it is rather too complicated to give here. As you might imagine, it
involves taking cube roots. (It also involves taking square roots.) The solution of a
general quartic equation is even more complicated. : .

At this point, the well runs dry. Despite numerous attempts by mathematicians to
solve a general quintic (degree 5) equation, no such solution was forthcoming. It was a
triumph when the Norwegian mathematician Niels Abel (1802-1829) established that no
solution by radicals exists for a general polynomial equation of degree 5 or more. (It
should be emphasised that this does not mean that solutions of these equations do not
exist, only that they cannot be expressed in this particular form.) A general theory for
determining precisely which polynomial equations can be solved by radicals was
subsequently developed by the French mathematician Evariste Galois (1811-1832 — yes, those
dates are right! — see Function, Vol. 3, Part 2). .
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An Excursion into the Fields

In order to investigaté these ideas more closely, we need: to study mathematical
_objects called fields. (The definition that follows is not actually the most general
definition of a field, but it is sufficient for our purposes.)

We shall call a set F of numbers a field if:
(i) O and 1 are elements of F;

(ii) addition, subtraction, multiplication and division of elements of F always
yield a result in F (except that division by zero is not permitted).

The set R of real numbers and the set Q of rational numbers are examples of
fields, while the set J of integers is not. The set C of complex numbers, which some
readers will have studied, is also a field. (We should really include complex numbers in
our discussion in order to deal -with solutions of polynomial equations in full generality;
however, we shall restrict out examples to real numbers for the benefit of readers who are
unfamiliar with complex numbers.)

Another example of a field is {g + /2 : g, € Q), which is denoted by Q(vVZ). Note

that 3 V2 € Q(2) (chobsmg g=3r=-1), :—é—fl—?’—‘g € Q(¥2) (choosing q = — Z ,
r= 2‘) but v3 + 2vZ ¢ Q(V2) since g and r must both be rational. Q(vZ) contains

Q as a subset (as a subfield, in fact), as can be seen by choosing r = 0 and letting g
be any rational number.

It is not hard to check that the sum, difference and product of any two elements
q, + rlv/Z and q, + r2/2 of Q(2) are also in Q(vZ). Showing that the quotient is in
QZ) (assuming that q, and r, are mot both zero) is a little trickier: try

q, + r‘fZ

multiplying the numerator and- demominator of ——— 1
q, + r2w/2'

by g, - r21/2 and then

simplifying.

The field QZ) is fairly typical of the kinds of fields that arise when we
investigate the solution of polynomial equations by radicals. Clearly, we could obtain
other examples of fields by replacing 2 in this example by other numbers, giving a whole
family of fields Q(\/Tz) =[qg+nr/n:qgre Q).

. More complicated examples are possible, such as {g + V2 + &3 + 6 : qr.s,t € Q},
which is denoted by, Q(VZ¥3). (If you are wondering why V& appears here, just note
that any field containing vZ and V3 must contain. v® also, since V6 = vVZ x v3.)
There are also fields that are defined in a similar fashion but involving cube roots or

higher: {p + 2”"4 + 2% p.q.r € Q) is an example.

In order to see how fields of this kind can be related to our problem, let’s consider
again the general quadratic equation, Equation (6), and assume that ghe coefficients
a,b,c are all rational numbers. We can calculate the discriminant —dac  while
remaining within the ﬁe%d Q, since the calculation involves only subtractlon and
multiplication. Unless 5" — 4ac happens to be a perfect square, however, we have to

‘step up’ to the larger field Q( b*-4ac) in order to take the square root. The
remaining calculations (subtracting b and dividing by 2a) take place within this larger
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field., The. field Q(Vb2—4ac) is described as an 2fzxtension field of Q; we have just
shown that the solution of the quadratic equation ax” + bx + x = 0_ is an element of this
field. ’

This idea helps to shed some light on our original problem of simplifying v3+2v2.
The introduction of vZ puts us in the field Q(VZ), and we remain within that field when
we consider 3 + 2vZ. It appears at first that we have to step up to a larger field when
we take the square root of this number, but in fact it is not necessary to do so, since
the answer, 1 + vZ, is an element of Q(¥Z). A slight change in one of the numbers in the
original problem (replacing 3 by 2, for example) would mean that the second square root
would involve stepping up to a larger field. '

In general, expressions such -as (1) which involve “nested radicals;” give rise to a
sequence of fields, starting at Q, with each field containing the previous one. The
evaluation of each radical in the expression usually corresponds to a step up to the next
field in the sequence. Exceptionally, a step can sometimes be avoided because a radical
can be evaluated within the current field, and whenever this happens there is a way of
simplifying the original expression so that it contains fewer levels of nesting.

Quintic Equations Can’t be Solved by Radicals!

With these ideas in mind, it is now possible to say a little more about why quintic
equations can’t be solved by radicals.

The solutions of a polynomial equation are elements of a field known as the splitting
field of the polynomial, since it is related to tl}e way the polynomial “splits” into
factors. For example, the splitting field of x -2 is Q(/Z), since this field
contains the solutions vZ and -—v2 of the equation £ -2=0 (and is the smallest
such field).

If we want to solve a polynomial equation by radicals, we need to look for a sequence
of fields in which each field is an extension field of ‘the previous one. The first field
in the sequence is Q and the last is the splitting field of the polynomial, and each
step in the sequence corresponds to the evaluation of a radical.

At this point the details become complicated, and we can do no more than give an
outline of what happens. It tumns out that associated with each of these fields is a
certain set of functions which form a mathematical structure called a group. The group
associated with the splitting field (the last field in the sequence) is called the Galois
group of the polynomial, and this group must satisfy a certain technical condition if the
required sequence of fields is to exist. It can be shown that the Galois group of a
general polynomial with degree 5 or more does not satisfy this condition. Therefore any
attempt to find a general formula for solving quintic equations by radicals is destined to
fail.

How can Expressions be Simplified?

If we are given an expression involving nested radicals, such as v3+2vZ, then we saw
earlier how we could find a polynomial equation with rational coefficients of which the
expression is a solution. In this case, the Galois group of the polynomial will always
satisfy the condition referred to in the previous paragraph, but this doesn’t tell us
anything useful, since we already know that the equation can be solved by radicals — one
of the solutions is precisely the expression we started with!



Enter Susan Landau, a computer scientist at Wesleyan University in the United States.
In an article in the journal Science (15 September 1989), it was reported that Landau had
developed an algorithm for “denesting” nested radicals into their simplest form. Earlier
researchers had found algorithms that worked in special cases, but Landau’s algorithm is
the only one that can be applied in general. The algorithm systematically searches inside
the Galois group for the shortest possible sequence of subgroups satisfying certain
conditions. This sequence of subgroups corresponds in a particular way to the sequence of
fields for the denested expression being sought, and hence to the denested expression
itself. The search algorithm can be guaranteed to stop after a finite time because Galois
groups of polynomials always contain only a finite number of elements. (The Galois group
for x” -2, for example, has just 2 elements, while the Galois group for the general
quintic polynomial has 120 elements.)

Unfortunately, as a subsequent article in Science (24 November 1989) revealed, there
was a mistake in Landau’s original proof that the algorithm always produces the least
nested form of the expression. Landau has since modified the proof to show that the
result is always either the least nested form or a form with at most one extra level of
nesting. She has not actually found any examples of expressions that don’t reduce to the
least nested form when run through the algorithm, so her original claim might siill rm
out to be correct.

Even if Landau’s algorithm is eventually shown to produce the least nested form in
all cases, it will not be the last word on the subject. The algorithm requires a large
amount of computation: inserting just one extra radical sign in the original expression

_can more than double the computation time. The search will no doubt be on among
mathematicians and computer scientists for ways of improving the algorithm’s efficiency.
It would be interesting to know how long it would take a computer running Landau’s
algorithm to simplify the following expression: ’

Y, SVEI5 - VTIPS - VIES - SVITES + SV7TS. ®)

Early this century, well before the advent of the computer age, the Indian
mathematical genius Srinivasa Ramanujan correctly stated that Expression (8) is equal to
zero! At a time when it is easy to be overwhelmed by the blazing computational power of
the latest computers, it is worth reflecting on the ability of the human mind to tackle
problems that stretch the limits of our fastest machines. .

Perhaps the most interesting theme to arise out of these ideas is the increasingly
complex relationship that continues to develop between computing and mathematics. It is
not just a matter of using computers to perform calculations; the computer is profoundly
influencing the directions that mathematics itself is taking. We have seen in this
article how the “pure” mathematics of Abel, Galois and others is now an important tool in
the design of computer software, which in its turn. is driving mathematical research in
directions undreamt of by those earlier mathematicians. And a simple problem with square
roots has led us into an area of current research where there are many questions for which
no-one has yet found satisfactory answers.

* koK %ok
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FACTS AND FORMULAS ABOUT SHAPES AND
TRANSFORMATIONS OF CONIC SECTIONS
D.F. Charles, Pascoe Vale Girls High School

If you ask a Maths teacher or a student who has studied conics “What is the
eccentricity (e) of a parabola?” they will have no difficulty in telling you that
e = 1. However, teachers do also describe parabolas as ‘wider’, ‘narrower’, or ‘steeper’
depending upon the constant k in the equation y = kx".. In fact, the textbooks do the
same thing and introduce the concept of dilation of graphs by changing the constant in
front of the function. Unfortunately, most students then retain the erroneous idea that
there is a ‘family’ of parabolas all roughly similar in shape, but some ‘wider’ and some
‘narrower’ than the ‘normal’ parabold; even those students who go on to become Maths
teachers!

The problem lies in the fact that the parabola is not a good example with which to
introduce the concept of dilation because no matter how you iry to dilate it or indeed

transform it with any (non-degenerate) linear transformation, it retains exactly the same
shape. Even trying to shear the parabola has no effect on its shape.

oy A shear parallel YA
to x axis

—

. .
R —
X X

The only -effect that the linear transformation can have is to alter the parabola’s
position on the axes or to scale it up or down. This can be demonstrated by an accurate
plot of y = £ and y = 24, using the photocopier to diminish y = < and seeing that
it fits exactly over y = 2%, The same thing can be demonstrated by enlarging the

parabola y = £* by a factor of 2 using the matrix

(39)

then
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v 20 X X' =2 x=%x'
[y'J;z[O 2][}1] T,
} y =2 y=3

substituting in the original equation and dropping dashes gives:
y =%,

It is interesting' to compare the invariance of the parabolic shape with other conic
sections. This can be done from the mathematical definition of a conic (as the locus of a
point whose distance from a focus and a directrix are in the ratio e).

One fact which emerges is that ¢ determines the exact shape of a conic. E.g. all
conics with ¢ = 0.7 will be exactly the same shape and differ only in scale or position.

} “This explains why all parabolas are the same shape because for all of them e = 1.
There are no ‘thinner’ or ‘wider’ parabolas.

To compare shapes of conics therefore, we need only find e. The following formulas
give quick ways to find e for two of the other definitions of a conic section.

Plane — Circular Cone definition

gradient of generafor (m)

gradient of plane (g)

=

By a suitable orientation of the cone on the axes, it can be shown that:

o= g2(1+1/m2)
1+g2
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One can see that any translation of the plane does not affect ¢ and will only
change the scale. (This fact is obvious for the circle or ellipse, but not as obvious for
the parabola or hyperbola.)

Polynomial defihition

If the conic is looked at as the locus of poinis given by the ordered pairs (x.y)
related by the general 2nd degree equation in x & y: )

Ax2+By24{ny+Dx+Ey+F=0,

then e can be found from the formula

2 1/2
2= 2[(A-B) +C%]
1/2
|A+B|+[(A-B)*+C*

This formula is convenient in that it eliminates the necessity to rotate and translate the
conic into a more manageable form in order to find e.

Lastly we can look at the limitations (if any) of a non-degenerate linear
transformation in shape alteration and also ask the question “Can a linear transformation
change one type of conic into another?” .

The answer to this question is “No”. Certainly it can.change the e-value of a
hyperbola or ellipse and hence change its shape but only within the range 0<e<l for
an ellipse and e > 1 for a hyperbola. The point where e =1 is a stumbling block for
a linear transformation. The “Teason for this is that a linear transformation has the

effect of multiplying the ratio -l—’-i where:
a

& =11t bYd

If bYa® is already zero (as in the parabola), then e doesn’t change. We can prove
the above statements more tigorously as follows:

Proof

Any ellipse, by a suitable translation and rotation, can be transformed into the
form:

©
i}
—

+

QN‘ R,

(&)

'~

Let us transform this with a linear transformation 7T represented by the matrix
T = [‘; g] whose inverse is T = [’é. g]

i xY_({A B x x = Ax'+ By
then: [y]_[CD][y,]«.:: e E
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Substituting into Equation (E) gives (after dropping dashes):
A*C*V2, (B*D*)2 AB CD).. _
{?,p)x + [??]y +2[-a—2-b—2]xy— 1.

If we let 2

M = coefficient of x

N = coefficient of y2

2H = coefficient of ' xy,

then the condition for the equation to represent each type of conic is:

H® - MN > 0 gives a Hyperbola
H* — MN = 0 gives a Parabola
H® - MN < 0 gives an Ellipse.

Evaluating H® - MN for our equation gives:

_(AD-BC)* _ (et T')*

2 -
BN == a*b?

This is clearly always negative, indicating that the transformed graph must also be

an ellipse. (Note that det 7' cannot be zero because if it were, T  would be
singular having no inverse and so 7 would not exist.)

: Similar(reasoning. applied to a hyperbola

2_ 2:] gives Hz_—MN:.(det—T—l)z
i a*p?

QN' =
0;) I‘<

again ensuring that the transformed gfaph is also a hyperbola.

Thus if no transformation from hyperbola or ellipse to parabola exists, then the
inverse transformation from parabola to other conic cannot exist either.

Students of Physics will be interested to know that the above fact is reflected in
nature. The path of a body around the sun is a conic section. If the body is captured in
orbit then the path is an ellipse. If the body has just enough energy to escape then the
path is a parabola, more energy, then the path is a hyperbola.

Special Relativity deals with different views of a system in different inertial
frames of reference. The transformation of .coordinates from one frame to another is
linear. If a linear transformation could change the type of comic, then it would be
possible for an observer in one frame of reference to state that a body is captured in
orbit since its path is elliptical, while another observer in-a different frame could say
that the body is not captured since its path is parabolic or hyperbolic. This is not
possible because the body is either captured or not.

Question: Are there any curves other than the parabola which are immune to a shape change
by any linear transformation?

* X % ¥ %
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Karl Spiteri, Student, University of Melbourne?

If we take a unit circle we may inscribe a square in it as shown in Figure la. The
perimeter of the square will then be 4vZ and the circumference of the circle will be
2n. Figure 1b shows how an octagon may be constructed from the square. We would expect
the perimeter of the octagon to give a better approximation to 2m.  (After all,
4vZ = 5:656 ... while 2m = 6-283 ..., so the first approximation is not very good.)

Figure l1a . Figure 1b

Indeed, we would expect to get better and better approximations as we go from a
square to an octagon to a 16-gon to a 32-gon and so on.T.r '

Let x be the length of the side in a 2"-gon. First take the case n = 3. See
Figure 2.

We can use the cosine rule to find x, : : B
x§=12+12_2x1x~1cos%, 1/( \
ie. %
x§ =2 ~V2 / , \
v o

Figure 2

So it follows that-

x, = 2-V2.

TThis is adapted from a prize-winning project written in 1988 when the author was in
Year 11.

L For another approach to this, see Function, Vol. 4, Part 1.
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The perimeter of the octagon is therefore

2’ x V2vZ = 61229 ...

which gives the approximation
- = 30614 ... .

cos(n/2™).  This can be done using the

To continue we need to evaluate

trigonometric identity
cos’ = %(l + cos 260).

1
2

This gives
cos(m/2™Yy = 1 v2+2cos(n2™?).

Using this result we may find, from the value of cos(r/4), cos(7/8) = %\/2+\/Z, and then

use this to find cos(n/16) = % A\/ZH/Z, and so on. In general

|

cos(n/2") =% 22+

where there are n~1 square root signs.
Now that we have this we may use the cosine rule as we did earlier in the case

n = 3. We find, for example, that

x, = 22+V2.

This gives a new approximation 7 = 3-1214 ... . Similarly

o

I

g
ﬁ
<)
N

from which 7 = 3'1365_ -

In general & = P where

' P = "YW oI,

where there are 7-1 square root signs, one minus sign and 7-3 plus signs. I have

calculated the following table.
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n P

n
2 2-82843
3 3.06147
4 3-12144
5 3-13655
6 3-14033
7 3.14128
8 3-14151

If we put

Q = V2+/24+VIF

n

where there are n-2 square root signs, then

Lim Q =2.
naeo
To prove this square both sides
2 _
Qn =2+ Qn_l.
If Qn >Q as n - oo, then O will satisfy
Q*=2+0Q
and since Q > 0, the only solution is Q = 2. We then have
Pn - 2n~1 W‘ : ’

and the interesting point is that as n » oo, 2" 50 and VZQ 7 > 0 but their product

tends to 7.

I have been able to extend these results, starting with a hexagon. This gives
similar results, with rather better approximations to 7, as one might expect. I have
also used circumscribing polygons. These give, again as we might expect, approximations
which converge to 7 from above. If we start from an inscribed decagon, the side is
1/6, where ¢ = 1-618 ... is the golden ratio. This leads to further approximations to
7, each involving multiple square roots based on ¢. I have also considered starting with
a square and filling in the gaps with rectangles constructed by bisecting the sides of
previous rectangles, either approaching the circle from inside or from outside. This
leads to further approximations to , but in this case the rate of convergence is very
slow.

* ok ok K X
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LETTERS TO THE EDITOR

Computers and Euclidean Theorems

I was interested to read the article about the new theorem in geometry produced by Wu

Wenjun’s program‘T - It states that “I have checked many such claims”, and found them
wanting. ;

However, Wu’s work has now changed the situation considerably. Shang-Ching Chou has
implemented Wu’s program on computers at the University of Texas at Austin, and that has
proved hundreds of significant theorems in Euclidean geometry. Chou’s report indicates
the algebraic method used for proving theorems, and a selection of the theorems which have
been proved (Shang-Ching Chou, “A collection of geometry theorems proved. mechanically”,
July 1986, Technical Report 50, Institute for Computing Science, The University of Texas
at Austin).

Wu’s algebraic method of proof is markedly different from the traditional proofs
based on geometric axioms; and the actual proofs are clearly “unfit for human
consumption”. Chou explains that 348 theorems were proved within a fotal period of 40 to
50 minutes, but 18 attempted proofs were stopped when they produced polynomials with more
than 5000 terms.

Chou’s report does not make clear how much work is required for presenting the
theorems in a form acceptable to the program, taking care about non-degeneracy. And Chou
. seems not to claim that any new theorems have been produced by the program.

However, Wu’s program is clearly very effective in proving non-trivial theorems in
Euclidean geometry.

Garry J. Tee, k
University of Auckland

* % X X %

And More on the Same

In the last edition of Function, Michael A.B. Deakin published an interesting article
called “A Computer-Generated Theorem in Elementary Geometry” which deals with a problem of
a plane intersecting a square pyramid. The question asked is: “Can the plane intersect
the pyramid in such a way that a regular pentagon is formed?” There is one obvious way in
which this is possible. - The article goes on to describe a second way, where the pentagon
lies outside the pyramid. The author is surprised by the result, and is pleased by the
fact that the proof was found by using a computer; he believes that this is the first such
geometrical result to be found in this way.

Much of the article gives a history of the proof and the author’s personal account of
re-creating the proof; this is very interesting to read. However, the account of an
attempt to prove the result using a computer language called Mathematica does not provide

T See Function, Vol. 15, Part 1, p.8.
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good reading; likewise the author’s implied suggestion (as I read it!) that he could solve
the equations faster and better than the computer provides a challenge.

In less. than two hours (with several interruptions) I solved the equations, using a
language called REDUCE, finding several solutions in the process. The speed says nothing
about my abilities — anyone adept in using a Computer Algebra package such as.Mathematica,
Maple, or REDUCE could have done the same. I do not know what the people using
Mathematica in Kyoto (as described by Michael Deakin) were doing; they were obviously
expecting to crack a nut using a sledgehammer when they did not even know how to lift the
sledgehammer!

The key to using Computer Algebra (or Symbolic Computation) in a problem like this is
to use it interactively. This was done here.

There are four equaﬁons to be solved:
7l = (s + 5 + P - 4(-1)°
2 = A-1)% + v + (v — 4(»-1)°
23 = a(1)(s-H) + sv + (1-v-f) — 21v-1)(v-1)
d=dE+ s - F+ 2(1-v-t)(v-1j
together with a fifth equation
' 25 = s(1-#4) - v

where z1 =..=25=0. I was told that it was most likely true that the first four
equations implied the fifth, but no proof had been found. It turns out that this is not
true: a solution to the first four equations exists which does not satisfy the fifth (see
Case (c) below).

The procedure used is as follows: Type in the statements for z1. to z5. Keep track
in your mind that each zi is zero. Put (after playing around with the equations for a
while) v=t+y and t=1+m. Then 22 -zl -2z4 =0 gives c22=1—2,y/m2 for
m# 0. Check that m =0 leads to a contradiction. Then s is found to be
~(the coefficient in z3 of s%) / (the coefficient in z3 of s, 2 gives an expression

for m’ in terms of m and powers of y. Make a substitution for m’ (the computer
does not realise that this says anything about m). Continue in this vein. - Soon three
possibilities emerge: (i) y =0, (i) y=1 and (il) m is some horrible ratio of
third order polynomials in y. Now investigate these three cases in detail. The third
case teaches us something about the power of Computer Algebra, because the expressions are
ones which would probably make us want to give up on if we had to do the calculations by
hand. However, the computer does such calculations with ease.

We find:
@ y=0,m=-1-¢ where ¢2—¢~1=0,a2=1,s=1+¢,

t=v=—¢, is’
(b) y"—y—1=0,a=oo,m=0,ﬂ=1,s=t,v=arbitrary,

© Y-8 +19%° - 12y+1=0,a=0.
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Case (a) gives the two solutions discussed by Michael Deakin. The reader is left to
think whether Cases (b) and (c) lead to any geometrically relevant solutions. In
Case (c), s also is the ratio of two third order polynomials in y. However, z5 'is not
zero and this shows that the equations z1 = 0 to z4 = 0 do not imply that z5 = 0.

Colin B.G. McIntosh,
Monash University

* ¥ % % %

It ain’t necessarily so!

Recently I had a further letter from my friend Dai Fwls ap Rhyll, the little-known
Welsh eccentric whose discoveries .are quite revolutionary and have not yet received the
attention they deserve. :

Dr. Fwls has discovered that, in addition sums, the order of addition is important
and not, as is widely taught, immaterial. He bases his work on “long and cross-tots” —
those tabular arrays used by accountants and others, where two sums are made to balance
and equality of the two is in fact used as a check on the accuracy of the calculation.

However, he has found a case where, quite clearly, this does not hold. Here it is.

0+1+0+0+0+0+ ...
-1+0+1+0+0+0+ ..
40-1+0+1+0+0+ ..
0+0-1+0+1+0+ ...

If first we sum each row and then add up all the sub-totals so generated, the sum is
clearly +1. However, if we first add by columns, the sum, equally clearly, is -1. To

compound the paradox, if we add by diagonals in this direction ' , each sub-total is
zero and so the sum is zero.

The question is: which is correct?
Kim Dean,

Union College,
Windsor

* % % X ¥
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HISTORY OF MATHEMATICS SECTION

EDITOR: M.A.B. DEAKIN

Facing Mecca

I travel to Indonesia quite frequently and on one such trip, an Australian who was
travelling with me noticed that on the ceiling of each of the hotel rooms he had occupied
there was an arrow. When he pointed this out to me I noticed such an arrow on the ceiling
of my hotel room also. My friend suggested that the arrow might be an indication of the
direction of Mecca: so that Muslim guests could face in the appropriate direction when
they prayed.

This turned out to be so. Climbing onto a chair to investigate matters more closely,
I read the words ‘Arah Kiblat’, which my dictionary told me mean ‘direction’ and ‘towards
Mecca’ respectively.

It occurred to me that the determination of how to orient this arrow must be a matter
of some mathematical complexity. It does in fact need spherical trigonometry for its
solution and so the requirements of Islamic devotion might well, it seemed to me, have
stimulated mathematical progress in this area. Such is indeed the case.

The three great monotheistic religions (Judaism, Christianity and Islam) each spring
from a Middle Eastem tradition attributed by all three to the prophet Abraham (or
Ibrahim). The events leading to the first codification of that tradition (the Jewish) are
recorded in the book commonly referred to as the Old Testament. The events leading to a
break-away movement within that tradition and. the founding of Christianity are recorded in
the book Christians call the New Testament. The ancestral tradition was not. codified
until much later, when the prophet Muhammad (c. 570-632) founded Islam, whose sacred book

is 'the Qur’an.
It seems that from the earliest times of the monotheistic tradition, the practice was

adopted of praying with one’s face toward some particular direction. In Arabic, this
direction is known as the gibla.(or kibla) ~ this term being the origin of the Indonesian

word ‘kiblat’. U
Originally the gibla seems to have been elther geographic due east, or else (what is

not quite the same) the direction, from day to day, of sunrise. It seems that it was King
Solomon who first changed its direction.

TThe letter Q in  Arabic transliterations approximates our sound ‘k’, not as we might
think ‘kw’. In fact, even in English, this is so: “QUIT”, pronounced kwit, has Q - k,
Usw, I>i, Tt Perfectly logical. In getting this wrong, we Australians are the
world’s worst. For the name of our national carrier QANTAS is pronounced with an initial
kw sound when there is no U present!
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) “Then Solomon .stood up before the altar of the Lord in the
presence of the whole assembly. of Israel and spread forth his hands to
the heavens, and said ‘O Lord ... if thy people go out to battle
against their enemy, by whatever way thou shalt send them, and they
pray to the Lord in the direction of the city which thou hast chosen
and the house which I have built for thy name, then hear thou in the

» 3

heavens their prayer and their supplication, and uphold their cause’.
1 Kings viii 22-23, 44-45.

- Thus the Jews, and in all probability other monotheists, came to pray facing
Jerusalem. Later, probably in our yearT 624, Muhammad altered the direction of the
gibla, which came to be directed toward Mecca. The change is recorded in the Qur’an
‘(Chapter ii, Verses 143-148, though these numbers may vary between editions).

So from the earliest times of Islam, the gibla has been towards Mecca. As Islam
spread, the determination of the qgibla became a problem complicated by the need to take
account of the curvature of the earth’s surface. Look at Figure 1. M is the position of
Mecca and X is another point on the earth’s surface. It is shown to the north and to

Equator

Figure 1

‘r’i‘he’ Muslim calendar dates from the Hidjra, or migration of the prophet from Mecca to
Medina, on 16/7/622. The gibla was altered some 17 months after this event.
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the west of Mecca because these were the directons in which Islam spread in its early
years.

The arc XE of the meridian through X subtends an angle ¢ -at the centre of the
earth. ¢ -is the latitude of X. Similarly, ¢m, the angular measure of the arc MF, is

the latitude of Mecca. The difference in longitude between the two places is Al, the
angle -XNM on the diagram, where N is the north pole. The arc XM is the shortest
distance from X to M. It lies along a “great circle” — a circle whose radius is that
of the earth.

{At first I wasn’t sure that the direction was necessarily measured along such.a
great circle. Lines of latitude, for example, are not (apart from the equator) great
circles, Thus if one travels (say) due east of Mecca (along a line of latitude), should
one face back west, or somewhat north of west, along the great circle? (There is a point
in the eastern Pacific Ocean about a third or so of the way from Hawaii to the Mexican
coast where the great circle to Mecca passes through the north pole.) I asked a number of
Muslim mathematicians about this and eventually received the answer that the gibla is

indeed taken along great circular arcs..T 1

The angle g, called in Arabic inhiraf al-qibla, is then to be determined from a
knowledge of ¢, ¢m “and AL. This is a problem in spherical trigonometry. Spherical

trigonometry was described in Function, Vol. 6, Part 5, pp. 8-12, bt there is a lot more
to the subject than could be mentioned in that brief article. From one of the formulae of
spherical trigonometry, not actually given in that article but deducible (with work) from
others that are, we may derive the result:

cot g = (sin ¢ cos AA — cos ¢ tan _)/sin AL (1)

which enables the gibla to be determined.

The question thus arises as to when this formula or some equivalent of it was first
derived. In the west, the person who most studied such questions was the late Karl Schoy
whose works unfortunately are mostly in German and in books and journals to which I.don’t
have ready access. However, he summarised much of this work in the article he wrote (in
English) on Kibla in the Encyclopaedia of Islam.

The first name he mentions is that of al-Battani, who lived in the late ninth and
early tenth centuries in what is now Iraq. al-Battani, as mentioned in Function, Vol. 6,
Part 5, p. 12, is credited by some authors with the discovery of the cosine rule of
spherical trigonometry. The cosine rule is the basic rule of spherical trigonometry from
which all the others may be derived — including Equation (1) above. However, it seems
that al-Battani did not go on to derive Equation (1).

He did discuss the determination of the qibla but gave only an approximate
construction. Here it is. Look at Figure 2; it represents a horizontal circle on which
the four cardinal points are indicated.

¥ That not all Islamic mathematicians know this need not surprise us. How many Christian
mathematicians know how the date of Easter is determined? [See Function, Vol. 9, Part 3,
pp. 10-12.]
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cN
€]
W E
Al s
Ds
Figure 2

First mark off £ EOB equalto ¢ - ¢m, next mark off £ NOC equal to AM, both as
shown. Now draw AB parallel to WE and CD parallel to NS. Suppose these lines meet
at X. Then

q = £ SOX. @)

As an aid to further analysis, write A¢ = ¢ — ¢m. It may then readily be shown that
al-Battani’s approximation is
sin A¢

coL g = AR - 3
Bxact is Equétion (1), which may be approximated for small A¢, AL by
cot g = [ % ]sec ¢m. “)

, the latitude o ecca, is , SO  sec = 1.07. us al-Battani’s
n the latitude of M is 21927 » 1.07 Thus al-B

approximation is a reasonably good ome. In fact, it can work out to give quite good
agreement in certain localities. Schoy demonstrated for example that it is extremely
accurate for Cairo. ’

A somewhat better approximation was produced by the tenth century Egyptian astronomer
Ibn Yunus, who is also credited by some with the discovery of both the sine and cosine
laws of spherical trigonometry. Exact solutions, however, seem initially to have involved
various graphical or mechanical devices. Schoy mentions two early ones, due respectively
to Abu ’1-Wafa’. (who died in 998) and to al-Fadl b. Hatim al-Nairizi, who died in 922 or

923. However, the latter’s calculation of g for Baghdad was very badly in error.

Schoy goes on to describe a geometrical construction produced by Hasan b. al-Husain
b. al-Haitham, a somewhat later astronomer, who died in 1039. It is rather involved and

so will not be given here, but it is exact. More reéently, details of an earlier exact
construction have come to light. They form indeed the subject of the very first paper in
the very first issue of the journal Historia Mathematica. This method is due to the ninth
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century Baghdad astronomer Habash al-Hasib, though we know it through the writings of the
somewhat later Central Asian mathematician Abt al-Rayhan Muhammad b. Ahmed al-Biruni
(born 973). Again its details are complicated and will be omitted.

Later, these complicated constructions gave way to tables. One such \;vas produced
around 1365, by Shams al-Din Muhammad ibn Muhammad al-Khalili, a timekeeper of Damascus. -

A lengthy account of this is given by David King in Volume 34 of the Journal of Near
Eastern Studies. C

Tables are indeed what modern Muslims use. In Islamic countries, the direction of
the qibla is often indicated, as in the hotel rooms in Indonesia, and mosques are normally

aligned correctly.T However, when travelling, a devout Muslim will normally carry a
small magnetic compass and a card incorporating a brief gibla table. I owe this
information to an Iranian mathematician whom I met at a recent international conference.

It would seem, therefore, that it was the Islamic mathematicians who for many
hundreds of years led the world in the study of spherical trigonometry. In the West,
there is litle to be found between the days of Ptolemy (second century) and those of
Regiomontanus (fifteenth century). And one of the main incentives to the Arab tradition
was the determination of the gibla.

Finally, we may note that there is one place on earth, other than Mecca itself, where
the gibla is undefined. It is the point precisely antipodal to Mecca, very near Vanavana
atoll in the Tuamoto - Archipelago, but quite close to the more notorious Mururoa. As an
exercise, show that for this point Equation (1) yields cot ¢ = 0/0. Can you show from
Equation (1) that this is the only such point?

* X ¥ Kk ¥k

Snow on Mathematics

Finally, we should agree that mathematical creation is one of the
great triumphs of the species since we climbed our way out of the
caves, and one of the reasons, perhaps thé chief. reason, why in the
last 400 years, we have climbed so quickly. It does not need stating
that mathematics is the basis of our scientific civilization. But 1
would also state that mathematics is a token and a symbol of the human

* achievement in its own right. There are many tests you can apply to a
society’s education. . But one of them is — does it bring out a number
of creative mathematicians who, by world standards, can hold their own?
This is, of course, not the only test. But it is a harsh, objective
and essential one. If a society’s education does not reach it, then
there is something wrong with the society or with the education. A
society which does not choose t encourage excellence, and this
particular kind of excellence, won’t be a decent society for long.

C.P. Snow

TThe last vestige of the gibla in Christian worship would seem to be the choice of the
east as the direction of the naves of cathedrals.
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COMPUTER SECTION
EDITOR: R.T. WORLEY
Some Computing Methods

The sequence O, 1, 1, 2, 3, 5, 8, 11,... of Fibonacci numbers Fn, in which each

number apart from the first two is the sum of the previous two numbers, is useful for
demonstrating some techniques. The Fibonacci numbers are formally defined by

F =0, F =1

F =F +F  for n22, (¢
and are known to have many properties. Some of these are mentioned in the article by
Garnet J. Greenbury in Function, Vol. 14, No. 4, while methods of computing- the Fibonacci
numbers are discussed in Function, Vol. 14, No. 5. 1 have recently become aware of better
methods of computing the Fibonacci numbers.

The simplest method of calculating Frl is to calculate in tum Fz’ Fs, Fn-1’ F

using the defining relation (1). However it is certainly possible to calculate Fn by

evaluating only some: of F, 2,...,Fn. . before Fn. For example, consider the formula

Fm+k = Fm-IFk + Fka+l (2)
of Greenbury’s article. Using this formula we have, for example,
F27 = F13F13 + FMFM' &)

Hence we clearly only need to evaluate F 21’?‘ " before we can calculate F27 using
(3) — we certainly don’t need to calculate any of F 15""’Fzs‘ We could be even more
economical, using (2) again to observe that

F =FF +FF, )
F,=FF + F7Fs’ )

and so we could calculate F - by calculating only F2,F3,...,F8,F " and F 14‘

Based on these ideas we can write a program to evaluate Fn using (2) in the way
illustrated, where k = m-1 or m. Using these values of k, formula (2) becomes

52 2
FZm-l - Fm»l + Fm . (6)
F2_m = Fm(Fm-l + Fm+1) = F}n(sz.l + Fm)' (7) .

We start by setting up an array F(0), F(1),..F(n) with F() = 0, F(1) = 1, and
F2) = ... = F(n) = -1. The ‘-1’ indicates that the true value has not yet been worked
out. Then we have a function Fib(i) which does the following.
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(@ If F@ 20, Fib(i) returns the value F(@).
() If F@) = -1, then we use the correct one of equations (6), (7) to calculate
the i-th Fibonacci number, store it in F(i), and return the value F().
This descent method was progrmmed, and the actual number of F JOE Fn_l' - evaluated in
calculating F11 are given in Table 1. In addition, the total number of times values of
Fn were used was counted, and thesev values are also included in the table.

Because of the way the Fibonacci numbers grow so rapidly, they quickly exceed the
bound on integers that a computer normally handles. completely accurately. This means that
in most programming languages on most computers one cannot calculate Fn for n > 46.

One can go a little further with Turbo Pascal on the IBM PC, because it has a ‘comp’
integer variable type which copes with up to n = 92 (although only values up to n = 87
can be printed out accurately). In some languages specialised for long integers, one has
almost no limit. I used UBASIC, a public domain version of BASIC for the IBM PC which
handles Fibonacci numbers up to n = 12492,

The above method is similar to calculating a* by

27 13 14
a =a-a

= (dd)d'a))
= (@)@ (@) (eto).
However, powers are usually calculated by the method known as ‘binary powering’, which
writes
27 _  1648+42+1
a’' ' =a

. 27 16 8 2 1
Le., a =aaaa.

The powers on the right are easily calculated by repeated squaring - we actually calculate
a' as well, because it is needed for as, although we make no other use of it.

& = (@)
& = (@)}
& = (a%?
' = (@M

The binary powering method builds up from a' t0 a*’, whereas the first method worked down
from ” to a'.

Because binary powering is normally used in place of the descent method for powering,
this approach should be investigated. It turns out that we can find an analogue of the

binary powering method to calculate the Fibonacci numbers. However there are a couple of
modifications. If we look at the formula (7) above we see that to calculate F2m we need

Fm_1 as well as Fm. Thus, for example, to calculate F g wemneed. F , as well as F4‘
Thus we need both formulas (6) and (7), using F . and F2 to calculate F3 and F4. We
then use these to calculate F7 and Fs’ and use these to calculate F15 and F16,
(etc.). It now remains to see how we can use these terms to build up to F27. To do this
we make use of the formulae
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F =F F +FF

- mtk
' Fm+k+l = Fka + Fm+1Fk+i = Fka + (Fm-l + Fm)Fk+1’
which express F . ad F_ intermsof F , and F ot Starting with k=0, m=1 we

generate F R and F y Now taking k=1, m=2 we then generate F, 5 and F4. ‘Now we take
k=3, m=8 to get F y and F , and finally taking k=11, m=16 we generate F ,, and
F o (The values for k are the sums 0, 0+1, O+1+2, 0+1+2+8 and the corresponding value
of m is the power of 2 required to get the next value of &.)

A program was written to calculate the Fibonacci numbers using this method. For
comparison with the descent method, the table gives the number of different values of the
Fibonacci numbers calculated. Very little can be deduced from the table, apart from an
obvious formula or two. Although it appears that the descent method uses less different
values of the Fibonacci numbers, this is not always true and the descent method can use

nearly 50% more different values for very large n of the form 2* + 2,

Although you may think there is little point in calculating large Fibonacci numbers,
that is not what this article is really about. It is the two methods used that are of
importance. The first method, which I called the descent method, is an example of what in
computing is called the ‘divide and conquer’ method. The problem of calculating F is -

divided into two smaller problems (calculating F_ and F_. where m is approximately

n/2) which are easier to solve. These problems themselves are divided, and so on. This
technique is the basis of a number of algorithms, including the fast sorting procedure
known as quicksort. = Likewise the method based on binmary powering is an important
technique.

descent method binary method
n # distinct Fs # total Fi # Fi
130 15 31 18
258 18 37 : 20
514 21 43 22
‘1026 24 49 24
2050 27 55 26
123 13 27 24
456 18 .37 24
789 23 . 47 28
901~ 23 47 ’ 28
1234 - 24 49 30
4567 28 57 40
7890 32 65 40
9012 .32 65 38
12345 35 71 38

Table 1
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The following is a sample program using Turbo Pascal to calculate the Fibonacci
numbers by the descent method. Some of the details are specific to Turbo Pascal. For
example, the type ‘comp’. If using another version of Pascal it may be better to use the
‘real’ type, in which case the constant maxfib will need to be altered to a smaller number
to cope with the accuracy available with that type .

(* program to calculate fibonacci numbers by divide and conquer *)
(* R.T. Worley *)

{$n+)

const maxfib=87;

var n,i:integer;

var f:array [0..maxfib] of comp;

function fib(m:integer):comp;

var k:integer;

begin

if (flm] >=0) then fib := f[m] else begin
if odd(m) then begin

k:=m div 2;
flm] := sqr(fib(k)) + sqr(fib(k+1));
fib = f[m] )
end
else begin
k := mdiv 2;
flm] := fib(k) *(2*fib(k-1) + fib(k));
fib := f[m]
end

end
end;

begin (* main *)

for i:=2 to maxfib do f[i]:=-1;

f[0]:=0; f[1):=1; .

while (true) do begin -
write(’which fibonacci number? (O<=n<=",maxfib:2,’) :*);
read (n);
if (n<0) or (n>maxfib) then writeln(’illegal input value’) else
writeln (’fib(’,n,’) = °,fib(n):26);
end

k Kk k % ¥

More from C.P. Snow

Mathematical excellence is difficult to handle, administratively and
politically, simply because very few people possess it. - Life would be
simpler and tidier if no one possessed it. Then these tiresome
arguments about some special arrangement could not enter at all. Yes,
life would be simpler and tidier, it would have also lost intellectual
glories. Concern for this kind of excellence is not the only value in
education. Quantitatively it does not count, by the side of the task
of educating as well and as justly as we can millions of children. At
the most, this concerns only a few thousands. It is not the only
value. Yet I am certain that if we neglect it, we shall show, whatever
our motives, that we do not know what educational values are. )

C.P. Snow



PROBLEMS AND SOLUTIONS'
EDITOR: H. LAUSCH
Solutions

Solutions to Problem 14.5.3 have been received f}'om John Barton (North Carlton,
Victoria) and from Francisco Bellot-Rosado (I.B. “Emilio Ferrari”, Valladolid, Spain).
The latter also offers a variation of John Barton’s solution to Problem 14.5.6 given in
the last issue.

Problem 14.5.3. Solve the simultaneous equations in the unknowns x,y,z:

Loy=d

¥z = b

2 2

7 —-xy=c.
Solution (Francisco Bellot-Rosado).  After multiplying the first equation by y, the
second by z  and the third by x, and adding the resulting equations, we obtain

Fx a2y + b2z =0 e))

Similarly, after multiplying the first equation by z, the second by x and the- third by
y, and adding, we obtain

bh + czy +dz=0. @)

Consideﬁng (1) and (2) together as a system of two linear equations in the three
unknowns x,y,z and treating it by any method available, one ends up with

X = Y -z -
a*-bc? - b'-a*c? B c*-a*n® =k
hence
x = (@B, y = B'-d*PD, z = (*~a"BDA. ?3)
Substitution of these values into the third equation of the problem gives
Wb - (@B AP ~*a)] = ¢, from which it follows that

9\«2 = . 1
+b5+c83a%% 7

Going back with this into (3) provides the values of x.,y,z.
- John Bartor’s solution is, in principle, along similar lines, but uses the powerful

resultant or (Sylvester) eliminant method that can be found in classical higher algebra
texts.
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Problem 14.5.6. Let x,y,z be three non-zero real numbers whxch are distinct from each
other. If x + y + z = 0, what is the product

z—_%,z_—ﬁ,uﬂ}. _x_+_y_+_z_}«;
X y z y-z - z=X = X-y

Solution. If we set a = 2 ;z , b= 5 .c= )L;Z , then the product in question is
1,1 ..1)_ b+c | c+a | a+b
(a+b+c)[E+B+E]'3+T+ + —.
2
Now consider b_q = —-z-(—x——y~z+22) = -2-—5 because x +y + z = 0. Similar expressions are
c+a a+b

obtained for 5 and 3 - Hence

b+c a+b _ 2z 25 _
T e =y yz*“a'm(“y“)

Again we use the data that x+y+z=0, this time for concluding that
£+ ¥ + 2 = 3xyz, and therefore
éi-f’ + cta -+ _ai—é = 6,

so that the answer is 3 + 6 = 9.

Francisco Bellot-Rosado remarks that this problem is included, for example, in the (not so
old as 1878) book: Krechmar, A problem book in algebra, Mir 1974 (Ex 2. 18)

Problems

Juan Bosco Romero Marquez (I.B. “Isabel de Castilla”), Avila, in Old Castile, Spain,
offers this problem to our readers. {Muchas gracias!

Problem 15.2.1. Let fn) =1 +2 +3 + ... + n.
Evaluate:
@ D,

(b) ™ where i denotes as usual a square root of -1,

f(n)

(¢) o', where ® is a p-th root of unity, i.e. a complex number whose
A ; y p

p-th power equals 1.

¢

[Note that (a) and (b) are the special cases of (c) in which p = 2, 4 respectively.]
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Problem 15.2.2 (K.R.S. Sastry, Addis Ababa). AD, BE, CF are the angle bisectors of
triangle ABC (see figure). Determine all triangles ABC in which DF bisects angle
BFC. What are the angles of the triangle ABC if £ AFC = 2-£ BAC ?

T

. Problem 15.2.3 (K.R.S. Sastry, Addis Ababa). A triangle is called self-median if its
sides are proportional to the medians. Let AD, BE be medians and G the centroid of
triangle ABC. Prove that this triangle is self-median if £ DGC = £ BAC = and
£ CGE = £ ABC. .

Year Twelve International

Here are a few more problems from a British sixth form course.

Problem 15.2.4. Someone writes n letters and writes the corresponding addresses on n
envelopes. If Un denotes the number of ways of placing all the letters in the wrong

envelopes, obtain a relation between U, U~ and U . Compute U, and find .

n-2’

Problem 15.2.5. Take n points on a circle and join them up in all possible ways. Into
how many regions is the circle divided by the joins?

Problem 15.2.6. A point lies inside an equilateral - triangle and has distances x,y,z
from the three sides respectively; k£  is the altinde of the triangle. Prove that
x +y+ z=~h Can this result be generalized in any way?

Problem 15.2.7. A trangle T is drawn on a square grid (graph paper) with vertices at
points of the grid, but no other grid-points is in or on it. Show that the area of T

is 2
3

Problem 15.2.8. Let § be a set of n points in the plane such that any two of them are
at most 1 unit apart. Find the radius of the smallest circular disc which will cover
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Mathematical Olympiads ‘

The Australian Mathematical Olympiad, competed in by 100 secondary-school students
from across Australia, took place on February-12th and 13th this year. On each day
competitors had a four-hour paper, each consisting of four questions, to tackle. Here are
the papers. Can you do the questions? Send me your comments and solutions.

Paper 1

1.. Let ABCD be a convex quadrilateral. Prove that if g is the ‘ greatest and h is
the least of the distances 'AB, AC, AD, BC, BD, CD, then g2 2. -

2. Let Mn be the least common multiple of the numbers 1, 2, 3,.., n. Eg, M L= 1,
M2 =2, M3 = 6, M4 =12, M = 60, M 6 = 60. For which positive integers n does
M"‘l = Mn hold? Prove your claim.

3. Let A, B, C be three points in the x-y-plane and X, ¥, Z the midpoints of the
line segments AB, BC, AC, respectively. Furthermore, let P be a point on the line BC
so that £ CPZ = £ YXZ. Prove that AP and BC intersect in a right angle.

4. Show that there is precisely one function f that is defined for all non-zero reals,
satisfying: :

@ fix) = xf&], for all non-zero reals x ;
(i) fx) + ) = 1+ fix+y) for each pair (x,y) of non-zero reals where
X # =Y.
Paper 2

5. Let Pl’Pz""’Pn be n different points in a given plane such that each triangle
PinPk (i#j+#k#1i has an area not greater than 1. Prove that there exists a
triangle A in this plane such that

a) A has an area not greater than 4; and

b) each of the points Pl, P2, . Pn lies in the interior or on the boundary
of A

6. For each positive integer n, let

fm) =

1 .
3 3 3 :
Vrit42n+1 + vn®-1 + ViP-2n+1
Determine the value of A1) + f{3) + A5) + ... + £999997) + f(999999).
7. - In triangle ABC, Tlet M be the midpéint of BC, and let P and R be poinis on

AB and AC, respectively. Let Q be the intersection of AM and PR.
Prove: if Q is the midpoint of PR, then PR is parallel to BC.
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8. Find a sequence a, a, ay .. whose elements are positive and such that a, = 1

and a-a =a. for n=0,12,... Show that there is only one such sequence.

2

On the basis of their performances, 27 Australian students were selected to participate in
this year’s Asian Pacific Mathematical Olympiad, the third since its inception in 1989.
They will have to compete with students from twelve other countries on the Pacific Rim,

They are (their grade or year appears in parentheses):

Geoffrey Brent (10), Canberra Grammar School, ACT
Adrian Banner (11), Sydney Grammar School, NSW
Kendall Bein (12), James Ruse High School, NSW
Andrew Berthelson (12), James Ruse High School, NSW
Tom Brennan (12), Knox Grammar School, NSW
Peter Cotton 12), Newington College, NSW
Anthony Douglas (12), Knox Grammar School, NSW
Avery Fung (12), Randwick Boys High School,. NSW
Jonathan Heaney (12), Knox Grammar School, NSW .
Anthony Henderson (10), Sydney Grammar School, NSW
‘Luke Kameron (12), Knox Grammar School, NSW
Andrew Usher - (12), Sydney Grammar School, NSwW
Eric Willigers (12), Colo High School, NSW
Weiben Yuan (12), Cabramatta High School, NSW
Robert McCahill (12), Ignatius Park School, Qud
Meng Tan (12), Brisbane Grammar School, Qld
Brian Ng (12), Prince Alfred College, SA
Justin Sawon (12), Heathfield High School, SA
Kingsley Storer (12), Prince Alfred College SA
Martin Roberts (12), Rosny College, Tas
Angelo Di-Pasquale (12), Eltham College, Vic
Lawrence Ip (11), MCEGS, Vic
Joanna Masel (12), Methodist Ladies’ College, Vic
Brett Pearce (11), St. Michael’s Grammar School, Vic
Sam Watkins ), MCEGS, Vic
Stuart Sellner o (12), Rossmoyne Senior High School, . WA
Robert Yuncken (12),

Christchurch Grammar School, WA

* k% k ¥ %

Abstraction and Mathematics

. All the sciences which have for their end investigations
concerning order and measure, are related to mathematics, it being of
small importance whether this measure be sought in numbers, forms,
stars, sounds or any other objects; that accordingly there ought to
exist a general science which should explain all that can be known
about order and measure, considered independently of any application to
a particular subject, and that indeed this science has its own proper
name, mathematics. And a proof that it far surpasses in facility and
importance theé sciences which depend upon it is that it embraces at
once all the objects to which these are devoted and a- great many more
besides.

R. Descartes
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