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Wel~ome to new readers~ 'We hope you·enJoy.reading Function
this year. If there ~s some subjec~you .are 5pe~ially interested
in and would like to see an article about write to us and .we shall
try to produce one~
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Front Cover: This word picture is taken" from· p.143 of the
beautiful book by Edward R. Tufte entitled The visual display ·of.
quantitative in~or.ation~ Tufte describes the p~cture as a
"typographical delight n and attributes it to the. statist'ician
W.J.Youden. The book may be purchased (only) by direct order
from the Graphics Press, Bo)( 430 Cheshire" Connecticut, USA,
06410, price US$34.

The book is a magnificent account of the art of pictorial
presentation of information. It includes a short history with
superbly chosen examples. Nea~ly every page contains two or
three memorable. pictures, mostly of Vividly effect~ve presentation
of numerical data but with the addition of some pictures showing
how it should not be done.

* * * *' *
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THE OEVELOPfYENT OF ALGEBRA

L yn Uono I dson. r.e I I 01-' Oown~. pes t -~pr i mar ~/ serroo I

A lot of the mathematics that we study today was discoveredmany centur~es ago. Algebra~ 'the SCIence 0+ equations', wasfirst used in 1700 B.C. and developed 1n three distInct stages.At first the equations were writte~ entirely in words, . then someabbreviations were introduced until finali y symbols replaced thewords. This took place over a long period of tIme.

Algebra originated in Babylonia at about
typical problem from this time is shown below.

1700 B.C. A

1. Length, width. I have multiplied length
thus obtaining area: 252. 1 have added
width: 32.' . Required: length and width.

and width.,
length and

2. Given 32 the sum; 25:L the area.
3. Answer 18 length, 14 width.

(thIS gives
One follows this method: lake half o~ 32
16) •
Multiply thIS by itself (16x16 = 256).
256-252 = 4. The square root ot 4 is 2.
16+2 = 18 length. 16-2 = 14 width.

5. Check: I have multiplied 18 length .by 14 width.
18x14 = ~5L area.

4.

The above method involves stating the problem, listing thedata, giving the answer, showing the method and finally checkingthe answer. fhis is not all that different from our methodstoday but we should note that ~he Babylonians did not have numbersas simple as ours or simple symbols to represent the operatIons.

Algebra was further developed by the Greeks <54u-300 B.~.).Most of the work fro~ this tIme was concerned WIth geometry andtwo of the greatest mathematIcians - EuclId and Pythagoras - madesome contributions to algebra. A typical problem would havelooked like this:

If a straight lIne be d~vlded 1nto any two parts, the squareon the whale lIne IS equal ·to the squares on the two parts~together WIth twice the rectangle contained by the parts.
What does this mean i~ our language?

The next step in the development 0+ algebra was made byanother famous Gree~. HIS name was Dlophantus.and he is known as
~he -father at algebra. Diophantu5 wr"ote a serIes of books'called the Arithmetica WhICh 1ncluded problems ~nd theIr
solution~. However, we know very lIttle about hIm. it ISbelIeved that he lived between 250 and .30n A.D. and one clue we
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i-,a'v'E' t.U h t --::; 11.fe 1 s a proDl em about hIm.

"Here l1.es 010phantus.. The wonder behold through ari
algebra.ic, the stone tells how old: ttGod gave hIm his
boyhood one-sIxth of his life, one-t~elfth more as youth
while whIskers grew rIfe; and~ then yet one-seventh ere
marriage begun; in five years there came a bouncing new son.
Alas, the ~ear child of master and sage, met fate at just
half his dad's final age. Four years yet his studies gave
solace from grief; then leaving scenes earthly he, too,
found t-el i ef • II

How 01 d w~s iJi ophantus when he d.i ed?

Diophantu5 was the first to use algebraic abbreviations in
problems, which helped make life easier. for the mathematicians of
the'time. He also used special symbols which were previously not
thought of. This helped algebra develop because it simplified the
problems which prevIously would have been written in words only.
However, the work was still very tedious compared to our methods.

Here is an example of Diophantus' symbols.

Consider th~ express10n

5.~·2 + 8x 1.

Before Diophantus this
Diophantus would have wrItten

would be wei tten in words.

where eU.
NU
LE

CUi NUB LE Sq5 Ul

cube of the unknown
the unknown
less (minus)

square of unknown
unit

The use 0+ symbol~ such as these helped wi~h the gene~al

development of mathemat1cs because it made life ~asier. It
especIally favoured the development of trigonometry and number
theory because now there was a way to express higher powers and
unknowns. Mathematics still had not deveioped special symbols
for operations that we have now, but over the years mathematicians
have worked on these symbols and developed them into the algebra
and arithmetic that we now use.

This IS a problem from Diophantus' Ari~h.etica

"Find three numbers so that the product 'of any two plus the
sum o·f t.he same two shall be gi yen numbers. II

In modern notation this problem reads:
find numbers x~ y, Z such that

yz + y + z a
Z ..":<· + ~ + -~. b
:~:y + )( + y c

[Readers are inv1ted to send solutlons~

with a = 11, b = 7, c 5.J

given numbers a~ b~ c

For- example t,.-y
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fHE OOMESOAY* METHOD

DAVID JOHNSON, UNIVERSITY OF NOTTINGHAM

Of the many methods for computing th~ day of the week upon
which a given date falls, my favour1te is that devIsed by
Professor J.H. Conway, F.R.S., of BonvIlle and Caius College,

.Cambridge. Apart from his contributions to Group Theory~

Topology ("An enumeration of knots and links and some of their
algebraic propertIes", pp. 329-358 In Computational Problems In
Abstract Algebra~ Pergamon, Oxford, 1970 : despite the title, a
joy to read), and Logic (IIAII Numbers Great and Small!H),
Professor Conway is justly famous as the inventor of many
mathematical games, puzzles and dIversions, such as the II Game of
Life", upon Which several million dollars' worth of computing tjme
has been expended. 'Ihe method described below is not the least
of his' brainchildren.

There are two reasons why evaluating the function
d : c~lendar date ~ day of the week is non-trivial.
the number 0+ days in a year IS never divis1ble'by 7, and
in the words of W.S.Gilbert,

Although, ~or such a beastly month as February,
Twenty-eight days are as a rule considered' plenty,
It has been decreed that, one year 1n every four,
Its days shall be numbered as nine-and-twenty.

First,
second'!'

On the other hand, the function d takes only seven values, and
the last day of February is ~airly near the begInning of the year.

The first step capitalizes on th1S fact, and goes straight to
the he~rt of the p~oblem by declaring that the day of the week
that is the last day of February in any year be the Domesday* +or
that year. For example, February 28 falls on a Saturday in 1987,
and so the Domesday for this year is Saturday. In 1988, February
29 will fallon a Monday, and so Monday 1S the Domesday for 1988.

We proceed to find (at least) one Domesday In every other
month, using the following SImple rules:

a) for even months, April = 4, June = 6, .•• , December = 12,
a Domesday 15 the day whose date is the number of the month;'
for exampie, June 6 is always a Domesday: check, for example,
that June 6 and February 28 are both Saturdays in 1987;

* Domesday is the Middle English spelling of Doomsday.[Ed.]



T

5

~'Ot- OG:j ffiClnl:.l"iS .-3ttet- rebrUar\l, :\t is the da'y' that has date
equal to th2 nu.mber- 0+ tile month .:t 4,. Wi th + +or 10£1q months
(.':::.1 clays j 1.1. ke t"lay., and - +or' short months . ~-.::.O days) 1 i ke
No'..'Etmber ~

c) January 31 is a Domesday, except In leap years, when It is a
day later, so in this case, pick your favour from 4, 11, 18,
~5 to find WhlCh day 15 a Uom~sday.

Month Number Days Domesday
January :::;.1 (See (c) above)
~ebruary 2 28 or 29 last
t1arch 3 :3: i 7
AprIl 4 30 4
trlay r.::- :31 9.-l

June 6 :30 6

July / .31 11
August 8 .31 8
September 9 .30 5
October 10 .::;: 1 10
November 1i 30 7
December i2 :31 12

With this information, it is now a matter df simple
arIthmetic <modulo 7) to arrive at the day of the week for any day
in any month ..

For example, suppose someone you know was born upon December
22 in 1963. Given that the D,omesday for that year was lhursday,
you know that so is December 26 (= 12 + 14) (Boxing Day is always
a Domesday~ as is American Independence Day and possibly some
special dates of your own) and by simply counting back four days,
you deduce that they are a Sunday's child.

There remains the problem of establishing the Domesday for a
given year, and this is neatly solved as follows. First note
that a given century also has a Domesday, namely that of the first
(really the zeroth!) year of that century. The Domesday for the
twentieth century is Wednesday. Note that (since 365 7 x 52
+1), the Domesday moves forward one for each normal year, plus an
extra one for leap years, and thus by fifteen, i.e. to the next
day of the week~ every 12 years. So to obtain the Domesday for
nineteen hundred and k, 0 ~ k <: 100, move on N days from
Wednesday, where N is obtained as follows: divide k by 12 :

k: = i2q + r U :$ ,.. <: 12

so that q [k/12J, the ilinteger-part ll of k/12" whereupon

N = q + r + [ri4J.
...

thus, for 1988,
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q == l88/12J / r = 4 , Lr i4J == 1

and IV == 7 + 4 + i 2 == "7 :~ 2 -0· 2

and the Oomesday is twa days before Wednesday, i.e. Monday, as wesaw earlier.

In case you should wish to carry this out for dates in thelast century·, I should mention that the Victorians: Domesday was aFriday, since the year 1900 was not a leap year (they miss it outeve~y hundred years); but the Domesday ~or the 21s~ century willbe Tuesday (take k == 100 in the previous paragraph) SInce theyear 2000 is a leap year (they put It back every four hundredyears). "There is also a version of the method that works for
~he Julian calendar, which "was replaced by the Gregorian calendarin 1752 (in Britain at least - in Russia, this did ncit take placeuntill 92.:::;) .

Now the method may look complicated, but facility comes withremarkably little practice (best done with an equally qUick-wittedfriend!), and you will find you can" perform the whole calculationin a few seconds, and have what is among other things animpressive party trick. In fact, by asking for year first, thenmonth, and finally day and using some glib patter, you can givethe appearance·of producing the answer instantaneously. Whendoing this with birthdays you can follow ~p with a reference tothe famous rhyme, which I can never remember, IJl"1onday's child •.. JJYou. can' also check dates appearing in books (there i.s at least onemistaken one in the Sherlock Holmes' stories) and elsewhere; Ileave other applications, both academic and social, to yourimagination.

* * *" * *
STEPHEN MuRPHY VINS AUSTRALIAN BHP SCIENCE PRIZE

Stephen Murphy won this yearrs BHP Science Prize for
excel~~nce in scientific research by Australian school students.Stephen, at 12 years old, is the youngest winner of the prize.The prize included a gold medal, a cheque fo~ $5000, and a trIparranged to the 38th Interna.tional- "Science Fair at Puerto RiCO, inMay.

Stephen's research was an investIgation intoregion of New Zealand's South Island. His interestthree years ago into Its many curious features: theof glacial rlvers, the odd places large boulders arethe mysterious circular cavities in gorges.

the glacial
was aroused
milky water

dotted about,

He drew up a research plan and, armed with appropriateinstruments, on his last ho11day in New Zealand, collecteomeasurements of river flows, sedimentation rates, air and watertemperatures. Samples were bought back to study undermicroscopes in his school lab. He then began analysing hIS datausing computer simulation models~ In particular his modelsenabled him to estimate the rate at which silt would build upbehind dams on glacial rivers, important information to have whenplanning hydro-electric schemes.



PRIZES AND MEDALS

Michael A.B. Oeakin l Monash University

The Nobel Prizes, announced annually, recognise excellence in
Chemistry, Physics, Physiology and Medicine~ Literature, Peace and
(more recently) Economics. Except for the last of these, the
money for the prizes comes from the estate of the Swedish chemist
and industrialist Alfred Bernhard Nobel (1833-1896). Nobel
studied, patented, and ·manufactured explosives, being most
remembered as the 1nventor of dynamite. He funded his prizes
from the wealth these activities brought him, and did so in the
hope of leaving a lasting legacy of service and benefit to
humanity.

Many fields of endeavour are not recognised, and among these
is Mathematics. Why this is so is not really known. There does
seem to be some evidence that Nobel at one point considered
Including Mathematics among the fields chosen for the awards.

One widely believed explanation for his change of heart ·(if
in fact there was one} is his bad reiations with the Swedish
mathematician Mittag-Leffler. Magnus Gustaf (or Gosta)
H~ttag--Leffler (1846-1927) was a mathematician of some note,
nowadays better remembered perhaps as an organiser and editor than
for his technIcal contributions to Mathematics itself. He had
stUdied under one of the very greatest of all mathematicians, the
German Karl TheodoF Ullhelm Heierstrass (1815-1897)c
Weierstrass mad~ major contributions to calculus, geometry and
approximation theory. He'also changed for all time the standard
of mathema~ical rigour and the concept of mathematical proof.
Mittag-Leffler was one of many students who ~pread Weierstrass·s
influence and so helped to form the shape of modern mathematics.

Had there been a Nobel prize for Mathematics, it is just
conce1vable that Mittag-Lef+ler might, one year, have won it.
Almost certainly~ as the leading Swedish mathematician of his day,
he would have played a part in administering if. So it could be
that Nobel, if he were ill-disposed towards Mittag-~effler, might
have forestalled ,both these eventualities by deciding to ~crap all
ideas o~ a Nobel Prize for Mathematics.

The alleged quarrel between Nobel and Mittag-Leffler' is
supposed to have been the result of th~ir rivalry +or the
a+~ections of another mathematician: Sonya Kovalevsky. This
story is in pr1nt : Solomon W. Golomb tells it in the journal
Cryptologia (Jan. 1980) and Function'~ Dutch counterpart,
Pythagoras ran it in December 1983, and a translatio~ of
Pythagoras' article appeared 1n the Winter 1984 issue of the
Belgian Haths Jeunes8
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Let me tell you how the story goes.

Sonya Kovalevsky (1850-1891) was a Russian who· escaped that
country by the expedIent of contracting a marrage of convenIence
and so being allowed to go abroad to ent~r a university. This
devlce was the only one available at the t1me, and women se~king

education had no other recourse but to adopt it. The couple d1d
go abroad and, in large measure, drifted apart as such couples
were expected to do - she to go to study with WeIerstrass.

Her difficulties as a woman were enormous, and even
Weierstrass's powerful help did not always win the day for her.
Eventually she resumed her married life, returned to Russia and
bore a daughter. fhe couple, however, were in de~p financial
trouble, and this phas€ of Sonya's life ended abruptly with the
consequent suicide of her husband in 1883.

She turned, in this crisis, to Weierstrass and he contacted
Mittag-Leffler, who o+fered her a"lectureship, later upgraded to a
professorship, in Stockholm. She thus became the world's second
woman professor 0+ Mathematics (after Marie Agnesi : see FunctIon
Vol.l0, Part 4). Her contributions to mathematics were very
significant, involving calculus, mechanics and the theory of
Saturn "s ri ngs.

She also wrote several novels and w~s a political
especially in the area of women's rights. Even by
standa~ds, let alone those of 100 years ago~ she would be
as a r~dical feminist. Her early death was a great loss
world.

radical,
today's
classed
to the

Now this much is fact - but what of the story of her amorous
liaisons with Nobel and Mittag-Leffler? Beyond the obvious
that the three were often in the same city at the same time, and
so the men could have fallen out over the woman, there is very
little evidence I have seen to support it. Certa1nly she was a
colleague of Mittag-Leffler"s and was in his debt for getting her
her job, but that:s not the same thing as having an affaire with
him.

E~rlier, indeed, she had been very close to We1erstrass, and
·malicious tongues had wagged, but it would seem that the gossip

(which hurt Weierstra~s very deeply) was uDfounded and that the
relationship was purely platonic. Certainly MIttag-Leffler,
writing late in his 11+e on the two and their relationship, leads
one to this view. We may perhaps take the same V1ew on her
alleged affaire with Mittag~Leffler.

~

As for Nobel, al though he never' marri ed, there ~ a number
of women in his life, and his official biography deals with these
relationships in considerable detail. Nowhere, however, does it
mention Sonya Kovalevsky at all!

If ei.ther Golomb or the anonymous author of~he Pythagoras
~ article had offered any evidence for the sto~y, ~ might perhaps

be checked~ but they.don't, so I remain sceptical.

Anyhow, for whatever re~son, there is no Nobel F'r1ze in



f"',a t h ematIC 5 .. fh1.S story has anl.nteresting sequel.

John Charles flelds (1863-1932) was a Canad1an mathematicia~

who had a cio~e mathematical association with Mittag-Leffler.
Llke M1ttag-Leffler,. he lS best remembered today for the
organisational and administrative work he did rather than for his
actual mathematical research.

Every +our years (apart from war-time interruptions) an
International Congress of Mathematicians is held, and that· for
1924 took place in Toronto and was organised by Fields. This
congress left a surplus of funds, and Field~ suggested that
IIInter-national Medals" might be struck and awarded for excellence
1n mathematical research.

The fact of there being no Nobel Prize in Mathematics and of
Flelds: friendship with Mittag-Leffler has led to the speculation
that Fields wanted to compensate for the lack, but, although the
theory 1S an attractive one, again there is no real evidence ~or

it.

Fields' proposal had still not been implemented by the
of his death in 1932, but his will left further funds and
that year his proposal was accepted. The first medals
awarded in 1936.

time
later
were

Medals (between two and four of them) have been given at each
0+ the congresses since then. The next'was not held till 1950,
but they have continued unbro~en since' then (although' the 1982
congress very nearl'y di dn 't happen, due to pol i ti cal development?
in Warsaw - it went ahead a year late).

Whatever the history of the matter, mathematicians regard
these medals as being the mathematical equivaleDt of a Nobel
Prize. There are, however, some important differences. There is
no cash award, as with the Nobel Prizes, and the rule has grown up
that the recIpient is to be under fort.y years of age. (The Nobel
Prizes have no such restriction.)

The last congress was held in 1986, and three medals were
awarded. The recipients were Michael K. Freeman, an American,
Simon k. Donaldson, an Englishman, and Gerd Faltings, a German.
Freeman and Donaldson won their m~dals for work on t.he topoldgy of
four-dimensional spaces, and Faltings was honoured for his proof
of Mordell~s Conjectu~e. (See Func~ion Vol. 7, Par~ 5.)

One final irony. Fields, in his will~ stipulat~d that the
medals should not bear Hin any way~ the name of any co':-!ntry,
institution~ or person~. They are universally known today as the
"Fields Medals".

* * * * *
GOON SHO\l

Moriarty: 'How are you at Mathematics?'

Neddy Seagoon: ~I speak it l1ke a native. ~
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'lABTAGLIA AND CAROANO"t

John St i I I ",,Ie I I . rv10nash Un i ver· sit Y

Niccollo
Tartaglia

Niccollo Tartaglia was born in Brescia in 1499 or 1500 anddied in Venice in 1557. The name SlTartaglia U (meaning
f1s tutter-er ll

) was ~ctual1y a nickname, and h1S real name isbelieved to have been Fontana. Tartaglia's childhood was scarredby poverty, following the death of his father, a mail courier~around 1506~ and injuries suffered when Brescia was sacked by theFrench in 1512. Despi te taking refL,ge. in the cathedral,Tartaglia received five serious head wounds, including one to themouth which left him with his stutter. His life was saved onlyby the devoted nursing of his mother, who literally licked hiswounds. Around the age pf 14, he went to a teacher to learn thealphabet, but ran out of money ~or his lessons by the letter K.This m~ch is in Tartaglia~s own sketch' of his life. After that,the story goes, he stole a copybooK and ta~ght himself to read andwrite, sometimes using tombstones as slates ~or want of paper.

By 1534 he had a family and, still short of money, he movedto Venice.. There he gave publIC mathematics lessons in thechurch of San Zanipolo~ and published various sC1entific works.The famous disclosure of his method for solving cubic equationsoccurred on a visit to Cardano's house in Milan on 25 March 1539.

~ Extracted from
being written

a book
by John

on the history
Stillwell.

0+ mathematics
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When Cardano publIshed 1t 1n 154~, TartaglIa angrily accused him
of dishonesty. Tartaglia claimed that Cardano had solemnly sworn
never to publish the solution, ~nd to writ~ it down only Ifi

cIpher. Ferrari~ who had been an is-year old servant of Cardano
at the time, came to Cardano's defence, declaring that he had been
present and there had been no prom1se of secrecy. In a series of
12 printed pamphlets, known as the Cartelli (reprinted by Masotti
[1947J), Ferrari and Tartaglia traded insults and mathematical
challenges; the two finally squared· off in a public contest in
the church of Santa Maria del GIardino, Milan, in 1548. It seems
that Ferrari got the better of the exchange, as there was little
subsequent improvement in Tartaglia's fortunes. He died alone,
and still impoverished,·9 years later.

Apart from his solution of the cubic~ lartaglla is remembered
for other contributions to science. It was he who discovered
that a projectile should be fired at 45° to achieve maximum range.
His conclusion was based on incorrect t~eory, however, as is clear
f~om Tartaglia's diagrams of trajectories y e.g. see the picture
below, reproduced +rom Tartaglia's works.

Tartaglia~s Italian translation of the Ele.en~s was the first
printed translati6n of Euclid in.a modern language, and he also
published an Italian translation of some of Archimedes' works.
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Girolamo Cardano often described 1n Engiish books by the
anglicised name name Jerome Cardan, was born in PavIa in 1501 and
d1ed in Rome in 1576. His father FaZ10 was a lawyer and
physician who encouraged Girolamo's studies~ but otherwise seems
to have treated him rather harshly, as did his mother Chiara
Micheri~ whom C~rdano described as "easily provoked, quick of

, memory and wi t, and a fat" devout 1 itt 1 e ,woman If • Cardano entered
the university 0+ Pavia in 1520 and completed a doctorate of
medicine at Padua in 1526.

He married in 1531 and, after struggling until 1539 for
accept~nce, became a successful physician in Milan. So
successful, ih fact, that his fame spread all over Europe. He
'evidently had "a remarkable ,skill in diagnosis, though his
contributions to medical knowledge'were slight 1n comparisoh with
those of his contempraries Andreas Vesalius and Ambroise Pare.
Mathematics was one of his many interests outside his profession.
Cardano also secured a nIche in the history of cryptography for an
encoding device known as the Cardano grille and in the history of
probability, where he was the first to make calculations, though
not always correctly.

The violence and intrigue of Renaissance Italy soured
'Cardano:s life just as much as Tartaglia:s, though in a different
way. An uncle died of poisoning, attempts were made to pOlson
both Cardano and his father (so Cardano claimed) and in 1560
Cardano's oldest son was beheaded for the crime of poisoning his
wife. Cardano, who believed his son"s only fault was to marry
the girl in the first place, never got over this calamity. He
could no longer bear to live in Milan and moved to Bologna.
There he suffered another blow when his proteg~ Ferrari dled in
1565 - poisoned by' his sister, so ~t was said. In 1570 Cardana
was imprisoned by the Inquisition for heresy. ~fter a few months
he recanted, was released, and moved to Rome.

In the year before he died, Cardano wrote The Book of Ny Life
which is not so much autobiography a~ self-advertisement. It
contains a few scenes from his childhood, and returns again and
again to the tragedy of his oldest son, but most of the book is
devoted to boasting. There is a chapter of testimonials from
patients, a chapter on important people who sought his SerVICeS, a
list of authors who cited his works, a list of his sayings he
considered quotable, and a collection of tall stories which would
have done Baron Von Munchhausen proud. Admittedly, there IS also
a (very short) chapter "Things in which I have failed H and
frequent warnings about the vanity of all earthly things, but
Cardana invariably tramples all such outbreaks of humility In his
rush to admire other facets of his excellent self.

As for the quarrel with Tartaglia~ The Book of Hy L~fe 15

al~ost silent. Among the 'authors who have cited him, Cardana
lumps Tartaglia with those for whom he lIcannot understand by what
impertinence they have managed to get themselves into the ranks of
the learned ll

• Only,at the end of the book does Cardano conceoe
that I'in 'mathem~t1cs I received a few suggestions, but very few,
from brother Ni'ccolo".
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'Y£LLO\ol LIGHTS

Michael A.B. Deakin, IYbnosh Univer·sity

Many readers of Func~ion will be learning or thinking about
learning to drive a car. And among the many skills this entails
is judging what to do if the light you- are' approaching changes
from green to yellow. This is an important question not only for
the .driver but also for. the traffic engineer who designs the
lights in the first place. It is a problem that has attracted
quite a lot of mathematical ~ttention, and here I would like to
give some of the analysis involved.

The problem was first addressed in the immediate post-war
years (late '405) in the U.S. but the first really thorough and
accurate study was by Gazis, Herman and Maradudin, three eng~neers'

with the Genera! Moto~s Corporat~on. This was published in 1960
in the journal Operations Research. Their paper is in' the main
a theoretical analysis of the issues involved. It was followe~

by an observational study by two other General Motors researchers,
Olson and Rothery, who, from camera recordings of driver
behaviour, estimated the values of the various~parametersused in
the theoretic~l analysis given by the first group. I This second
study was also pU.blis~ed in Operati.ons Research in 1961.

In 1962, another theoretical analysis appeared, 1ndependently
of the others. This· is a little more accessible,' being rather
less technical. It appeared in the Aaerican Journal of Physics
and its author was Howard Seifert of Stanford University. These
early studies set the basis for the analysis, and by 1981, Fred
Watts of The College of Charleston, in South Carolina, .was· using
the situation for laboratory classwork for his students. (He
described this in The Physics Teacher for that year.) lhese
discussions are summarised also by Jearl Walker in S~ientific

American (March 1983) along with'a lot more interesting questions
on traffic lights. (One of these is very like Problem 3.4.1 that
appeared in Function 1n 1979.)

So if you would like to see more on this topic, there is no
shortag~ of reading material!

You will notice that all the above references
and this is important in one key respect. Look·
showing the interesection of High St and Cross St
them) •

are American,
at Figure 1·,
(let us call
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STOPPING
LINE

~I---- W +------ilI-t

High 5t

N

1

In America, a car travelling east along High St, as shown, must
clear the intersection completely before.the light it' is facing
turns red. For, in most such instances~ the moment the High St
light turns red~ the Cross St light turns green and so cars enter
the intersection travelling North. (Remember Americans drive on
the right as you read this diagram.)

In Australia, matters are different and werll get to that,
but letls analyse the simpler American situation first.

Figure 1 gives some of the basic notation. As the car
approaches the intersection, .the light turns yellow when it is x
metres short of entering. The width of the intersection is N
metres and the length of the car is L metres. Thus, to
completely clear traffic in Cross St, the car has to travel
w + L(= U~ metres.

Consider first the case in which the car is to stop. This
must be done within the distance x. Suppose the car is
travelling at speed u. First the driver must r~act to the
signal. This takes about three-quarters of a second, during
which the car continues to travel at speed u. The d1stance
travel'led during this period is called the Ilthinking distance";
it varies with u (see Table 1) and will be denoted by Vi.

When the priver registers the yellow light, the brakes are
applied and the vehicle is brought to a halt. This takes a
further distance D2 and this distance varies as the square of u.

In fact

"
.D

2
u

L
i (2a 1)
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where a
1

is the deceleration brought about by the brakes.

Values ~or D
2

are also given in Table 1. (Table 1 is a metrir

.l'~.

version of -a table in Fred Watts· paper.)

flstopping distance-n
..

D....
L

is called the

Speed u

(kph)*

Thinking Distance D
1

(m)

Stopping Distance D
2

(m)

~30 6 5
40 8 8
50 10 12
60 13 16
70 15 23

Table 4.
* For convenience we list these values as kph, but in theoretical

work we use ms- 1
• 30 kph = 8.33 ms- 1

, etc.

So~ if the car is to stop in the available distance, we must
have

(1 )

If Condition (1) cannot be met, then the car must attempt to
drive through the intersection and reach the other side of Cross
St before the light turns red. The yellow light lasts~ let us
say, T seconds, and so, if the speed u is maintained, it must
be high enough to allow the car to travel x + U metres in T
seconds., i .. e ..

.~. + U

T
(2)

If u does not satisfy Inequality (2), then the driver must
accelerate to get acr~ss in time. The acceleration will commence
at a point x - D

1
metres to the left of the intersection.

Thereafter the speed will increase, the acceleration being
-2

a 2 8S a 2 is, to complicate matters, a function of~. (We

are here ignoring a less important complication, that the thinking
distance V

1
is.slightly longer in -the case of acceleration than

it is for braking - at least, for most drivers, most of the time.)

The time taken to travel Vi m at speed u

so there is now available a time

-1
ms is D1 /u S,

t T ~1
u

seconds in which to complete the crossing. The distance
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travelled in this tlme IS known to be

s = u(T -

and so we ~equire, if the crossing is to be successful

x + 14 - 01
D.

~ u (T _ 1)
u

(3)

(Inequality (2) is the special case of thi~ condition for which

a~ 0.)
.L.

There,is a third constraint th~t also must
the motorist is to keep within the law.

V
1

attained~ which is u + a
2

(T ~) must not

be satis+ied If
The final speed

exceed the speed

limit ~ V (say). That is

The constraints applying to the driver are that Inequality

(4) must hold, together with either (1) or (3).

One of the problems highlighted by the v~rl0US authors 15
that traffic lights T sometimes engineered in such a way that
this is not always·poss1ble. the dilemma this creates IS one
that all the papers referenced earlier discuss at some "length.
Fred Watts, for example speaks of the absurdity of having il a law
which cannot be obeyed", whIle Gazis, Herman and Maradudin speak
of "man-made systems, man-made laws and human behav10ur lnot
bei ng] ai ways compati bI e. i~

I thought to test this in Melbourne and chose the
intersection of High st and Chapel st. For an eastbound car on
High St, w ~ 20 m and 1 ~ 3 s. A reasonable value tor L 15
4 m. Suppose the car to be traveillng at the speed lImit

60 kph, or 16.67 ms- 1 . Then InequalIty (4; reqUIres a
2

u

We must therefore satIsfy e1ther lnequaiity ,1> or InequalIty ~~J.

inequality (1) qlves (+rom table 1)

.x: ~ 2'-t ,

while Ineqt.1ality (2) gIves (from "the -tIgures quoted)

L.ontJ.rtueo on page
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BIG NUI'13EAS

Alosdoir McAndrew

Footscroy Institute of Technology

Big ~umbers have a great fascination, to the mathematician
and non-mathematician alike. In thi~ a~ticle, we shall look at
some particular number$, and where they occur in mathematics.
But first, let us consider how to construct big numbers.

lhe simplest and most common way of getting a big number is
to raise one number to the power of another. For example~ we can

write down things like 3 5 or 10
10°. In this way we can very

easily obtaIn numbers too large to have any physical significance
<if we assume that the largest number with ·any physical

significan~e is 10
87

, which gives an approximation to the number
of sub-atomic particles in the entire known universe). The

number 1() 10£) has been gi yen the name II googol II see the book
"Mathemat1cs and the Imaginatlon lJ by Kasner and Newman.

We can get even bigger numbers by allowing not just one
number and one exponent, but a chain of exponents, such as

or

....,
10 10'"

- the last number, you may notice, is just the googol again.
When dealing with such chains, the convention IS tha~ we work from
the, top down, rather than from the bottom up. Take the number

'tor instance.

If we work from the bottom up, we get the number

(34 )5 = (81)5 = 3486784401.

This IS still small enough to be printed~

from the top down, we get
However., 1f we work

a::

..... (4~)

.::.. 3. 7339 ,', 10
488
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which is a number of 489 digits - already this is too big to make
any sense as a number printed in its glorious entirety.

Now let us look at some particular numbers~ and where they
occur.

Skewes I number

This number comes from the realm of number theory (seems
fitting!>; in particular the distribution of prime numbers. A
prime number, you recall, is a number with no integer divisors
other than itself and 1; for instance 5, 17 and 53 ~re prime
numbers. The number of prime numbers less than a given integer
x is denoted "by n(x). So n(10) 4, as the only prime
numbers less than 10 are 2,3,5 and 7 the number 1 is not
considered to be prime.

·One of the great results of nineteenth century mathematics
was a proof that n(x) was approximately

.);,.

f
o log t

dt;

this integral is known as li(x). For many years after this it was
thought that n(x) was ·always strictly less than li(x), but in 1913
a proof by a mathematician named Littlewood demonstrated that for
some large number x, n(x) was greater "than li(x). However,
nobody as yet knew how big this x would have to be. This is
where the mathematician Skewes comes into the s~qry. His result
concerned the finding of an upper bound for x; that is a number
X for which n(x) is greater than li<x) for some x less than
X. And now, folks, here is this number:

~ 10
34

).' 101U

In describing this wondrous number, the mathematician G.H.Hardy
said proudly III think that this is the largest number which has
ever served any useful purpose in mathematics. II He goes on to
give some idea of the size of Skewes' number.

liThe ".umber o-f protons in the universe is about 10
80

, and the
number of possible games of chess is much larger, perhaps

1 .. 50
10 u

(in any case a second order exponential). I-f the universe were
the chessboard, the protons the chessmen, and any interchange in
the position of two protons a move, then the number of possible
games would be something like the Skewes number. It

In any case, this number certainly earns for itself the
criterion big ..
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Graham's number

Before des~ribing this magMificent number, we shall first
describe the notation needed. This 50-called arrow notation was
developed by Donald ,Knuth in an article "Mathematics and Computer
Science: Coping with Finiteness" in Science in 1976. It is an
extension of the idea of exponentiation, and works as follows:

The expression x~n means x n • That is, one arrow means we
multiply the first number by itself as many times as the second
number. When there are two arrows, for example 3~~4, we
"arrow ll the first number with itsel-f as many times as the second
number. Thus, 3~~4 = 3~(3~(3~3»). In standard notation:

~3
"T....

..,'-'.j

This innocent looking number equals

3327 = 37,625,597~4B4.987

which is a number of over three thousand billion (one billion

10
9

) digits when written out fully. Then three arrows wor~
similarly: 3~~~4 = 3~~(3~~(3~~3»). To get an idea of the
extraordinary size of ' this number, letrs try to evaluate it.

To start with, 3~~3 = 3~(3~3) = 3~3~ = 3~27 = 327

7,625,597,484,987. Putting this number into ~he' expression ~or

3~~~4 we get 3~~(3~~762o•• 987». Then the expression
3~~762••• 987 is equal to 3~(3~(3~••• 3) ••• », where there are
762••• 987 3's altogether. That is, written in exponential form,
we would get a tower 0+ exponents 7,625,597,484,987 levels higha
But thIS number, huge though it is, is just 3~~(3~~3». Let's
give this number the symbol~. So the number W~ really want is
3~~1. This, of course, is merely an exponential tower of 3's - ~

levels high! This number is certainly so huge as to be
completely indescribable in anything but abstract mathematical
terms.

Now we shall describe the problem which led to Graham's
number. This problem is in an area of mathematics called graph
theory. A graph, in this context, is nothing to do ~ith axes and
curves, but just a collection o~ dots with lines joining some or
all of them. Here are some examples of graphs:

fig 1 fig 2, fig 3
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A graph w1th everyone of· its points connected by a line
every other point is called a complete graph, and 15 denoted

where n is the number of points
diagram above, figures 2 and 3

respectively.

in
are

the graph.
the graphs

1.n

and

to
~.,

"n'
the

;';':5

Now imagine ari ordinary cube - or rather, the skeleton 0+ a
cube - in space. We can consider it a~a graph on eight paints.
If we join all the points diagonally, what we end up with is the
complete graph on eight points with a cubic structure. This
particular graph is made up of a number of copies of K

4
there

are six K4'~ as the faces, . and four more going through the

middle of the cube. Now here is a puzzle for you: Can you
colour every line of this cube graph either red or blue in such a
way that none of these ten 1(4'"s is all of the one colour? (It

can be done.) Such a one-coloured K
4

is said to be

monochromati.c.

The same sorts of graphs exist 1n higher dimensions,. and for
dimensions four and five it has been shown that it is possible to
colour all the lines of these hype~cubic complete graphs with red
and blue in such a way that there is no mono~hromatic K

4
• Here

now is the big question: For what number n is there an.
n-dimensional graph <of the hypercubic sort) such that no matter
how you colour the lines red and blue there will always be at
least one monochromatic K

4
? The exact answer is as yet unknown~

but a mathematician name~ Ronald Graham has ~ound an upper bound
for n. The following diagram e~plains how to get this upper
bound.

31"1'1'1'3
------...-.....

31'~ • • 1'1'3

64 layers

3 1'1' •

The number we start with is 3~1'1"1'3 - you can show that this
is equal to 3 1'1'1'~, where. ~ is the number we dealt with in
describing the arrow natation (and you thought 31'1'1'4 wa~ big!).
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This gives the number of arrows in the next row, which number
gives the number of arrows in the next row, and so on until we
have·· a. column of numbers 64 rows deep. fhe last number in this
sequence is Graham's number.

Now that 15 a big number, a very big number.

However, experts in the field claim that the answer ~o the
hypercube problem is in +act wait for it - six!

Some less serious nurrbers

The two numbers we have considered are serious in the sense
that they occur i~ +ormal proo+s. However, there are some nice
numbers which have no known mathematical usefulness; they are
just big. Here is yet another way of constructing big numbers.

A number inside a triangle means that number raised to the
power of .itself. So

Then a number inside a square is that number Inside that many
tria.ngles. So

256

Continuing in this way we say that a number inside a pentagon
is that number inside that many squares. So 2 in a pentagon is 2
in two squares~ which 15 256 in one square~ which is 256 in 256

triangles, which is 256256 in 255 triangles, and so on. This
number has the name .ega. The .oser <named a+ter Leo Maser, a
Canadian mathematic1an) is defined to be 2 inside 'a ~egagon.

But this is pure mathematical whimsy.

It may seem, at this point, that we've been cheating in not
actually writing down the decimal expansions of any of the numbers
we have been considering-. Space, 0+ course, is a major problem
here. For example, to. print Skewes' number would require (in
terms 0+ book size) 'about as many copies of the Encyclopaedia
Brittanica as there are possible games of chess. This means that
there is no way of printing this number and fitting it inside the
known universe. However, there are some examples of handsome big
numbers (including one of 6,421 digits) in the "Mathemat1cal
Games}; column of Scientific American, August, 1967).
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A final note

All these numbers are f1nite integers, and in the words of
Donalo Knuth: IJAlmost all numbers are larger than this." I li.ke
to think of these extraordinary numbers as helping us get an
understanding of the set of integers. Most of us (including me)
are used only to dealing with small finite numbers; the rest we
dump conveniently into the' "in-finite set of integers", without
reaiizing what "infinite" really means. When we see that this
set contains numbers of the unimaginable magnitude of Graham"s
number or thE? moser, we begin to see that uinfinite u is 11terally
'beyond our comprehension. Mind you, there are such very good
mathematical tools for dealing with the infinite that the literal
grasp of the concept of' infinite is not an issue~

... * * * *
Continued from page 16.

So there is a (small, 3m long) region for which it is
impossible to meet all the constraints. A car 28 m (say) from
the corner of Chapel St cannot pull up in time~ nor can it clear
the intersection (unless it exceeds the speed limit) before the
light turns red.

Were this intersection in the US, it would be classed as
poorly engineered, although it is not as bad as some quoted in the
references. Here in Australia, however, we organise our lights
differently. After the High St light turns red, there is a
further two second delay before those in Chapel St turn green and
thus it i~ safe to cross even if the last part of the crossing is
done in the red.

Jearl Walker recalls an experience of his own. in Wh1Ch "I
found myself facing a yellow light with neither the space' to stop
nor the acceleration to race through before the red light came on.
I was saved from the possibility of a collision only by a delay in
the light system: the green light Tor the perpendicular traffic
came on about a second or so a+ter the yellow light ended. II

Because such detays are standard in Australia~ we have fewer
poorly engineered lights than does the U.S. Nevertheless,
perha~s a little advice to younger drivers may not go astray here.
I routinely change down a gear when approaching a light. This
has the effect of increasing both at (and so decreasing D

2
) and

a
2

(and so making Inequality (3) easi~r to satisfy). Howard

Seifert also remarks: IlSince most yellow lights are on for a more
or Jess standard time interval, and most street widths lie within
a.limited spread', it becomes possible to develop an intuition
concerning the possibility of a successful run-through. Most
mature and still-surviving drivers have developed such intuition.!!
To which I would add, uTake things slowly till you doll.
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INVERSE FUNCTIONS

Graham 80 i rod, tv1e I bourne Co I I ege of Advanced Educat ion

Throughout this nate f will denote a function which has an
.-1

inverse, ~ Many calculus texts point out that the graphs of

f and f-
1 are related by reflexion through the line y x

If students are encouraged" to think in this way the essential
, _-1

geometical relationships"between f and T are lost.

y = ((x)
y= rrX)

C t-t------~/
B

A

It is mare instructive to introduce a new set of axes Xy so
that the X-axis is the yo-axis and the Y-axis is the x-axis.
The"e~uation of the curv~ y = f(x) (with respect to the xyaxes)

has the equation Y = f-
1 (X) (with respect to the XY axes) 0 A

typi~al illustration of this set-up is given in Fig.1.
yX
~
I
I
I
I
I
I
I
I

y
------------~

abc x

Fig 1

It is now evident that

(i )

dX

= 1 / dy

Ix z 3· / dx Ix and, if the· function has the
6

form given in Fig.l~

(i i )
C --1

.fA 1 (X)dt Cc -" Aa
c

f f C);o) dx
a

Fact (ii) is not as well-known as it should be and can be used to
compute the integrals 0+ many inverse functions. For example~ if
y = sinx we have (see Fig.2>
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y

A t-'-----.,r

y = sin x
Y = sin-'(Xj

----------------~

-1

Fig 2

a x

A

f sin-l XdX
()

a
Aa - Jo sin.x; d."'"

Aa + cosa -.. 1

It tallows that the indefinite integral of

CORRECTION to Function, Vol.10~ Pt.5~ p.Y.

The table in the -artlcle Chinese ~ambling games In NSW in
1891, by Frank Hansford-Miller~ has an error in it. The entry
L3.6sw8d •• in the Prize Money column, should be replaced by
L8.:;·.6s.80. ihe reference 1n the te;.~t on p.8 is correct. L The
mlstake was made by the editors.J

*" *" *" * *"
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THE ANAL VrICAL ENGINE OF CHARLES 8ABBAGE

Peiet-· K.f oeden, M..Jrdoch Un; versi ty

Mathematical tables used to be a' common sight in secondary
school mathematics classes. With their long, soporific lists of
numbers, the values of trigonometric and logarithmic +unctions,
they are rarely considered awe-inspiring. Yet it was the
calculation of such numbers, with polynomials of high degree being
used to approximate the given functions, that preoccupied many
mathematic1ans during the sixteenth and seventeenth centuries,
some of whom prided themselves on their arithmetic prowess. You
may well ask: why did they bother? The answe~ is simple~

these numbers were crucial for maritime· navigation, and
consequently for trade, colonization and. the development of world
empires.

In these days of electronic computers, this all seems rather
mundane. For example, suppose you want to calculate a list of
values for the' polynomial

720

tor systematically increasing values of X say 0, O~OOOl,

0.0002, 0.0003, .•. etc. (This polynomial approximates cos X
for small values of X). You could do th1S with a very simple
program in which you define f(X) as above, insert a value of X
and then print out the corresponding value of f(X)~ Then, just
by adding a DO LOOP to your program, you could print out ~n

entire table 0+ t(X) values corresponding to the systematIcally
increasing X values. Pretty easy~ In fact.modern electronic
computers and calculators have such programmes built 1nto them.
But you should not forget that electronic computers have been in
common usage +or only about 25 years, and in the class room for
less than 10 years.

Mechanical devices to help with arithmetIc calculations have
been in use for over a thousand years, ~or example the Chinese
abacus with its sliding bead~ to help with additions, carrying
digits and so on. In the Western world, calculating machine~

w1th geared wheels were developed, f1rstly by Pascal in Fr~nce to
do add1tions and subtractions, and then some time later by Lelbniz
1n Germany to handle theconceptuaiiy harder mult1plications and
divisions. Refinements of these machines were made over the next
two centur1es, but the underlying principles remained the same.
They saved a person dOlng r~petlt10uS calculations a lot of teditim
(and errors), but still required physical and mechanIcal movements
tar each step of the calculation, as well as decisions by the
person. You may be surprised to learn th~t most of the
calculat10ns needed tor the development of the atomIC bomb in
America during World War II were done on such mechanical
calculating machines.
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Actually, a calculating machine that could be programmed to
do repetitious calculations and to make decisIons without human
intervention had been conceIved and constructed more than one
hundred years before World War 11. This was the l!Analytical
Engine" of the English mathematician Charles Babbage (1792-18/1).
He got the idea from the Jacquard looms which had been developed
in France to' weave patterns on cloth and on tapestries. . These
had a long paper loop with holes punched In patterns across 1t in
rows. lhe pos1tIons of the holes In a given row actIvated
mechanical devices in the loom, which moved warp threads forwards
or backwards as requIred for a single pass of the shuttie pUiling
the woof thread through the opening of the warp threads. The
loop then rotated to the next row, the loom rearranged the warp
threads and the shuttle made its next pass across the loom.
Eventually the loop came back to its starting row and the pattern
being woven repeated itself.

·It took Charles Babbage several decades to adapt this Idea to
the mechanical calculating machines then available. Besides
having to invent new mechanical devices to do things which are
easy for a human but difficult to get a machine to do (for
example, storing a number to be reincorporated in the calculation
at a later stage) Babbage also had to develop new methods for
improving the accuracy in cutting and turning metal on lathes.
This was because inaccuracies in the sizes 0+ the gear wheels
could lead to errors in the calculations, which would otherwise be
noticed by a person doing the calculations step by step on a more
shoddily built machine. The British Government of his day, in a
surprisingly enlightened display of support for the. sciences
(perhaps they knew about trade deficits too?) generously supported
Babbage to the tune of· £20,000, which was an enormous sum in those
days. This paid for his equipment and for his technicians. A
machine,' called his "Analytical Engine lJ

, was eventually built and
could be programmed to carry out calculations as had been
intended. It is now on display in the BritIsh Museum in London,
but was never really used except +or demonstrations. Perhaps the
concept was too far ahead of its time. The concept was however
not forgotten, in fact came back with a vengeance in the 1940's
with the development of programmable electric computers. The
British taxpayers reaped their reward much earlier, as the high
preci'·si on metal worki ng techrii ques machi nes and ski 11 ed metal
workers, that came from Babbage's workshop gave Britain a decisive
lead in the early days of the .Industrial Revolution.
Technological spin-off?

Whiie small compensation for the misery suffered by millions~

the Second World War was a catalyst for some spectacular advances
in $cience and technology. The design of aircraft, the
developmsnt of the atom bomb and of numerical methods for
long-term weather forecasts ali required voluminous numerical
calculations, far beyond the capacity of human operated
calculating machines. It was during this that programmed
electrical computers were constructed and used. The first was
made by Konrad luse an aircraft designer with the Heinkel Aircraft
Factory in Warnemtinde near Rostock. He ~sed It for h1s own
aerodynamical calculations, but otherwise it received little
interest; the then government of his country is not remembered as
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being particularly enlightened! After the war, Zuse's ideas were
taken ove~ by IBM, then a calculating and" business machine
manufactu,..-er. Meanwhi le in America, "the famous mathematician
<and a founding father of computer science) John von Neumann led a
team wh1ch also made an electr1cal computer. This was like
Zuse's in that it involved rooms full of valves, and by today's
standards was primitive. Dur1ng my recent visit to America, I
met a mathematician who did numerical weather forecast
calculations for von Neum~nn on such a computer. He said he
always could tell where the computer was in the program by seeing
WhiCh valves were· glowing. He also said that a program "crash"
was I1terally that, and so was a Iibugll, a moth in the works!

"* *" * * *
PROBLEMS

Solution to Problem 10.5.1,

lecnnical School.
computation.

by David Shaw ...

The problem was to show that err

Geelong West
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Two correspondents, John Barton and David Shaw, pointed out
that Problem 10.5.2 probably had a slip in it. As presented~ it
has the solution that x + y has maximum value 50, but two of the
conditions on .~. and yare then superfluous. Try instead the
following problem, the one probably intended.

PROBLEM 11.1.1 ..

If .~.{ 0, y f; (> and-
-2_~' + y 50

-
.3x + 2y ~ -SOO

.~~a + y 50-
and :x: -:.: 90

-
what is the ma}~imum value of Jr( + y ';:'
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DISTRIBUTION OF PRIME NUMBERS

.A.r nul f R i e d I, Ye a r 1 2 1 S t a 'We I I H I 9 h Sc h 0 0 I

Recently I examined the distribution of prime numbers on my
computer. First I used a method called the Sieve of Eratosthenes
to 'find the primes greater than 2 and less than a number N.
This works by systematically excluding multiples of previousl~

discovered primes. .

I implemented this as a BASIC program SIEVE. BAS which I give
here.

10 CLS
20 INPUT "Prime numbers under (n)?";N:DIM A(N+2):Z=3:S=INT(N/2)+1
30 FOR P=l TO S:A(P)=Z:Z~Z+2:NEXT P:PRINT "2 ";:FOR P=l TO INT(SQR(S))+l
40 IF A(P)=O THEN 100
50 PRINT A(P);" ";
60 FOR Z=P+l TO S
70 IF A(Z)=O THEN 90
80 IF A(Z)/A(P)=INT(A(Z)/A(P)) THEN A(Z)=O
90 NEXT Z
100 NEXT P
105 CLS
110 OPEN "o"l#l,"primes"
120 FOR P=l TO S
130 IF A(P)=O THEN 160
140 PRINT A(P);" ";
150 PRINT#l,A(P)
160 NEXT P
170 CLOSE#l

Next.l used a program PRIMETABS.BAS to create' a file of
primes. Here is my program.

10 ON ERROR GOTO 180
20 INPUT N

.30 DIM A (N)

40 CLS
50 OPEN "i",1/1,"primes"
60 FOR P==l TO N
70 INPUT #l,A(P)
80 NEXT .
90 CLOSE #1
100 REM .**********.********************
105 X=l :Y=l
110 FOR P =1 TO N
120 IF A(P)=O THEN END
130 LOCATE X,Y
140 IF Y=73 THEN Y=l:X=X~Z ELSE Y~Y+6

145 IF X>=24 THEN F&R T=l TO 1000:NEXT :CLS:X=l
1.50 PRINT A{P)
160 NEXT P
1 70 END
180 RESUME NEXT



29

1 used this file as input tor a ne~J program PRIMEGRA ... BAS.
ih1S old a number af thlnqs. F1rst it counts the number of
primes greater than 2 and less than N. This number P{H) is
graphed ~nd so is an estimate by the mathematiclan Legendre.
Legenare·s formula is

_.. N

P(fI) ~

where in stands far the natural log.

Here is the result. Legendre's formula gives a slight
overestimate and a smoother curve but it is very accurate.

A Plo~ of ~he Dls~rlbu~lon of ~he Prime Numbers

1.501.250.25 0.50 0.75 1.00
N

Br.---a.----.a..--_.........__.L........;...-_..L.-__....L.-..J

0.00

300

250
z
V

200(J)
(])

E
"C

150Q..

'0
Q)

100.D
E
::J
Z

50
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1 5 D1M A (1600 )
2 10 CLS
3 20 ON ERROR GOTO 1010
4 30 CLS
5 40 OPEN "I",#l,"PRIMES"
6 50 FOR P=~ TO 1600
7 60 INPUT #l,A(P)
8 70 NEXT P
9 75 ON ERROR STOP

10 80 SCREEN 2
11 90 DRAW "BM60,0"
12 100 DRAW "M+0,159"
13 110 Q=INT(16*1.8) :W=Q
14 120 FOR T=19 TO 3 STEP -2
15 130 LOCATE T,3:PRINT w;
16 140 W=W+Q
17 150 NEXT T
18 160 DRAW "M+600,0"
19 170 DRAW "BM60,158"
20 180 FOR T=60 TO 600 STEP 27
21 190 P$ET STEP(32,0)
22 200 NEXT T
23 210'LOCATE 2,7:PRINT "yu

24 220 LOCATE 21,76:PRINT "X"
25 230 LOCATE 21,7:PRINT "0"
26 240 U=1
27 250 FOR T=11 TO 71 STEP 4
28 260 LOCATE 21,T:PRINT U:U=U+l:NEXT T
29 270 LOCATE 23,39:PRINT "N * 100"
30 280 LOCATE 3,12:PRINT "NO. OF PRIMES"
31 290 LOCATE 5,14:PRINT "BELOW N."
32 300 DRAW "BM63,160"
33 310 FOR L=160 TO 0 STEP -9
34 320 PSET STEP (0,-16)
35 330 NEXT L
36 340 DRAW "BM60, 159"
37 350 FOR A=l TO 580
38 360 L=A/32*100
39 370 Y=-L/(LOG(L)-1.08366)
40 380 DRAW "BM60,159 u

41 390 PSET STE~ (A,Y/1.8)
42 400 NEXT A
43 410 REM ********************************************
44 450 N=l
45 500 FOR A=16/6 TO 1600 STEP 16/6
46 505 L=A/32*100
47 510 IF A{N+1)<L THEN N=N+1:GOTO 510
48 600 Y=N
49 610 DRAW "BM60,159"
50 620 PSET STEP (A;~Y/l.8)

51 630 NEXT A
52 1000 END
53 1010 RESUME NEXT
54 A(N+l}<L THEN N=N+
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t,..Elft:.RS TO THE EDITOR

i would like to comment on BaA.Watterson's article Card
Shutflinq In the October 1986 Issue. In particular, 1 refer to
the concluding sect10n an the 'perfect' riffle shuffle.

With an even number of cards, the first and last cards retain
their posItions in the pack in the course of the shuffles. With
an odd number 0+ cards (divided.so that there is one more card in
on~ diVIsIon than in the oth~r)~ only the first card retains 1tS

position~ The comput~r program 15 eaSily modified to include the
shuffilng of an odd pack and to print out the order of the cards
after each shu++le. If we allocate posItion 1 to card 2~ it is
seen that in successive shuffles it takes up positions 2, 4, 8,

untLl the Dower of 2 exceeds the n~mber of cards In·the pack.
lhe position 0+ card 2 a+ter n shu+fles is given by 2

n
(mod H)

It N denotes an odd number of cards in the pack and 2 Tl (mod 1'1-1)
1+ N denotes an even number.

The number (.),;") of shuttles required to return the pack to its
orlQlnal order IS the least positive solution of the congruences

2<~0 _ <mod N) it N is odd

or 2 0
),;. - (mod N - 1) if N is even

<""\1 '..... 2:5For e}~ample "1 for modulus i'-t the residues tor .-}".::...
..::.. ., ..;:.. , ,

may be set out as +011 Ol"",S:

Inde;.{ 2 .::. 4 s: 6 } 8 i.-i 10 11 12 1.5 14 15 16 17 18....J

F~esl due 2 4 8 16 13 7 14 9 18 17 15 11 3 6 12 5 10

·Ihe index co~responds to the number of the shuffle and the
residue corresponds to the position of card 2 which can be seen to
return to its ~riginal pos1tlon after 18 shuffles.

A slmilar argument may be applied to the position of any card
in the pack. In general, it ~ IS the number of the card, then

Its poslt10n after x
N is odd or mod N - 1

shuffles is given by
if N 1 seven) •

(mod H if

A program for generatIng residues af 2 x (mod H or N - 1)
and for counting the number of shuffles is shown below. It will
produce the desired result more quickly than ~he program in the
article.

It follows from the above that a pack of 51
perform in the same way as a normal pack of 52
back to orig1nal order after 8 ri++les.

cardS will
in shuf f 1 i. ng
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:l 0 I NPI..JT I' I\IUIVI)3EF~: DF CAPDS II i: N
20 Q=I'J/2
30 IF Q=INT(Q) THEN N=N-l
40 s= l~~ (:::-.::0
:S() S::::~::3::j::2

60 IF S>N THEN S=S-INT(S/N)~N

70 PRINT STR$(S);SPC(l);:C=C+l
80 .IF 8=1 THEN 100
'::JO 130TD ~50

100 PF.: I NT
110 PF.: INT II NUI"'IBEF;;: D1::'· SI",tUFFL.,ES II i: C
:1.20 END

>F.:UI\I
NUMBER OF CARDS?52
2 4 8 16 32 13 25 1
NUMBER OF SHUFFLES 8

David Shaw'll
Geelong West Technical School.

'* "* * * *'

Sinc~ the time of its beginnirigs in E~ypt and Mesopotamia
some 5 9 000 years ago, progress in mathematical understanding has
been a key ingredient 0+ progress in science, commerce, and the
arts. We have made astounding strides since from the theorems of
Pythagoras to the set theory 0+ Georg Cantor. In the era of the
computer 9 more than ever before, mathematical knowledge and
reasoning are essential to our increasingly technological worlda

The application of mathematics is indispensable in such
diverse fields as medicine, computer sciences, space exploration~

the skilled trades~ business, 'defense~ and government a To help
encourage the study and utilization of mathematics~ it is
appropriate that all Americans be reminded of the importance of
this basic branch of science to our daily lives.

Ronald Reagan

"* '* '* .. *"
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