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THE FRONT COVER

Take a circle of diameter a with centre at (U,a/2), resting,
if we might put it so, on the origin. The line vy = a is tangent
to this circle and is parallel to the x—axis, which is also a
tangent. Through ©, draw the line y = mx, and suppose this
intersects the circle in the point 8 and the line ¢t = a in the
point 4.

Through B draw a horizontal line and through 4 a vertical
line. Call their point of intersection ~. The position of #
depends upon the slope (m) of the line UA. As m varies, 0A may
be thought of as rotating about the pivot at the origin. Az it
does so, P traces out a curve (shown opposite), called the Witch
of Agnesi. Its eguation is

y = at/ix? + a?).

It is not ditficult to verify this fact and readers are invited
to do s0 as an exercise.

What is less clear is why this, relatively simple, curve
should attract so bizarre a name. The story. is interesting,
and, because it is often mistold, we take pains to recount it
correctly here.

iHaria Gaetana Agresi (1718-17%99) was, as her biographer Edna’
Eramer states, “the first woman in the Western world who can

accurately be called a Mathematician." She was the eldest child
of Fietro Agnesi, a wealthy man and professor of mathematics at
the University of EBEologna. The University of Bologna is the

‘oldest European universzity, and held that prestigious status
then, as now.

Fietro Agnesi married three times and fathered a total of Z1
children, so perhaps it was well that he was wealthy.

Maria showed not only talent, but genius, from a very early
age. By the time she was eleven, she spoke, besides her native
Italian, French, Latin, Greek, HGerman, Spanish and Hebrew.
Before her Zlist birthday, she had published . two books.
Corespondence exists to show that at the age of seventzen she was
already a very accomplished mathematician.

Her father, Justifiably proud of her achievements, took

every opportunity to display these to an adulatory public - a
situation the young Maria found increasingly distasteful. In
1738, she thought to escape this by attempting fto enter a
convent. Her father dissuaded her +rom doing this, but some

accommadation seems to have besen reached, {for she retired from
social life and worked in somz seclusion on mathematics.
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This bore fruit in 1748 with the publication of her major
worlk Istiturioni analitiche ad dso della gloventu Jtaliana
(Lessons In calculus For young Itaiiansz). The title sounds
perhaps all too trite to modern ears, but one must remember the
date of its appearance. :

Newton, one of the founders of the calculus, was still alive
when Maria was born, so her work presented an account of what was
then difficult and indeed controversial front-line research.
Ferhaps the most remarkable tribute paid to her text was its
translation into English (1801) by Professor John Colson of
Cambridge "that the British Youth might have the benefit of it as
well as the Youth of Italy.”

But there were other, more immediate, tributes. In 1749,
Fope Benedict XIV sent her a gold medal and an ornate jewelled
wreath. in recognition of her achievements and the next year, and
perhaps more to the point, offered her a professorship of
mathematics and physics at the University of Bologna.

She thus became the first woman ever to be made a professor

af mathematics. She held the post For two vears from
1750-1752), but without, it would seem, either teaching or
drawing any pavy. When her +ather died, in 175%, she began to

withdraw from mathematics and devoted herself more and more to
religion, social work and the care of her numerous younger
brothers and sisters.

By 1762, she was so far removed from mathematical work that
she declined to examine a major paper by the vyoung §lgseppe
Lagrangia (naw known as J.L.lagrange, a mathematical superstar).

That then is the woman. What of her curve — and why is it
called the Witoh?

Well, one irony is that this remarkable matnematician is
remembered best for a solitary example from her major book, and a
none too important example at that. Ancother idirony is that
Fermat, a French mathematician, had discussed this curve betore
her and sa, if justice were to be done, should have his name
affixed to the curve. However, justice is rarely done in such

. ; s o T .
matters. I+ this were not enough, Guido Grandi had also
discussed the curve and given it the name versziera. '

Go back to the line UA on the cover diagram. Let m vary -
this corresponds to the line JA4 turning on its piveot at 0O. The
Latin word wvertere means “to tuwn", and from this Grandi, and
later Maria Agnesi, derived the word versiera - "the result of
the turning”.

See function, Vol.8, FPart 2.
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the mainstream of the way the Italian . language evolved,

howaver, was difterant. Versiera is not a common word in
contemporary  ltalian. ' You need to go to gquite a large
dictionary to find it. But Find it you will.

apd it means "witch® - one, feminine (it ends in -aj), whao

turns the right order of things upside down.

Bo & concatenation ot linguistic and historical
happenstances pressrves the name of a remarkable mathematician in
an inadequate context.

To the detriment, indeed, of her memory . One strident
article, at the ill-informed end of the feminist spectrum, even
claimed that Maria Agnesi had been denounced as a witch. With

friends like that do feminists need enemies?

But truth will always outdo such slick fictions. And truth
leaves us much to ponder on.

Mathematicians and feminists alike will mouwrn the loss to
the world of intellect of a major talent. Why she withdrew, wse
may never know. What effect fhat withdrawal had on the
subsequent history of mathematics, we can, at best, speculate.

We do know what she did when she ébandoned mathematics.

She led a life of piety, devotion and service. In other words,
those roles society then and now assigns to women. Why did she
choose these — and how free was her choice?

Hard to krow, and, even if we did, hard to enter a moral

Jjudgement. Her decision may well have been wrong, but it was,
by all accounts, hers. and we know one thing about her with
nlowing certainty - she wasn’t stupid.

w oo or on OB

INTERNATIONAL MATHEMATICAL OLYMFIAD RESULTS
Aus#ralia placed 15th overall.
Bronze medals awarded to:

David Hogan

Ross Jones
Catherine Flayoust
Ben Robinson
Terence Tao.

Terence
part in i

Tan is the youngest competitor ever to have taken
international olvympiad.

Catherine Flayoust is the first giri to obtain a medal for
Australia. )

a0 W oo en 0O



A MATHEMATICAL MODEL
OF AN ARMS RACE

Peter Kloeden, Murdoch University

During the four years (1910-1%14) preceding the outbreak ot
" the First World War, there was a massive growth in the armaments
held by the future protagonists, which became known as an armsz

race. When hostilities finally broke out many people believed
that they were an unavoidable consequence of the arms race. S0
too thought Lewis Fry Richardson (1881-19533) a young English
Guaker who had turned his back on a brilliant career as a

meteorclogical scientistT berause of the way in which meteorclogy
was being used for asrial and gas warfare. Instead h2 served as .
volunteer ambulance driver with the French Army. In the lulls
between battles he thought a lot about the causes of war, and
indeed devoted the rest of his life to its study. He
particularly believed that mathematics could be applied here with
the same success as for the physical sCiences. Thus he
constructed a simplistic mathematical model of an arms race,
which he hoped would elucidate the mechanisms and consequences in
- a context free from emotional and political prejudice.

Richardson‘'s model consisted of a pair of differential
equations describing the evolution in time of the armament levels
x(t) and y(t) of twa countries X and Y. These equations differ
from familiar algebraic equations in that they involve the rates
of change of the armament levels as well as the actual armament
levels themselves. The theory of differential equations 1is
based on differential calculus, yet a detailed knowledge of
calculus is not essential for an understanding of what
differential equations are or for a rudimentary analysis of how
their solutions behave.

Consider a known function x = x{#) of time ¢ with a nice
smooth graph as illustrated in Figure 1. The slope m(tn) of
See my earlisr article "L.F.Richardson’'s Weather Forecast

Factory" which appeared in Function Vol.l0, FPart 3 {198&).



the tangent to the graph at the point (tm’ x(t@)) represents the
instantaneous rate of change of the function x = x () at t = tO.
Generally this rate will vary as tw varies, so the to is included
in its valuelm(tw). This tangent is in fact the limit of the
straight line segments, or chords, joining the point (t&, x(tw))
to the nearby points .(tQ + At, x(tQ + At)) as At is made
arbitrarily closs to zero, i.e. as 4% converges to O. The slope

of such a chaord is

Nt + At) - x(E ) Ax(t )
7] a = 2

Vit

where Ax(t”) is written for x(tﬁ+At) - xita), and this converges
to the slope m(tn) of the tangent to the graph at (to,x(to)) asg

At converges to zero, i.e.

Ax(tﬁ)
mit ) = 1lim it (')
¢ AE-0 at
2y \
tangent
//// chord % = 2(t)
x(to+ At)
Ax(t )
(4
x(to)
0 P t
to 2‘:0+ At
At
Figure 1: Chords and Tangent at (tw’X(tw))'

It is now conventional to write the limiting value in (1) as

X

at (tw) *
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or simply as ff where the dependence oan t, is not explicitly
i @

stated. This is called the derivative of x = x{(t) with

respect to ¢ at t = th' It is the slope of the tangent to the

graph of x(t) at the point x = N(f“) and. represents the

instantaneous rate of change of x(f) at + = ¢ . Clearly it is

o
negative if x(t¥) is decreasing, zero if x(t) is instantaneously
not changing and positive if x(¥) is increasing at t = t). See

i

Figure 2.

x
dex da
= > = =
at Y at =Y
dz
<
at <Y
t
to to' to"
: R : ax
Figure 2: The sign of __ .
dt
A simple exampie of a differential equation is
=25
gt = ax (2)
dx
s whet-e a is a constant. Here the rate of change IF is
proportional to the value of x with the same constant of
proportionality a for each instant ¢ . A solution of the
differential equation (2) is a function x = x({¥) which satisfies
(2) for each instant *+. In this case all of the solutions have
the form
Tx(t) = x(medt

where x{0) is the initial wvalue that the solution takes at the

initial instant ¢=0. There are thus infinitely many different

solutions, each one-corresponding to a different initial value.

Note also that x(t) = Q for all t > O when x(0) = O. This is

called an equilibrium or steady state solution, as it has zero

rate of change if = 0 for all & » O. (The differential
- dt )

equation (2) models exponential population growth when a > O and
exponential or radicactive decay when a < 0J.



9

Just how one goes about finding solutions for differential
equations is beyond the scope of this article. In fact
solutions are known only far fairly simple types of equations and
in general only approximate solutions can be found by
apptroximating the differential eguation

I = o

at
. by an algebraic equation

Xt 4+ ATy = x () + Fx(t)) At - (3}
Here the derivative ?f has been replaced by the quotient
gt ‘

(N {Erdt) ~ x(8))/At, which will be fairly accurate provided At is
sufficiently small. The algebraic equation (3) is then solved
for discrete instants of time A¢, 24¢, 3I4¢, ... starting from a
given initial wvalue x(O). These calculations can be easily
carried out on a computer. In fact Richardson used a very

similar method to find approximate solutions for the extremely
complicated differential equations used to model the dynamics of
the atmosphere. :

Now for Richardson’'s model of an arms race. Richardson
supposed that +two countries X and ¥ wanted peace, but were
apprehensive of the other ‘s intentions and were prepared to fight
1f attacked. He let x(¢) represent the armaments level of
country X and time ¢ and v{(t) that of country Y. He assumed
that neither country had an incentive to have weapons if the
other country had none and that the rate of acquiring arms for
one country would be directly proportional ta the armament level
of the other country. These two assumptions yield a coupled
pair of differential equations .

o\
X o= ay and 9y

o L= by, (4)

dt dt
where a and b are two positive constants of proportionality,
the specific values of which need not concern us Jjust now.

The model described by the differential equations (4) is far
too simplistic because it disregards any limiting Ffactors to
growth, such as the Jfinancial burden of large levels of
armaments, which one would eupect to depress the rate ' of

increase. Richardson thus subtracted a positive multiple mx of
x from the fz equation in (4) to account for such limiting
dt
factors. | This lead to the pair of differential equations
X 2 ay -~ mx (5X)
gt
Y = by = ny . (5Y)

qt
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He also considered effects that were not due to  mutual
stimulation (i.e. the x or y values) but to permanent underlying
attitudes or grievances. For this he added a constant g to (35X}
and a constant h to (8Y) to obtain

Ef = ay — max + g (&6X)
gt
= px -y cov)
at

where g,h » © correspond to grievances and g,h < O to feelings
of goodwill between the countries X and Y.

The pair of differential equations (&6X) and (&Y) is

Richardson s model oFf an arms race. He analysied them using
specific coefficients a,bym,n,g and h relevant to the arms race
which preceeded the First World War. His method of analysis

does not require finding solutions for (6X) and (&Y) {which is
possible) but merely examining where the rates of change are=

negative, zero or positive. In fact from equation (&X) ff is

gt
zera for

O = ay — mx + @ (line Li)

dy

gt

and from (6Y) is zero for

O = ax — ny + h (line L)
-

which represent the equations of straight lines. Moreover on

one =ide of Ll’ if will be always negative and on the other side

dt

ay
. at
(but just which side what holds depends on the particular

always positive. A similar situation holds for and the line

Lo
=2

values of the coefficients a,b,m,n,g and hi. In addition the

point (;, ;) of intersection of the two lines, assuming they do

intersect, is a steady state or equilibrium solution x(i) = x,

y(t) = ; for all *+ » O of the pair of differential egquations.

Let us consider solutions starting at some point (x{D),y{0))
away from the equilibrium solution, which Richardson c lied the
balance of power. Just what happens to tha solubion Ti o,y it)
as t + =« depends on the particular values of the cosfficisnts.
We will consider two cases with the lines and derivative signs
arisnted as in Figures I and 4, respactively. Remambering thaht
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a negative derivative means the +unction is decreasing, whereas a
positive derivative means it is increasing, we can roughly sketch
what will happen to (x(#),y{£}) as ¢ increases. (Strictly

speaking wae have to take into account the magnitudes of ff and ay

gt '; ;‘
as well as their signs). In Figure 3 the two solutions which
are representative of &11 other solutions, tend towards the
balance of power equilibrium, which is thus called & stable

egquilibrium. In contrast in Figure 4 {for sufficiently small
initial wvalves the solutions get even smaller, that is the
countries appear to be disarming. However, if the initial

values are too large, the goodwill bhetween thée countries and the
limits to growth factors will not be sufficient to reduce or hold
in check the arms levels and there will be a runaway arms race
with armament levels becoming arbitrarily large.

Yy } &
(x€0),y¢0))

<|

x Y

o / 3

Figwe F: SGtable balanmce of power.

=) 2
armrace
&

YA L,

<}

disarmifg

0 vt
// ‘
Figwe 4: Unstable balance of power with initial
values determining if disarmament of an arms race occurs.

x|
X
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Without going into detarls here; it can be shown that there
are four btypical cases:

I If mn oy oab , o ¥ 0O , h U there is a stable balance
of power (Figure 3

(11 I+ mn > ab , g < G 4 h +« 0 there is total disarmament;

(G ] I mn < ab 4, ¢ » Q 4, h » 0O there is a runaway arms
races;

(Iv) If mr % ab , g < O , A< 0 the situation is ambiguous

as in Figure 4 with a rumnaway arms race or disarmament
depending on the initial levels of armaments.

Other cases can occuwr too with <] and h taking opposite
signs or being zero. These are left to the reader to analyse.

Note that whesn nn = ab the straight lines L1 and L. are

parallel and do not intersect, unless they coincide everywhere.

Richardson was well aware that his model was contrived and
artificial, vyet it does bear some resemblance to what can be
abstracted from the dynamics of actual arms races. The results
seem to coincide with what common sense tells us what shouid
happen, s0 have we really gained anything by having such a model?
Yes we have, because the model shows that certain mechanisms and
relationships lead to certain results, independently of any

particular moral, emotional or political point of view. We must
remember that these factors often distort what we may think is
COMMON Sense. In Richardson’'s words "The equations are merely a
description of what people would do it they did not stop to
think", ‘The equations certainly give us something to think
about! '

A readable and fairly elementary book on the use of
mathematics to model conflict and conflict resolution is Anatol
Rapaport ‘s "Fights, Games and Rebates" {(Univesity of Michigan
Fress, 1974}, The reader could also consult the article by
Bruce Taplin and myself on "The Prisoner s Dilemma Game", which
appeared in Function Vol.?, Part 1 (198957, p.l4.

ot oo op o5 w0

Evarything should be made as simple as possible, but no
simpler. o
A.Einstein
When a mathematician has no more ideas, he pursues
axiomatics.
Felix Klein
Fantasy, eneray, self-confidence and self-criticism are tha
characteristic endowments of the mathematician.
. Sophus Lie -
The essence of mathematics lies in its freedom.
Georyg Cantor
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CHEATING, STEALING,
PIANO TUNING
Hans Lausch, Monash University

Tunings of the musical scale in which most or all concords
are made slightly impure -in order that few or none will be left
distastefully so, are called musical temperaments. When the
medium of performance allows little or no +Flexibility of
intonation - compare the suppleness of the human voice with the
inflexibility of the kevboard instruments — music theorists are
obliged to contrive specific mathematical schemes.

Equal temperament, in which the octave is divided into 12
uniform semitones, is, with a few exceptions, the standard
Western temperament today. As early as 1588, the year of the
Armada, the abbot of San Martino in Sicily, Girolamo Roselli, was
said to have reached these forward looking conclusions:

"This way of dividing the diapason or octave into 12 equal
parts ... could alleviate all the difficulties of singers,
players and composers by enabling them generally ... to sing or
play ... DO-RE-MI-FA-S50L-LA upon whichever of the 12 notes they
wish, towring through all the notes, making a circular musicg
hence all the instruments will be able to keep their tuning and
be in unison, and organs will be neither too high nor too low in
pitch."” .

About 50 years later, we are told, an old man in rags, who
had spent most of his life in Sicily and Calabria and knew
nothing except how to play the harpsichord, retired to Rome and
triggered excitement by advocating equal temperament on the
harpsichord and even inducing the influential composer
Frescobaldi, with the aid of frequent and gratuitous beverages,
to recommend it for the organ in Bernini’'s new apse. at San
l.orenzo in Damaso. The mathematician Father Marin Mersenne
recommended the use of squal temperament about the same time.

In the late 17th century and early 18th a circle of German
theorists became very interested in equal temperament, including
Werckmeister, Neidhardt and Mattheson. In England the organ
builder Renatus Harris, wishing to discredit a competitor,
brought the mathematician John Wallis to write in the
Fhilosophical Transactions of 1698 a letter to Samuel Fepys
Esquire, relating to some supposed imperfections in an organ.

Wallis asserted that equal temperament had been found
necessary on organs. In his Gereration harmonique (1737) the
French composer Rameau endorsed equal temperament.
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Whether Johann Sebastian Each, who used the term
"well-tempered clavier® in the title of his first book {1722y of
24 preludes and fugues to signify some kind of tuning suitable
for all 24 keys, was an advocate of equal temperament, is debated
by musicologists. His son, C.F.E. Each, however, is the best
candidate if the music of any leading 18th-century composer ought
to be performed in equal temperament. :

It was in 1761 when the Berlin music theorist F.W.Marpurg
published the article "Attempt to Ffind a perfectly equal
temperament by construction”. Marpurg, in his introduction to
this treatise, makes the following comments: T

. “Mr Kirnberger, one of our best local musicians, ... who
wished to see an egual temperament on the monochord which would
please both the ear and the eye, came to read what Neidhardt ....
wrote of the geometric construction in view of the temperament.
He took the opportunity to talk about it with an acute Berlin
mathematician, whose name to mention I have no permission, and to
ask hims Whether one could not investigate in more detail, and
perhaps more satisfactorily than through arithmetical
approximation, what Neidhardt had touched only superficially.
M- Kirnberger's learned {friend undertook the investigation and
aftter a brief effort took pleasure in solving the riddle and
filling the wide gap left by Mr Neidhardt. Here is his essay on
this subject which gives so much honour to his excellent insights
by not only pleasing every authority on musical temperament but
certainly even the mathematicians.”

We shall turn to this mystery writer and his essay in a
moment, bhut first a Few words about M- Hirnberger. Johan
Fhilipp Kirnberager (1721-1783%) was a well-known music theoretist,
composer, and music teacher who was tutor of Frincess Anna Amalia
of Frussia.

He belonged to the Berlin group of theorists, which included
Quantz, C.F.E.Bach and Marpurg, and is commonly described by his

contemporaries as emotional and iil—tempered, inflexible,
conservative, tactless and pedantic, but his detractors
acknowledged his devotion to students and AFriends and his
dedication to the highest musical standards. In 1744 he edited

a second edition of the essay on equal temperament in which he
omitted Marpurg’s introduction, and in the preface to one of his
collections ‘Fiano Exercises’ of 1746 he progressed to purporting
to have written the essay himself. ’

In 1776, at a time when his relations with Kirnberger had
soured, Marpurg published the most articulate treatise of the
late 18th century on the subject, ‘Attempt on the musical
temperament ‘. And here we learn the identity of our writer: as
Marpurg put it, it was "the famous Mr Mendelssohn'.

Just to keep vour mind in the right century, let me assure
vou that in spite of the musical context, Marpurg does not refer
to Felix Mendel ssohn Eartholdy (1809-1847) , but to his
grandfather Moses Mendelssohn who was born in 1729, This year
the world remembers the 200th anniversary of his death.



15

To give you only a sketchy story of his life, would lead far
beyond the limitations of a magazine article. The best
biolgraphical account is the one by Rlexander Altmann, Hoses
Hendaelssohn — A Biographical Study, London 1973,

Moses Mendelssohn founded a great dynasty of artists,
bankers and scientists. 0+ his mathematical descendants, the
most famous representative is thea number theorist Eurt Hensel
(1841-1941), and should you play the mathematical strategy game
NIM or a related game, then think of Roland Sprague (1894-1967),
one of the pioneers of the modern theory of NIM-like games.

Frofessor Walter Hayman, who was instrumental in founding
the British Mathematical Olympiad and is a well-known expert in
the theory of complex Ffunctions, alsc descends directly from
Moses Mendelssohn. Three mathematicians, whose results have
been in the tool kits of succeeding generations, married women of
the house of Mendelssmh?: F.G.Lejeune~Dirichlet, who accepted

Gauss ' position in Gottingen, married Rebecka Mendelssohn
Bartholdy, the. composer’ s younger sister, E.E.kKummer married
Ottilie Mendelssohn, another of Moses’ granddaughters, and
Hermann Schwarz bscame the Hummer 's son-—-in-law.

Mendelssohn's mind had been occupied with probability theory
aver since his first paper in Berman ‘"0On Chance Happenings'
(1753) . In 177%, he also contributed to a reader for the best
pupils of a recently founded school, and one of his last great
works called "Morning Hours’, which refers to the part of the day
during which he gave lessons to a number of young people,
contains a section on probability.

In Berlin he became member of the "Learned Coffeehouse’", a
closed society of about hundred people, Members of the Royal
Academy and other intellectual leaders of the Kingdom of Frussia.
There hae met the mathematician Johann Albrecht Euler, whose
prolific father Leonhard was then in Berlin, and Mr Kirnberger,
who gave Moses piano lessons so that, in the end, he managed to
play a minuet.

It was found about this time when Mendelssohn wrote the
laogical commentary “Bi‘ur milot hahigayon® on the famous work
"Terms of Logic" by the philosopher Maimonides (1135-12-4), to
whom also a Furction article was devoted (The Rambam, Function,
Vol.?, Part %S5, October 198%5). Also in this case, Mendelssohn
fell victim to an apparently not quite honest publisher, who
presented himself as the author of the treatise: in those days,
pirates were identified as far upstream as Frankfurt on the Oder.

Mendelssohn’'s treatise on equal temperament begins with
translating the musical requirements for equal temperament into
mathematical language. Given two strings of equal thickness and
equal tension, but the one being only half as long as the other,
the shorter one will produce a pitch which is exactly an octave
higher than that of the longer.
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The task is to cut out another 11 strings of. lengths
appropriate to produce all the ssmitones within the octave.
mathematically this amounts to the following problem: if the
longer string has length 2 and the shorter has lenghth 1, and i+

12 -
ro= JE, then one has to cut out strings of length r, r*, r?,
veny rYY, respectively.

Note that if two line segments of lengths p and ¢ are given,
then it is sasy to construct a line segment of length A such that
prh = hiqg. There are numerous ways of getting h: e.g. draw a
"line segment AH of iength p, extend it beyond H as far as B such
that HB has length g; let # be the midpoint of A8 and draw a

semicircle ¢ with centre M having AB as its diameter; draw a
line 1 through H perpendicular to AB and let € be an intersection
of 1 with o3 then HC has length A, which is an assertion I ashk

you to prove. _ :

Figure 1
Singce 1:r® = r®:2, r® can be easily constructed. Likewise,
since l:r¥ = r* ¢ r® and #F 1 r? = r%i2

r 12, we have also simple
constructions for the string lengths r¥ and r%.

Since l:r = rir® = r%:r3, we will b2 able to construct the
strings of length r and r? tand all the other remaining ones) as
s00Mn as we can solve the following construction problems given
two line segments of lengths g and g, find line segments of
lengths h and & such that pih = hiék = L:g.  Note that especially

E
when p=1 and g=2, then h = /2.
Mendel ssohn remarks:

"It thus depends simply on the well-known Delian problem
which, in antigquity, made so wmuch stir. Flato, Hero of
Alexandria, Fhilo, Apollonius, Diocles, Fappus, Sporus and
Erathostenes, at various times provided solutions. ... These
great people found only mechanical solutions; it leooks as though
the construction might be impossible without the help of curves.!

What did Mendelssohn mean by these remarks? In antiquity,
one school of thought in geometrical constructions was to limit
aneself to only ftwo toois, namely compass and ruler, and use
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these within the constraints of the following rules: SURPOBE
you have already obiained . a number of points and let ws call them
the "old pointe”, then, new points can be constructed only as
points of intersections of two straight lines, of a straight line
and a circle, or of two circles; each of these straight lines
must pass through at least two old points, and each of these
circles must have an old point as its centre and pass through at
lgast one old point.

The Delian problem consisted of constructing a line segment

3 . :

of length /2 from one. of unit length, or, as it is often put, to
construct a cube of velume Z from one of volume 1. The ancient
SGreeks found 1t impossible to perform this construction when
constrained by the rules laid down above and resorted to all
kinds of "mechanical” solutions: the drawing of various curves
(e.g. s=pirals) or cheating by surreptitiousliy carving marks into
the ruler which turned out to be of some help.

Mendelssohn’'s suspicion, that such a construction might be
impossible without infringing the rules, was prophetic, indeed:
it was only in the 19th centuwry that it could be proved by means
of agebraic methods that no such construction was possible. No
less a wmathematician than Isaac NMNMewton, in his ‘Arithmetica
universalis’® was one of those transgressors.

Mendelssohn explains:

"Newton ... divides the line segment A8, the first of the
two given line segments into two eqgual parts at £ [Fig.&l1. He
then draws =2 circle with centre A4 through £ and fits in the
ond given line segment EC such that the point ¢ is on the

z Next he asxtends the line segments EC and BC. While
keeping the ruler placed at A, he moves it between the two lines
just drawn until 6F becomes as long as A€ aor £B and draws the
line FGA. After this, he says, (F and AG will be the desired
ling segments ... Constructic nota est, adds Newton. I may be
permitted to prove what Newbton assumes as known. Great geniuses
reach their aim in one step whers2 common minds must be led by a
long sequence of conclusions. The theorem was ...

AR 1 OF = OF »

)

A = GA ¢ CE.Y

A E B

Figure 2
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Before letting Mendelssohn proceed to the proof,
Flease send vyour proofs of

result from geometry.

Editors.
"Let ¢ be a circle,
on <, PT a tangent of <, and R

such that the extension of RZ

T

Figure

Mendel ssohn now continues:

P a point outside the circle,
and &
contains P.

we need a
it to the

7T a point
two distinct points on «
Then

o2 n

H (Fig.4) and draw the line

"Proof . ... Extend FA as far as

segment AK parallel to EC. Since AK is parallel to E£C, we have

BA « BE = AK : EC.

1 1 .

Now, BE = 3 AB, hence also EC = 5 AK. Further since the
triangles FGC and KGA have the same angles [i.e. are similarl (as
FC is, by construction, parallel to KA), we see that

CF @ FG = KA @ GA.

i .

Consequently, CF & 2 FG = 3 KA GA . But 2 FG = AB (by
assumption), KA = 2 CE (as demonstrated), hence CF : AB = C£ ¢ GA

or, this turned around,
AB 1 CF = GA

Likewise,

(A + GA) @ (OF + CE) = A8 =
Now , ) .

-AB + GA = FH
because

AH + FG = AB,
and also

CF + CE = FEj
therefore

FH « FE = AB 1 CF = GA ¢ CE.
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Further L[by the 1t abhavel,
FH & FE = b L.

Since
Fi = AG

(as AL = Af, by assumption), we sz that
FH o« FE = F& oo Ao,

- Consequently, from the squation {(already shown)
FH ¢« FE = 48 ¢ CF = GA @ CF,
we obtain

CF &« AG = AR « F = GA ¢+ CE.,
and finally,

which was the th2orem to be proved.

Figure 4

wes The mechanical artist can accept this on trust if he does not
wizh to concern himself with mathematicxl reasoning. But he has
to apply all possible care to execute what has been prescribed to
him. ¥

Mendelseohn did understand not only the concerns of the
Ymechanical artist” but also the dayv-to-day problems aof many a
mathematiciang Une day, three of his +Friends, all of them
mathematicians, had a game of cards in which one. can score
twenty-one. They could not reach agreement on their individual
points, and so asked Mendelssohn, who was standing nearby, to act
as  their umpire. Mendelszohn helped out, not without
exclaiming: "l.Lo and behold, here are three mathematicians and
they cannot count twenty-ons!”

R R AR KRR

“Fure Mathematics is the mathematician’s real wand.®

"One may be a mathematician of the first rank without being
abhle to compute. It is possible to be a great computer without
having the slightest idea of mathematics.
LNovallis was the pen—-name of the German epigrammist von
Hardenburg, who died in 1802, Eds.]
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INFINITE LADDERS
M.A B. Deakin, Monash University

A ladder is an expression of the form ab or ab s etc.,
where a number a is raised tg A power, which is itself a number
raised to a power, etc. It is a little easier to write (and to
think about) ladders if we use a different notation. In BASIC,
exponentiation (the raising of numbers to powers) is indicated by
a vertical arrow , and in this notation ouwr examples become

aflbtec) and atlbtlzpd)) .
Note that the brackets are important here:
2PET4) = 2981 = 2.4178% ... x 102%
4 very big number indeed, compared with the more modest
(213314 = 2112 = 4096 .

One question that began to interest me was what sense I
could give to an infinite ladder made up of identical numbers:

at(attatfatc ... . (1)
Could any meaning be assigned to this?

My first move was to restrict the investigation to the case
a » O and to look only at those cases where real (as opposed to
complex) arithmetic was involved. These restrictions are not
entirely necessary, but the whole flavour of the investigation
alters if they are removed. :

It next seemed that two approaches to the infinite ladder
(1) were possible. Both proceed from the assumption that a new
expression like (1) has no intrinsic meaning at all. The
problem is to Jdevine a meaning for it.

A . : . -1
A similar case arises in secondary school mathematics: a

cannot he defined in the way that a?, a%, aY, etc. are.

However, where all the exponents are positive, we have
ap.aq = ap+q and if we define a—I as 1/a, this property, along

- -
with others, remains. Similarly, we define a '~ as Va to
S

preserve properties such as (a “*)° = a, and the like.
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S odin trying ta define the expression (1), we look for
appraaches which provide satisfving and natural ways to regard
this expression. ’

One” obvious Way 15 to consider the sequence
@y afa, atlatar, aflajiatal), v.o..

and s2e  what happened as  the number of a’'s tended to
infinity.I°11 come back to this, but I postponed it in my
exploration, because I saw what seemed like a more promising
appiraach. It went like this.

Fut

X = atlaffatiat( ... (2
Then

afy = atlaflafiat ... = x ’ [
or in more usual notation

X
a8~ = x, (4,
Graphically, we solve this by finding the intersection of

the graphs of v = a* and Y = M.

Now the behaviour of the graph of av depends on the value of

2. I 0 < a « 1, a” decreasss as x increases and we get (see
Figure 1) a single intersection with Yy = x . If a = 1, the
graph is a straight line which intersects the line v = x5 when
Xy w1 S0 we have our first result
lf(lT(lfCIT( ene w1 (5)
as IX = % has a single solution : » = 1.
When a » 1, matters are more complicated. For same values

of a, there will be two intersectians, but beyond a certain

critical value, the curve y = a™ rises too steeply to reach the
graph of y = x and there are no intersections. In between, at
the critical value af a, the two graphs would just graze

tangentially, for a unique solution.

See Figure 1 again., The top graph has a = 2 and clearly 2
exceeds the critical value, Thus we do not expect any mearing

to be available for the expression

On the other hand, when a = {the second case shown) , we get
two intersections, at x = 2, & = 4, since
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So
VIR EIWVETC e = 2 or 4. (73
This last example is also instructive in-another way. For
. B 1.
we can write JZ = 2 /2 and the first of Equations (&) now becomes
1,4 -
(2 IEE L g .

an equation which easily generalises to

7Y = %, (8)

so that we have a form equivalent to Equation (4):

a=x ", ()
: ‘ 1/x'
Figure 2 shows the graph of v = x . {(Far an account of
the related function y = xx, which also considers negative x and
i 1 2 1
the negative values introduced by (e.g.) (3) =t/ 5, see
Function, Vel. & Part 2.) The expression xllx is known to tend
to zero as x gets very small and to one as x gets very big. It

is also known to rise steadily to a maximum height and to fall
slowly once this is attained.

It is . also known at what value of ~ that maximum is
attained. The value in question is5 e . e is the base of the
natural logarithms, also known as Euler’'s constant, after the
very great mathematician who discovered many of its properties.
Ferhaps the simplest way to define e is to say that it is that

value of a for which the graph of y = a™ passes throuah the
point (041) with a slope of 1. There are, however, many other
ways of looking at e, and those of vyou _studying VYear 12
mathematics might have met it in other ways. ’

1.
It is known that the graph of vy = x /X achieves its maximum
i/
when x = e, and that maximum value will of course be e €. So
i

if a lies between 1 and e /e, Equation. (9) will define two values
for x and these correspond to the two values that may be ass1gned
to Expression (1).

To view it another way, we could include more members of the

“,

set of functions {{x,y): y = ax:,in Figure 1. One of these
would just graze the line with equation y = x and for this one we



o

Figure l: Graphs of v = 27, V27, 17, (1/&)" and y = x

Figure Z: Graph of y = :..:1/"":

~
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would have a = take place just at the point x = v = e,
Now let us come back to ouwr other approach. Fut
F{l,a8) = a , f(2,a) = afa, (I,a) = aflafa) ,
and so on. We then have the relation
fin,a) = affin—-1,a) .~ (10}

This provides a convenient way to compute Fin,al.

For example, consider a = /2. I put /2 into the store of
my HF-Z5 and also entered it into the register. I next pressed
RCL  xY to find 1.632526919, a good approximation to /Ef/ﬁ . To

apply Equation (10) again press . ENTER RCL &7 to get

1.760839385, a good approximation to ¥(3, /2. Continuing in
this way, I generated successive values of f(n,JE?, till I called

it quits at f(SO,JE) = 1.999999989, convergence to 2 being quite
evident.

Indeed it was possible to prove tHat the limit was exactly
2. To do this, we need to prove first that if ¥(n,a) < 2, then

Ting,a) < Fn + 1, 2a) < 2.

So f(r,a) increases as n increases but remains always less
than 2. This implies that ¥(rn,a) tends to a limit € (£ 3 2) as
n gets larger and larger. It is +airly easy then to show that
2 cannot, in this case, be less than 2.

S0 it seemed that the "limit" way of. looking at the question
gave only one of the two possible values of Eqguation (7). What,
I wondered, had happened to the other? Where, in the case

a =J§,vwa5 the solution 47 Well, it took a while to find it and
it turned up in what you might think of as an unusual way. '

) Eguation (10) follows a line which I left unnumbered, but
which included the statement

f(l,a) = a , (11)

a natural enough thing to require. But, as I reflected on it,
it seemed that it wasn’'t forced on us.

Why not try
f(l,a) = b (say)? (12)
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Then ¥{2,8) = afb, r(Z,a) = atlatb), and so on; the recalcitrant
b, as n agets larger, disappears off to infinity and, when
Equation (1) finally gets re—-established, does it matter if, way
out on the right, where no-one will ever see it, is a b and not
an a? Imtuition would say 'no’.

Well, intuition is partly right and partly wrong. And the
place where intuition fails gives the answer to the question as
to where the missing value went.

Fre

Figure * (on p. 28) shows graphs of y = T(n,/2) for b =
f(1,/% =1, J2, 2, 3, 3.9, 4, 4.1. {(The graphs are the sets
of dots Jjoined together by lines not themselves part of the
graphs.) The first five of these graphs converge to the value vy

= % when » is large, the convergence being most obvious in the
special case b = I,

For b < 2, fln,/2) > fin-1, J2). This is easily proved
from Equation (10) and so the graph tends upwards, ultimately

i)

toward the value 2.

For 2 < b < &, fin,/2) < fin—-1, /2), which is also readily
proved, and so the graph tends downwards, ultimately toward the

value 2.

But if b > 4, fin, Vo) > fin-1, /2) and the graph continues
to rise, more and more steeply. .

The special value b = 4 allows f(n,JE to merely duplicate
f(n—l,Jﬁ), but any value of b differing from 4, no matter how
slightly, will mean that f(n,Jﬁ) tends to 2 or increases forever.

We speak of Z as being a stable value and 4 an unstable one.

S we see that the two approaches to the ladder (1) give
consistent answers, but with some differences of emphasis.

Y
"The real mathematician is an enthusiast per se. Without
enthusiasm no mathematics.”
Novalis

“"Insofar as the theorems of mathematics relate to relaity,
they are not ceértain, and, insofar as they are certain, they do
not relate to reality.®

Albert Einstein
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PRODUCTS
OF CONSECUTIVE INTEGERS

John Mack, University of Sydney

We begin with a simple example. Can the product of two
consecutive positive integers be the square of a positive
integer? That is, are there positive integers m» and rn such
that

nin+l) = a%7?

It is easy to construct a proof that this cannot happen.
Two consecutive positive integers always have greatest common
factor 1, so the given equality implies that both n . and a+l are
squares of integers. But for any integer & » 1,

(6 + 13% — k% = 26 + i = %

and hence consecutive i1ntegers cannolt be squares.

The same argument shows that

3
nin + 1) = m
(where ¢ = 2, 3, ...) is also impossible.

What about the product of three consecutive positive
integers? Is there a solution in positive integers to

nin + 13(n + Z) =m

or more generally, to

0
o
]

nin+ti)(p+y = , & =

2
i

One can rconstruct a direct proof that this is also not

possible. A recent Australian Mathematical Olympiad test
problem asked if the product of five consecutive positive
integers is ever a square. This was, understandably, found

rather difficult by those who tried it.

In fact, it was conjectured long ago that the product of
consecutive integers is never a power, that is, the equation

nin+l)... tntk) = mg

has no seolutions in positive integers nox 1, & » 1 and £ > 2.

How might one try to attack such & problem?
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Clearly, as we inoraa the number ot terms in the product,
we increase the likelihood of common factors -~ in every four
consscutive terms, for example, two ars even and one is at least
a multiple of 4, while at least one is a multiple of I — so the
charnces of grouping terms into relatively prime blocks and

gquing in that way don’'t seem to be very good. Thus we might
expaect that the larger thes value of &, the maore difficult the
problem becomes for that value ot &. Fortunately, a simple idea

provides a different attack when 4 is large compared to n .

Suppose we could guarantee that one of the integers
ny R+l ..y nhA was A prime p. Singe the multiples of p are p
apart and since p » n, it follows that there can be no other

multiple of p among the integers n, ..., n+k if n+&k < Zn, that

is, it & < n. In this case., the product aln+l) ... {(&+k)

contains p to the first power only and cannot be an £th power.

S0, what do we know about the ovcurrence of primes in a set of
consecutive integers? :

The simplest and best known result is "Bertrand's Fostulate”
{(proved in the nineteenth centwy) that, for any integer n, there

is a prime p satisfying n < p < Zna. This prime p could happen
to be the integer Zn-1, so to apply this result to ow problem we
would need to have the entire product nir+i) ... (EZr—1) on the
left—hand side. Thus we obtain the result: ’
ni{n+l) ... (2n~1) = me

has no solution in integers n»n > 1, » > 1, & » 2.

Can we not obtain any more from Bertrand’'s Fostulate? We
can, by remembering that if p is a prime, then there are no
multiples of p less than p. S0 it w2 work with rn+&d instead of

ny we see that there is a prime p satisfying
n+k Fop F o {n+k) /2.
LI+ n+k is even, this is obvious. I+ n+&k is odd, apply

Bertrand’'s postulate to the set {r, ..., 2r}, where r 1is the
integer just below (n+k) /2.1

From this, we see that if (r+&)/2 > rn, then there is exactly
one power of p in the product nir+l)...{n+&k) and so this product
cannot be an €th power. Thus the problem has no solution if &
. Combining the two results we have so far, we see there is no
solution if & > »n -~ 1.

Thus, the ‘"problem zone” is identified as that for
relatively small values of 4. By use of a different result on

prime factors, which states that i¥ » »* &+1, then among the
numbers nn, n+l, ..., n+k, at least one is divisible by a prime p
greater than &+1, we can deduce that
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. £
nin+ll).e.. (n+k) =nm

has no solutions if n % (k+1)?.

No easy method of proot is known far the case n ¥ (k+17€.
When & = 2, a proof was given by Faul Erdos in 1929 and he and
John Selfridge gave a proof for £ > 2 in 1975. This latter

proof. depends on showing the existence of a prime factor of the
product which occurs to a power which is not a multiple of £.

Faul Erdos visits Australia regularly and will celebrate his
7%th birthday next year. Maybe someone will present him with a
simpler proof of the result that the product of consecutive
integers is never a power.

K FHHERRE

Continued from p.25.
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PROBLEM SECTION

MORE ON FROBLEM 1G.1.1

This problem, submitted by D.R. Kaprekar, read as follows.

A man had 113 dollars. He spent 40 of them and. 735 were
left. He went out again and spent 46, leaving 29. A third time
he went out and spent 19 leaving 14, Finally he went out and
spent the 12, leaving nothing. Here is a table.

Spent Left

40 75

46 22

19 S0

10 4]

Totals 115 - 114

The total at right is 114, not 115, Where is the missing
dollar? -

In our last issue, we printed a comment by Garnet J.
Greenbury and after going to press we received two more letters
on the subject. .

David Dyte (year 12, Scotch College) writes:

Let us suppose the man had x dollars which he spent in folur lots,
a,b,c and d dollars each (a+b+c+d = x). This readily gives us
the "Spent" table:
. a 40
b 45
< 19
d 10
% 115
But the "lLeft" table should be interpreted thus:
¥ o= a = b+c+d 75
{x~a)-—b = ful ] . =29
(s—a-bi-c = d 10
{x—a~b-c)~d = [s] 0
b+2c+3Ed 114
Ubviously b+Zc+3d = a+b+c+d. It is interesting to see how the
numbers were chosen, though:
a+b+c+d-1 = b+Ec+iEd
= a-l = ¢+2d ,
which is verified by eramining the figures, and shows that the

sacond number does not alter the results.

anal

gimon Fong {year 11, Trinity 6rammar) also sent us his
g Y ' :
y5is.

Let Y be the total number of dollars. Then

Spent Left

Yi Hl
1
Yz
74

Totals A - B



Now Y = Ma csince he spent the last money left which is x.

Also, = Yy T Yy
- T 6
= g T YT Vs
=Yy T Yy T Y
S
=y, — ¥y T YR)T vy
. =Yg T Yy T Ve T Yy
Adding up the number of dollars spent,
A=y, + YLt Y Yy,
= y1 + y2 + y., + (\,r(_.i - y1 - y2 - VE) since y4 = NE
= yc) °
Adding up the number of dollars left,
B =

= %y

= Ly, = vyl vy T vy o Yol * Yy =¥y = Ve T Yy

1ol

%)

" %
o R o,
z =

= 3Ye T Yy T 2L T Vs
since there exist many possible combinations of vy, i =

i
el ,2,%,such that E may be greater than A ar less than A.

It is irrelevant to compare the total amount spent (A) and
the total amount left (B).

For the missing dollar trick, let B = vy, - 1,

i.e. B = SyO - 3y1 - Ey2 = Y =Yy T~ 1 (13
Any combination of yi, i = 1,2,3%, that satisfies (11}, subject to

the conditions established below, will lead to the missing

dollar: .
(i} Since the number of dollars left must be greater than zero,

we have

®y >0
yo - y1 Y]
Yo 7 Y3
M., * 0
e

Yo T Yy T Yp 20
Yo Yy T Yo

Ko = O

= Yo TYi T Yoo ™ Yo >0

= ' Yo P Yy v Yt Yy o )
(ii) Further, since the number of dollars spent must be agreater

than zero, we have
v, » 0O io= 1,3

3,3 (2

Note that we do not include Ygq 35 y4 = x, and in the condition

stated above, it is seen that =, » O.
- 3

For the prablem given

Bo= A(1135) - Eyl - 2y = (113 -1
=3 Byy b By, vy =
Sub ject to (&) =1
) io= L,2,%,
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vyt Byt v
= E(40) + 246 + (19) - values of v,,¥..¥Y. 85 given
+ s -t

in the problem

Alternatively, any Yy io= 1,2,3%, subject to the ineguality
constraints (2) and (3) will do the same trick.
E.q. Yy . Yo = &0, 21
(yn = 115} Spent Left

jde] it b

SO 25

21 4

4 8}
118 114

SOLUTION TO PROBLEM 10.1.2

David Dyte also sent us his solution to this problem - to
show that, given any 17 numbers, it is always possible to choose
five in such a way that their sum is divisible by 3. Here is his
solution.

If we refer to the numbers in modulo 9 notation, then we
need only consider 3 numbers: ¢,1,2,3, and 4. Uther integers are
simply an addition of one of these and & multiple of 5, and so
need not be used.

Now there are at least two ways of making % of these numbers
add to give O (mod &)@
Method I: {(a set) O+1+E+3+4 = O (mod )
Method 11: (5 of a kind) n+n+n+n+n = (mod 5).

There are aother ways but these need not be considered. Now,
if we try to choose a set of 17 numbers satisfying neither Method
I nor Method I1:

(i} To avoid a Method I set we must avoid choosing one
particular number and only choose from the other four;
(ii) To avoid a Method II set we must choose at most four of each

numbher .

In order to maintain these conditions, having chosen 16
rnumbers we will have a set of four of the numbers repeated four
times. In chosing a 17th number we must choose a fifth of one
number (Method II) or complete a set of all the numbers (Method
I, S0 in any set of 17 numbers ocne of these two methods must be
satistied, and so in any set of 17 npumbers 5 can be chosen so
that their sum can be divided by 3
[iWe may note Fhat the number I7
the stated property. Hhat 157 Eds

not the smallest number with

SOLUTION TO FROBLEM 10.2.2

We asked for the smallest value of o such that F(x) = 7H11 +

7 . . o i . .
1ix + ddax is divisible by 77 for all values of x. We had
solutions +rom David Shaw and Devon Cook. Here is Devon Cook’'s
solution. David Shaw’'s is similar.
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For all integral x,

i

xli -~ % = O (mod 11) and »’ - % = O {(mod 7)., thus

1 .
75 L = (med 77) and 1}3; 1ix = O (mod 77},

~.

w3
!
~d

i

Adding the last two congruences,

7311 + 1ix’ - 18x = O (mod 77

and clearly theretore,

7311 + 1ix’ - (18 & Y7kIK = O (mod 77)

The lowest multiple of 10 which equals —-18 % 77k is 290
Thus 10a = 290G, thus o = Z9.

In general,

100 = ~18 % 77k.

FROBLEM 10.4.1 (from Parabola)
lLet 0 be an operation that combines two integers to farm a

third. Given that
¥ O (y+z) = y O x + = 0O »

ki
prove that

w v =v 0 u,
for all w, v.

FROBLEM 10.4.2
The mathematician Roland Sprague invented the foliowing

sequence: u, = 1 S = u, + U, F.oo.t W /s . Al though
q 1 * Tn i 2 n' Tn+i n g

there is no simple formula for S, it has an approximate formula

which is very simple. Can yvou find it and say why it works.

0y €3 €D €D €2 D D O3 0o D

NEWS UFDATE

In fFunction, Vol.é6, Part 2, we reported on the ten year old
Ruth Lawrence’'s admission to Oxford University amid pessimistic
accaunts that she’'d "come to nothing". Well four years later she
hasr't fulfilled these prophecies. She recently graduated with
first class honours in Mathematics and Physics and, at 14, is the
youngest graduate ever to emerge +rom Oxford.
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