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Mathematics finds, as we point out in our editorial state
ment opposite, many applications, some of them in fields that
do not at first sight look "mathematical".

Professor Praeger's article on weaving (p.7) is a case in
point, for the very simple question of how to tell if a certain
weave, produced by a designer, will hang together or fall apart
when it is actually woven, leads to some interesting and, in
its details, quite difficult, mathematics.

perspective drawing is another such field." For the
mathematics this has produced, see Dr Stillwell's article on
p.14.

Then mathematics may be applied to economics, and here the
name of Vilfredo Pareto is much invoked, to industrial design
(folding chairs) and to the calendar we use every day.

IJ

THE "FRONT COVER

This issue's front cover diagram shows a chair drawn from
an unusual perspective. See pp.14 - 22.
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VILFREDO PARETO (1848~1923)

A DISTRIBUTION AND A USEFUL

OBSERVATION

Neil S. Barnett,

Footscray Institute of Technology

Vilfredo Pareto was t~ained in the physical sciences and

practised as an engineer for twenty years before becoming in

terested in the application of mathematics to economics. Al

though born Italian he spent much of his working life in

Switzerland; "is first major work, 'Cours d'Economie Politique'

was based on a series of lectures that he had given at Lausanne.

Others of his works lnclude the'Manuale di, Economia Politica'

and 'Trait~ de sociologie g~n~rale'·.

One of the issues dealt with in the first of his works

concerned the so-called, 'law of income distribution'. He

concluded that income distribution shows a high degree.of

constancy for different times and countries. If the dist-ri

bution is plotted on a logarithmic scale it appears as a line

with negative slope, the slope being remarkably consistent'

from population to population. This 'law'. has received much

criticism on various grounds but none-the-less seems a

reasonable approximation in many instances. It can be quan

tified as follows:

Let the proportion of individuals of a population whose
B

income exceeds x be given by Px' then Px 8+1' hence

Log Px = LogB - (8 + l)Log x. (B and f3 a~e. ·population

constants B, S > 0). If the formula is applied only to those

above subsistence incomes it seems to be fairly generally

applicable; under such.circumstances 13 ~ 0·5.

There is a theoretical distribution that has evolved

from Pareto's observation, not s'urprisingly called the Pareto

distribution. A continuous random variable, X, is defined



(in fact replacing a + 1 above by a) s~ch that the proba
bility density function (p.d.f.) is

3

B

I a+l
f(x) = ~

See the graph below.

where a > 0 and x ~ A

elsewhere.

f

A

Since f(x) is a p.d.f., then

f= 'J"" f(x)dx = Brx~:lJoo
x=A l x=A

Now, since a > 0, this gives

x

which means that. B

= 1

and

r
aA

a
f(x) = a+l' a > 0, x ~ A

x

and so the probability that x ~ X is

J;f(X)dX = (~)a for X > A.

The mean and variance of Pareto's distribution can be shown
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to be E(X) if ex > 1

and V(X) =
(Ct - 2)(ex - 1)2

if ex > 2.

It is interesting to note that:

. (i) if 0 < ex ~ 1 then the distribution has neither
a finite mean nor finite variance,

(ii) if 1 < a ~ 2 the distribution has a finite mean
but no .variance.

Although many of Pareto's ideas on social and economic
matters were controversial, his 'law' of income distribution
developed from the very simple, indisputable observation, at
the time, that just a few people held ,most of the national
wealth. In this observation he seems to have struck upon a
principle relevant to many cause-and-effect relationships.
Put simply, it has generally been found that for many observed
effects, of all the contributing causes, only a few contribute
most to the effect. This may sound vague and rather trite but
it has proved a very useful concept in helping solve many
industrial problems.

To be more specific, it is often the case that approxi
mately 80% of a company's profit is made on 20% of the
different items that it sells and apprOXimately 80% of product
defects will be the result vf approximately 20% of the total
fault types that can occur. This latter notion that most
problems stem from a few causes can be used to give direction
to the problem solving process. The 80%/20% 'guide is of course
not rigid; it is merely an approximatiori, but in many instances
it is a remarkably good one.

An example of the application of Pareto's principle was
passed on to me recently by the Production Management Team at
Bradford University. As I understand it,'a student was
working in conjunction with a company manufacturing tea-bags
that was plagued with quality problems. The student, by
studying the manufacturing process and liaising with those in
volved in the manufacture~ was able to characterize different
quality problems into seven disjoint categories. These were
weight problems, bag problems, dirt problems, machine problems,
bag formation problems, carton problems and paper problems.
All quality problems arising in a two week production'run
were recorded in detail, and by type. The following data were
obtained:



5

Problem Frequency % Cumulative
Type Frequency %

Paper 55-95 56
Machine 17-98 74
Carton 11-22 85
Dirt 6-85 92
Bag Formation 4·93 97

, Weight 1-91 99'
Bag 1·16 100

From this table the following cumulative frequency diagram
was drawn. The problem types are drawn in rank order (from
highest contributor to overall problems to the lowest con
tributor) .
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The cumulative frequency diagram pictures what is inunediately
apparent from the table (as it is displayed in rank order),
that 74% of the problems are caused by 29% of the primary
causes. It is immediately apparent then that tackling paper
and machine problems will have the greatest effect on the
total number of problems arising. In this particular case
both paper and machine problems proved relatively easy to
solve. Prior to this simple'analysis management were un
aware that minor adjustments would have a "major impaGt on
the reduction of production quality problems.

It must of course be acknowledged, when tackling indus
trial problems of this nature, that a business exists to
make profit. Manufacturing problems cause financial loss so
a company wants to know what are the most costly problems.
The arralysi·s of problem costs in the above ci ted example
showed carton problems to represen~ the largest proportion
nT n-rnh 1 ~m l"n~T: Tn 11 ntl1~n hu m~ l't.h ; np f~l1' i:~ _ 'Pan~r "faul tS:
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were the third major contributor. Between them carton and
machine problems (29% of problem types) represented 79% of
the total cost.

Thus, presented with two cumulative frequency diagrams,
one relating problems to types and one relating cost to
proble~ types, management had at its disposal information on
where most profitably and effectively to concentrate its
.effects on improvement.

This systematic search for the main components in an 80%/
20~ rela~ionship is often called a Pareto analysis, in ack
nowledgement of Pareto's observation of wealth distribution
last century_ Perhaps national and international economies
have become sufficiently complex that in this realm Pareto's
principle is no longer a useful "one: None-the-less, in many
other areas his principle has ~proved to be a very useful ob
servation.

TWO MORE BREAKTHROUGHS

Two further long-standing conjectures 'have now been
resolved.

The first is the so~cal1ed Mertens conjecture which has
been disproved. This was first proposed by Stieltjes (whose
discoveries in integration were described in the previous issue
of Function) in "1885, and reformulated by Mertens in 1897.
This was a rather technical result in number "theory, whose
truth would have irntflied the truth of another , much more famous
conjecture, known as the Riemann hypothesis."

It is now known that the Mertens conjecture is false how
ever. This was discovered by Andrew Odlyzko of Bell Labora
tories (USA) and Herman Te Riele of Amsterdam. They have not
discover~d a specific counterexample, but have demonstrated
that one must exist.

The Riemann hypothesis itself is now believed, however, to
be true, despite this apparent set-back. The proof is due to
a Japanese mathematician, Hideya Matsumoto, now resident in
Paris.

There is just one word of warning here, however. The
full proof is not yet pUblished, and, till it is, there is
still some ground for scepticism.

For more on this,see New Scientist, 18 April 1985.
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MATHEMATICS AND WEAVING:
I. FABRICS AND HOW THEY HANG

TOGETHERt

Cheryl E. Praeger, University of
VVestern ~ustraJia

Although weav~ng is one of the ol~est activities of man
kind, and much has been written about it, it is only in the
last five years that the theoretical aspects of weaving have
received much attention. In this paper I will give a mathe
matical description of a fabric and then discuss the problem
of when a fabric hangs together.

1. D~8cription of a fabric.

As you probably know a roll of woven fabric has some
threads, called warp threads, running along the length of
the fabric and other threads, called weft threads running
across the fabric. However I want to give a precise mathe
matical description of a fabric. This is most easily done
diagrammatically. The real fabric (Figure lea)) is idealized
by considering a warp thread as a vertical strand (a strand
is the set of points in the plane lying strictly between two
infinite parallel lines) and a weft thread as a hprizontal
strand; these horizontal and vertical strands are woven
under and over each other to form an interlacement pattern
(Figure l(b». The intersection of a vertical strand and a
horizontal strand, called a square, is coloured black if the
vertical strand is on top and white if the vertical strand is
underneath (Figure l(c). This diagram of black and white
squares is called by weavers a design, diagram,draft, draw
down diagram or point diagram and is the way a weaver would
usually describe a weaving pattern. However we (and the
weaver) will not be considering a point diagram covering the

t This article is based on the Professor Praeger's Hanna
Neumann memorial lecture delivered to the Fifth International
Conference on Mathematics Education, August 1984.
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whole plane. All fabric diagrams which we shall consider

will be periodia, that .is they will consist of a finite

block of squ~res which is simp~y repeated as we move across

and/or down the fabric. A block of squares of smallest size

with this property is called a fundamental bloak for the

fabric. There may be more than one fundamenta.l block but

they al~ have the same "size"; see. Figur~ 2(a) for the funda

mental blocks for ·the "plain weave ll fabr,ic represented. in

Figure 1. In practise the point diagram is taken as either a

fundamental block of the fabric or some union of fundamental

blocks. To be able to use some mathematics in investigating

problems in weaving we take one further step: we replace all

black squares by a 1 and all white squares by a 0 so that the

point diagram becomes a binary' matrix D, that is a matrix with

entries 0 or 1.

"2. Hanging together.

Now a moment's thought should convince" you that not all

binary matrices will represent ·a· fabric which hangs together,

that is a fabric such that no proper subset of warp and weft

threads can be completely lifted off the rest of the fabric.

For example a whole column of zeros or ones means that the

corresponding warp thread is· not woven into the fa.bric. How

ever there are many examples of a fabricts not hanging to~

gether which are much less "obvious than these trivial examples

(where an all-zero 'or an all-one row or column is present).

I am told that in the past the usual way in which a weaver

decided whether or not a fabric would hang together was to do

a trivial weave. However in 1980 the British mathematician

C.J.C. Clapham produced a mathematical algorithm to answer

this question.

To see the problem more clearly, let D = (d~.) be an
'l,J'

m x n .binary matrix, that is the row i column j entry dij

is 0 or 1. Suppose that the fabric corresponding to D does

not hang together - say a set T of vertical strands and a set

S of horizontal strands lifts off the rest of the fabric. We

can regard T as a subset of {1,2, ... ,n} and S as a subset

of {l,2, .. o,m}. Now the strands of Sand T lift off the

rest of the fabric if and only if

(i) every ~ertical strand not in T goes under every

horizontal s~rand in S, and

(ii) every horizontal strand not in S goes under every

vertical strand in T.

These two conditions are equivalent to

JET.

j ¥ T,

i , 5, and

i E 5, and

for all

for all

1

o(i)' d •.
l"J

(ii)' d."
1,J

Thus the fabric will not hang together if and only if

there are subsets T,S of . {1,2, ..·. ,n} .and {l,2', ... ,m}

resnectively (with at least one a proper non~empty subset)

and
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such .. that (i)' and (ii)' are true. In other words the fabric
will not hang together if and only if it is possible to re
arrange the rows and columns of D in such a way that the re
sulting matrix has the form

where 0 is an all-ze~o matrix, J is an all-one matrix (with
at least one of 0 and J non-vacuous) and X and Yare not re
stricted. However to run through all possible sets.S,T to
see whether they have this property would take far too long
whenm and n are large. Clapham introduced an alternative
method'~ whose details are somewhat technical for Function,
but interested readers can find it in the Bulletin of the
London Mathematical So.ciety, Vol.12 (1980), pp.161-164.
Essentially it consists of the evaluation of n numbers~ Of
these one is equal to zero necessarily, but if any of .the
others is zero, then the fabric does not hang together.
Otherwise it does. This algorithm is easily implemented on
a computer.

The only theoretical advance I know of on Clapham's work
is due to T.e. Enns and was published in the technical journal
Geometrica Dedicata, Vol.15 (1984), pp.259-260. He has given
an efficient algorithm for determining whether or not a fabric
woven with any number of sets of parallel threads (not just
one set of warp threads and one set of weft threads) will hang
together.

For more on the mathematics of weaving, see the article
by B. Grunbaum and J.G.' Shepherd "Satins and twills: an
introduction to the geometry of fabrics" in Mathematics Maga
zine, Vol.53 (l980}, pp.139~161. In a sequel to the present
article, I shall discuss the math~matics involved in the
actual setting up of the 100m.

BEWARE OF MATHEMATICIANS

Canon XXXVI of the Council of Laodicea, held some time in
the period 343-381 AD, reads:

They. who are of the priesthood, or of the clergy, shall
not be magicians, enc~anters, mathematicians, or astrologers;
nor shall they make what areocalled amulets, which are chains
for their own souls. And those who wear such, we command to
be cast out of the Church.

This looks as if several eminent mathematicians who were
also in holy orders, were in breach of Canon Law. However, a
note explains the apparent anomaly.

"Mathematicians"!' are they who hold the opinion that the
belestial bodies rule the .universe, and that all earthly things
are ruled by their influence.
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THE· CALENDARt

S. Rowe, Student,
Swinburne. Institute of Technology

Historically~ all measurements of time have depended on
astronomical observations - the day is measured from the ro
tation of the Earth, the week approximates the changing
phases of the moon; the month is measured from the· revolution
of the"moon around the Earth and the year is ,measured from
the revolution of th~ Ear~h around the Sun.

Many ancient civilizations, particularly the Babylonian,
based their calendars on the cycles of the moon, and the
lunar measurement of years has been preserved in the modern
Jewish, Chinese and Mos~em calendars. Against this, the
Egyptians based their calendars on the Sun (which also figured
prominently in their religion). The Egyptian civilization
depended upon the .seasonal rising of the Nile; which was
closely associated with the solar cycle. Ancient peoples
determined the solar year by observing the rising of.a bright
star after it had been invisible because of its proximity to
the Sun. A conunon star used for this purpose was Sirius. By
averaging many such observations, the solar year was found to
.be very close to 365 days.

In ancient Rome, months were based on lunar cycles. The
pontifices watched for the first appearance of the thin
crescent moon after the new moon so that they could declare
the beginni'ngof the newmonth. This first day , shouted from
the steps of the Capitol, was termed Kalendae, which means
the calling. Our word calendar is derived from this term.

Unfortunately for our measurement of time, the lunar
cycle is not a whole number of days, nor is the time Earth
takes to complete an orbit of the Sun relative to ~he stars.
The Moon's cycle is 29.53059 days, while the Earth's orbit
around the Sun takes 365.242196 days. So 12 months are short
of a year, and 13 months would give us a year that is too
long. And our seven day week (which is based on religion),
alth9ugh close to the lunar phases, is not a factor- of the
lunar period, the month ·or the year.

When the Romans adopted the Egyptian solar year at the
time of Julius Caesar, their own lunar-solar calendar was
very much in error. Introduced to Rome by an astronomer,
the Egyptian calendar was ordered into official Romap use by
Julius Caesar in 45 Be. It w~s called the ~ulian calendar, .
and was based on a sola~ year of 365.25 days. The year was
divided into months, of which eleven contained 30 or 31 days

:This article first appeared in the Bulletin of the Lions Club
of Belgrave, March, 1985.
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and the twelth had 28 days only. The first month was March
and the last was _February. July is named after Julius Caesar
and August after Augustus Caesar L both months being allocat-ed
the full 31 days, as befitted a Caesar. The seventh month
was named September, the eighth October, the ninth November and
the tenth December after the Latin septem, octo, novem and
decem for seven, eight, nine and ten respectively. '

The Julian calendar lost approximately one-quarter day
each year. This loss was corrected by adding an extra day to
the twelth month (February) every fourth year, which was the
leap year. Nevertheless, this calendar gradually became out
of step with the seasonal position tif the Sun t~lative to the
stars. The year of the Julian calendar was actually 11
minutes 4 seconds longer than -the time it takes the apparent
Sun to revolve to precisely the same position. By 1500 the
error amounted to approximately 11 days. Christian religious
festivities based on ~aster assumed a fixed vernal equinox of
March 21, and as a consequence they were becoming gradually
out of step with the seasons. Accordingly, Pope Gregory XIII
entrusted a reformation of the calendar to a German Jes~it

whose latinized name is Clavius. Clavius used a scheme de
vised by a Neapolitan astronomer in which centuries would not
be leap years unless perfectly divisible by 400'. To correct
the calendar, Pope Gregory ordered that October 15, 1582,
should follow October 4. Despite prote~ts from angry mobs,
who thought that ten days of their lives were being stolen,·
the correction was made and the new calendar ~as called the
Gregorian calendar. The new calendar also moved the beginning
of the year from March 25 to January 1.

The Gregorian calendar was adopted by most of the Roman
Catholic countries and by Denmark and the Netherlan-ds in
1582. But it was nearly two centuries before it was generally
accepted. During that time, a traveller could leave England
in February 1679, for example, and find that it was February
1680 in some parts of Europe and Scotland. The day of the
month was also different between England and some parts of
Europe.

Finally, other countries began to accept the new calendar.
The Protestants in Germany and Switzerland adopted it in 1700,
Britain and the American colonies in 1752 (omitting the eleven
days between September 2 and 14), Prussia began to use it in
1778, Ireland in 1782, Russia in- 1902. Following the French
Revolution, a new calendar was adopted in France, the first
day of the year being September 22, 1792. This calendar was
used until December 1805, when France accepted the Gregorian
calendar again.

Other calendars are still in use, however, particularly
in regard to religious events. The Jewish calendar uses a
lunar cycle and a sola~ cycle. The months are lunar ,months,
but they are about 11 days short of a solar year. A thir
teenth mont~ periodically has to be intercalated to maintain
some synchronism with the solar cycle. The Moslem calendar
ignores the solar cycle completely and is tied to lunar cycles
with alternate months of 30 a-nd 29 days. The year begins at
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different seasons over a 32.5 year cycle.

Prior tp World War II there was an attempt among somebusiness in Europe to introduce a 13 month calendar in. whichall months would ~ave four weeks. This business calendarwould have allowed more meaningful financial comparisons,but it did not receive wide acceptance. .

SUSAN'S WORLD FIRST
We have all heard of the pr~s'tigious .Rh9d~.~. ·sc1}olar$hips.Eac~ year, 'one is awarded from ea~h of- the Australian statesand from other parts of the former British Empire (including,. quaintly, the U.S.A.). But how many of us have heard of theRhodes post-doctoral fellowship? Yes, fellowship, not fellowships. There is only one, and this is of~ered world.wide eachyear.

The holder for 1986 will "be Susan Scott, the firstAustralian ever to win .the award. .

Dr Scott graduated from Monash University in 1979 and continued her studies at post-graduate level at the University ofAdelaide, where she has been conducting resear~~ ·in. mathematicalphysics.

The $40,000 award will cover her fares, accommodat"ion andresearch expenses and will take her to Oxford for two yearsfrom January 1986.

Two ot the- areas she explores in her'work are the originof the uhiverse and the nature of black holes. "I .am fascinated by phys~cs,tf Dr Scott said, "1 just want to know as muchabout physics as ~ can. 1f

Dr Scott also looks at whether there are other universesbeyond our own.

"It's quite possible there ·are other universes," she said.
f1If there are, we have no w~y of telling.we are unique." It's possible

Dr Scott has been enthusiastic about science since she wasa teen-ager and is concerned aQout the small number of womeninvolved in mathematical research.

She is keen to pursue her research abroad for a few yearsbut eventually wants to teach so she can pass on her enthusiasmfor science to future generations~ .

Based on· an article by Jo McKenna, The HeFaZd 22/7/85.
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PROJECTIVE GEOMETRY

J.C.. Stillwell, Monash University
Pepspective.

Perspective may be simply described as the realistic
representation of spatial scenes on a plane. This of courSe
has been a concern of painters since ancient times, and some
Roman artists seem to have achieved correct perspective by the
first century Be. However, this may 'have been a stroke of

Figure 1
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individual genius rather than the success of a theory,
because the vast majority of ancient paintings show incorr
ect perspective. If indeed there was a.classical theory of
perspective, it was well and truly lost during the dark ages.
Medieval artists made some charming attempts at perspective,
but always got it wrong, and errors persisted well into the
15th century (Figure 1).

The discovery of a method for correct perspective is
usually attributed to the Florentine painter-architect
Brunelleschi (1377-1446), around 1420. The first published
method appears in the treatise On Painting, Alberti (1436).

-The latter method, which came to be known as Alberti's veil,
was to set up a piece of transparent cloth, stretched OJ) a
frame·, in front of the scene to be painted. Then, viewing
the Scene with one eye, in a fixed position, one could trace
the scene directly onto the veil. Figure 2 shows this method,
with a peephole to maintain a fixed eye position, as depicted
br Durer (1525).

Figure 2
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Alberti's veil was fine for painting actual scenes, but
to paint an imaginary sc~ne in perspective some theory was
required. The basic principles used by Renaissance artists
were:

(1) a straight line in perspective remains straight
(ii) parallel lines either remain parallel or converge

to a single point (their vanishing point).

These princiPles suffice to solve a problem artists frequently
encountered ~ the perspective depiction of a square-tiled
floor. Alberti (1436) solved the special case of this
problem in which one set of floor lines is horizontal, i.e.
parallel to the horizon. His method, which became known as
the aostruzione legittima, is indicated in simplified form in
Figure 3. .

Figure 3

The non-horizontal floor lines are determined'by spacl.ng them
equally along the base line (imagined to' touch the, floor) and
letting them converge to a vanishin~ point on thehori~on.

The horizont~l floor lines are then determined by choosing
one of.them arbitrarily, thus determintng one tile in the
floor, and then producing the diagonal of this tile to the
horizon. The intersections of this diagonal with the noo
horizontal lines are the points·through which the horizontal
lines pass. This is c~rtainly true on the actual floor
(Figure 4), hence it remains true in the perspective view.
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Figure 4

The same principles in fact suffice to generate a pers
pective view of a tiled floor given an arbitrarily situated
,tile.

Anamoraphosis.

It is clear from the Alberti veil construction that a
perspective view will not look absolutely correct exc~pt when
seen from the viewpoint used by the artist. Experience shows,
however, that distortion ~s not noticeable except from extreme
viewing positions. Following the mastery of perspective by
the Italian artists, an inter~sting variation developed, in
which the picture looks right only from one, extreme, view
point. The first known example of this style, known as
anamorphosis, is an undated drawing by Leonardo da Vinci from
the Codex Atlanticus (compiled between 1483 and 1518).
Figure 5 shows part of this drawing, a childts face which looks
right when viewed with the eye near the right hand edge of the
page.
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Figure 5

The idea was taken up by German artists around 1530.
The most famous example occurs in Holbein-' s painting The two
ambassadors (1533). A mysterious streak across the bottom
of the picture becomes a skull "when viewed from near the
picture's edge. The art of anamorphosis reach~d its tech
nically most advanced form in France in the early 17th century.
It seems no coincidence that this was also the time and place
of the birth of projective geometry. In fact the key figures
in the two fields, Niceron and Desargues, were well aware of
each others' work.

Niceron (1613 - ~646) was a student of Mersenne and, like
him, a monk in the order of Minims. He executed some extra
ordinary anamorphic wall paintings, up to 55 metres long, and
also explained the theory in a book La perspective curieuse,
pUblished in 1638. The cover illustration is one of his
illustrations : anamorphosis of a chair.

The anamorphosis, viewed normally, shows a chair like
none ever seen, yet from a sui tably extreme point one s"ees an
ordinary chair in perspective. This example encapsulates an
important mathematical fact :a perspective view of a pers
pective view is not in general a perspective view. Iteration
of perspective views gives what we now call a projective view,
and Niceron's chair shows that proj~ctivity is a broader con
cept than perspectivity. As a consequence, projective
geometry, which studies the properties which are invar.tant
under projection, is bro~derthan the theory of perspective.
Perspective itself did not develop into a mathematical theory,
descriptive geometry, until the end of the 18th century_
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Desargues' projective geometry.

The mathematical setting in which one can understand
Alberti's veil is the family of lines ("light ra"ysH)" through
a point (the Heyen), together with a plane V (the "veil"),
as in Figure 6.

Figure 6.

In this setting, the problems of perspective and"anamorph
osis were not very difficult, but the concepts were interesting
and"a challenge to traditional geometric thought. Contrary
to Euclid, one had

(i) points at infinity ("vanishing points ft
) where parallels

met,
and

(ii) transformations which changed lengths and angles
(projections).

The first to construct a mathematical" theory incorpor
ating these ideas was Desargues (1591-1661), although the idea
of points at infinity had already been used" by Kepler in 1604.
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Desargues' book Brouil1on project d'une atteinte aux
evenemens des re,contres du Cone avec un Plan (1639)
(Schematic sketch,of what happens when a cone meets a plane)
suffered an extreme case of' delayed recognition, being com
pletely lost, for 200 years. Fortunately, his two most '
important theorems, the so.;..called Des,argues' theorem and the
invariance of the cross-ratio, were published in a book on
perspective by Bosse (1648).

Kepler and Desargues both postulated one point at
infinity on each line, closing the line to a "circle of
infinite radius". All lines in a family of parallels share
the same point at infinity. Non-parallel lines, having a
finite point in common, do not have the same point at
infinity. Thus any two distinct lines have exactly one point
in common - a simpler axiom than Euclid's. Strangely enough,
the line at infinity was only introduced into the theory by
Poncelet (1822), even though it is the most obvious line in
perspective drawing, the,h9rizon. Desargues made'extensive
use of projections in the Brouillon.project; he was the
first to use- them to prove theorems about conic sections.

Desargues' theorem is a property of triang"les in pers
pective illustrated by Figure 7.

Figure 7.
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The theorem states that the points X,Y,Z at the inter
sections of corresponding sides lie in a line. This is
obvious if the triangles are in space - the line is the
intersection of the planes containing them. . The theorem in
the plane is subtly but fundamentally different, and requires
a separate proof, as Desargues realised. In fact, Desargues'
theorem was shown to play a key role in the 'foundations of
projective geometry by Hilbert (1899).

The invariance of the cross ratio answers a natural
question first raised by Alberti : since length and angle are
not preserved by projection, what is? No property of three
points on a line can be invariant because it is possible to
'project any three points on a line to any three others. . At
least four points are therefore n~eded, and the cross ratio is
in fact a projective invariant of four points. The cross
ratio (ABCD) of points A, B, C, D on a line (in that order)

is ~~ / g~. Its invariance is most simply seen by re

expressing it in terms of angles using Figure 8.

o

A B c

Figure 8.

Let 0 be any point outside the line and consider the
areas of the triangles OCA, OCB, ODA, ODB. First use bases
on the given line and height h, then recompute using OA
and OB as base~, and heights expressed in terms of the
sines of angles at 0
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-i'h ·CA area OCA tOA -oe si.n !COA

*h ·CB area OCB lfOB ·OC sin !eOE

~h ·DA area aDA ~ OA ·OD sin !DOA

~h ·DB area ODB :J.jOB ·OD sin {DOB

SUbstituting the values of CA, CB, DA, DB from these equations
we find the cross ratio in terms of angles at 0

CA -/ DA sin/COA sin !DOA
CB DB sin/COB / sin /DOB

Any four points A', B' ~ C', D' in perspective with A,B,C,D
from a point 0 have the same angles (Figure 9), hence they
will have the same' cross ratio.

o

A 8 c

Figure 9

o

But then so will any four points AJf
, B n

, C't., D" projectively
related to A,B,C,D since a projectivi.ty is, by definition,
the product of a sequence of perspectives.
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THE FOLDING CHAIRt

In the market-place in Groningen there's a doughnut
stand. The other day I let my doughnuts get cold, immersed
as I was in the construction of the folding chairs. Look at
the photograph onp.24 and the drawing on p.27. (Incidentally,
a small simplication has been made in the drawing but only
pettifoggers would take note of that.)

There are six turning points and no sliding mechanisms,
as in many other types of folding chairs. The basic form is
a quadrilateral ABeD which is more or less a parallelogram..
Of course ~ otherwise you could -never fold the chair flat.

The striking feature is the linking piece AQ. What is
its function? Why isn't the back leg simply connected to A?
Th~ jam had already melted when I understood that then the
chair 'could not be folded up. For then the triangle'APD
would be a rigid figure, and hence the quadrilateral ABeD
would be rigid too.

But how do you then get the le.ngth of AQ? And why does
the chair remain .standing exactly in the position drawn, even
when you ~it down on it? .

The answer is reached from the picture on p. 24 and the o,ther
photographS-. Dur-ing·J,J~J;l;:f.-9:t4:i.~ng,tIle ch:air _.~ngle.l)_beYHm~s

smaller and you can imagine how the weight of the "sitter" on
the chair will try to make that angle ·as small-as possible;
his or her weight pushes the parallelogram ABOD into its
lowest position. Now take the' back~rest AD as a fixed line.
Then DP and AQ become rotating rays with D,A respective'ly as
central points.

So the question is! in Which posi-tion, is angle D
minimal? To see that we look at triangle ADP, of which VA
and VP are the hinging sides. AngleD'is minimal if the
Qpposita side';4P (which you'll just have to draw· in your
mind) is as small as possible. Tha"t occurs (and now look at
triangle AQP)' if angle Q is minimal. Well, angle Q is of
course minimally zero, that is, if A is onFQ. So the chair.
remains in that posit-ion if you sit down on it!

t This 'article is a translatio~ from the Dutch by
A.-M. Vandenberg. It first'appeared in the journal Pythagoras
Vol.24, Part 4 and is reproduced under an exchange agreement.
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This doesn't happen, of course, with the real chair,
because A runs into the back leg PQ. There's a reason for
that, too: if A could pass the line PQ (wh~ch could be quite
feasible'technically') the chair ,would "spring" a Ii ttle be- '
cause you can move through that·minimum. Something like a
marble rolling to and fro in a little hollow.

After all, the lengths of DA, DP, AQ and PQ can't be
chosen independently of each other. Look at the photograph
of· the folded chair, and you'll see that VA + DP = AQ + PQ.
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PERDIX
Australians are good at competitive sport and the sport of

mathematical olympiad contests is proving no exception.
42 countries sent teams to take part in the 1985 International
Mathematical Olympiad in Finland. The Australian team was
placed 11th. Team members were:

Shane Booth, Shepparton, Victoria
John Graham, Sydney, N.S.W.
Alisdair Grant, Melbourne, Victoria
Andrew Hassell, Perth, W.A.
David Hogan, Sydney, N.S.W.
Catherine P1ayout, Sydney, N.S.W.

Andrew Hassell was placed 7th out of the 209 competitors
and was awarded a gold medal (14 competitors' were awarded gold
medals). John Graham and A1isdair Grant were awarded silver
medals (35 silver medals were awarded). Shane Booth was
awarded a bronze medal (52 bronze medals were awarded).

Congratulations to the Australian team~

Continued on p.30.
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PROBLEM SECTION
Problems 9.1.1, 9.1.3 are still outstanding, and we leave

them that way for this issue, as they are interesting and we
would like to give readers a further chance to do them.

We have solutions to 9.2.1, 9.2.2 which we print below, and
have also received correspondence on problems posed in Volume 9,
Part 3; thi~ will be reported on in the next issue.

SOLUTION TO PROBLEM 9.2.1
The problem, from Hall and Knight's Highep Algebpa, read as

follows.

"There are three Dutchmen of my acquaintance to see me,
being lately married; they brought t.heir wives with them. The
men's names were Hendriek, Claas, and Cornelius; the women's
Geertruij, Catriin, and Anna; but I forgot the.name of each
mants wife. They told me they had been at market to bUy hegs;
each per~on bought as many hogs as they give shillings for one
hog; Hendriek bought 23 hogs more than Catriin; and Claas
bought 11 more than Geertruij; likewise ,. each man laid out 3
guineas more than his wife. I desire to know the name of
each man f s wife." (Note -: . 1 gUinea =' 21 shillings.)

David Shaw of Geelong West Technical School, who submitted
the problem, also sent us his solution.

Let h =·number of hogs bought by each man and ~ =
number of hogs bought by each wife. Then "each person bought
as many hogs as they gave shillings for one hog" and "each
man laid out 3 guineasmor~ than his wife" leads to the
equation

The factor pairs of 63 are (63.,1), (21,3), (9.,7).

(h +w)(h - w) = 63
h+w=63

h·- ~ = 1

gives h 32 w = 31.

(21, 3) gives h 12 w = 9,

(9, 7) gives h 8 'W = 1.

"Hendrick bought 23 hogs more than Catriin tr indicates that
Hendrick bought 32 hogs and Catriin 9.

"Claas bought 11 more than Geertruijtl indicates that C1ees
bought 12 and Geertruij 1.
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So, Catriin is Claas t wife
Geertruij is Cornelius' wife and
Anna is Hendrick's wife.

SOLUTION TO PROBLEM 9,2.2
We asked for a proof that no (positive) integers exist

such that

4:x; 4y 2
z

Devon Cook of Urrbrae Agricultural High School (Netterby,
S.A.) solved this problem. He writes:

I will use the method of infinite descent, fir~t used I
believe, .by Fermat. The equation can be written as
{:x;2)2 _ (y2)2 = z'2 , the Pythagorean identity which has the
well known solutions

x 2 n 2 + m2 ,y2 2nm, Z = n2 _ m2

It remains to show,that since the two variables re 2 and y2
are perfect squares, there can be no solution. We have

2y = 2nm and thus there must be two integers p~q such that

P 2 , 2m = q2 h t b .n = as we may c oose' n , moe co-prJ.me.

But n2 = x 2
- m2 which is itself Pythagorean and thus

n = 8
2

- 1;2 and m =281; (or vice versa, when the analysis'.is similar).

Thus 2m = 48t = q2 and following on again, there must be

integers x' and y' such that 8 = x,2 ,t y,2 There-
fore

2,p where p < z .

Thus there is a set of integers which satisfy the equation but
using a value of z which is smaller than the original, viz: p.
Since this process c'an be repeated ad in.finitum, there can be
no such integers." -The problem is solved!

There does still.remain the possibility

x 2 = n2 + m2 ,y2 n2 _ m2 , z 2nm •

This, however, can be dealt with along similar liries and we
leave the details to the reader.

The following fun problem came from Garnet A. Greenbury of
Brisbane.

PROBLEM 9.4.1
A sequence of integers has been divided by the same number

giving these remainders: 2, 4, 8, 5.
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(a) What number comes next?

(b) What is. the original sequence of numbers?

(c) What is the divisor?

(d) Write down the next five remainders following the 5.
Call them a, b, a, d, e and show that a + 1,· b + 2, C + 4)
d + 8, e + 5 are all equal. Can you explain this?

(e) Show that the sequence formed by the first ten remainders
is the same as the pattern for the next ten remainders. Can
you explain this? .

Other problems occur in the Perdix section of each issue
of Funation. Send solutions of those to Perdix. Solutions
to problems in this section should be sent to the Editor.

PERDIX (CONT.)

The competition took place on July 4 and July 5 with
three problems to solve. each' day in a session of 4t hours.
The two problem papers are reproduced below.,

Problem I proved the easiest with 103 competitors getting
the full 7 'points, the average number of points obtained being
4.1. ,Problem 2 was a close runner up with 92 competitors getting
7 points and with an average of 3.7. In increasing order of
difficulty were problem 4 (average 2.4), problem 6 (average
2.0), problem 5 (average 1.9), and problem 3 (average 0.8).
Only 12 competitors got the full 7 points for problem 3
(John Graham got 6),. while 153 scored 0 (including
Andrew Hassell, our gold medallist, who made up for this by
scoring the full 7 points for each of the other problems).

Try the questions yourself. Do you have the same assess
ment of their ,difficulty as the competitors f scores'suggest?

FIRST DAY

Joutsa July 4, 1985

1. A circle has centre on the side AB of the cyclic quad
rilateral ABeD. The other three sides are tangent to
the circle. Prove that AD + Be = AB .

2. Let nand k be given relatively prime natural numbers,
o < k < n. Each number in the set M = {I, 2, ... , n-l}
is coloured either blue or white. It is given that

(i) for each i € M ,both i and n-i have the same
colour", and

(ii) for each i EM, i * k ,both i and Ii - kl
have the same colour.

Prove that all numbers in M must have the same colour.
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3. For any polynomial P(x) = a O + a l $ + ..• + akx
k with

integer coefficients, the number of coefficients which are
odd is denoted ~y w(P). For i = 0, 1, 2, ... let

'/;

Qi(x) =-(1 + x). Prove that if iI' i 2 , ... , in are

integers such that 0 ~ i 1 < i 2 < •.. < in ' then

W(Q. + Q. + ... + Qi ) ~ w(Q. ) ·
~l ~2 . n ~l

Time allowed: 4! hours
Each problem is worth 7 points.

SECOND DAY

Joutsa July 5, 1985

4. Given a set M ~f 1985 distinct PQsitive integers, none
of which has a prime divisor greater than 26. Prove that
M contains at least one subset of four distinct elements
whose product is the fourth power of an integer.

5. A circle with centre 0 passes through the vertices A
and C of triangle ABC, and intersects the segments AB
and Be again at distinct points K and N , respect
ively. The circumscribed circles of the triangles ABC
and KBN intersect at exactly two distinct points Band
M. Prove that angle OMB is a right angle.

6. For every real number xl ' construct the sequen~e

xl' x 2 ' ... by setting

x n +l = xn'(xn + ~)

for each
value of

n ~ 1. 'Prove that there exists exactly one
xl for which 0 < x n < x n +l < 1 for every n .

Time allowed: 41 hours
Each problem is worth 7 points.

Send me your solutions. Perhaps you will find new
methods of soluti:on. For example, I found 3 -solutions to
Problem 1 that are different. There may be better methods.

* * *
I now give solutions to some of the problems I have set

earlier this year. Here are solutions to Probl~ms 7, 8, and
9, provided by Hai Tan Tran, 15 Arthur Street,' Plympton Park,
S.A., 5038.



PROBLEM 7. AB and CD
E is' mid-point of segment
and AE meets BD at G.
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Solution.

are two parallel straight lines,

CD. Line AC meets BE at F
Show that FG is parallel to AB .

There are two variants of the
figure for which slightly di.ff
erent arguments are required.
In each ·figure hI is distance
of F from CD, h 2 is the

distance of G from CD and h
is the distance between the
parallel lines CD and AB.

A B In I1s CEF and ABF

h + hI AB0 E C
hI CE

C- h AB·1- in the lower
h hI EC

figure )

A B

h + h 2 ABsimilarly, h2 ED

( h - h2 AB in the lower figure)h2 DE

Hence, since CE ED

h + hI h + h 2
hI h2

( h - hI h - h2 )hI h2

whence, in both cases, hI = h 2

Thus FG is parallel to CD , and so to' AB .



PROBLEM 9. Let ABC and DBC be two triangles such that

AD is parallel to BC. , Let BD and AC meet at E
Draw a line parallel to BC through E and let this line
meet AB at F and CD at G. Show that FE ,= EG.

SoZution. This problem asks for the proof of a result
converse to that of problem 7.°

A

B

Similarly,

Hence

whence

o
There are again two variants
of the figure. We con
sider merely the one shown.

Let hI be the distance

from each of A and D to
F7 and let h, be the dis
ta~ce between AD and BC.
Then, since F~ is parallel'
to BC, in 6s AFE and ABC

C hI FE

h+fii Be

hI EG
h + hI BC

FE EG
BC BC

FE EG

PROBLEM 8. Let ABC .be any tr_iangle and draw parallel lines

through the vertices A, B, and C to meet the opposite sides
in D, E, and F ,. respectively. Show that the area of 6DEF
is twice the area of 6ABC.

SoZution. You will see how to use the result of problem 9 to
solve this result.' Alternatively we may proceed as follows.

o A 6BDE = 6BAE (1)

(6S with same base and ·equal
heights] ;

similarly

F c

6BFE

and 6FDC

b.BCE

6FAC.

(2)

Subtracting AFBC from the latter gives ~DBF

Adding (1), (2) and (3) now gives the result.

6ABC (3)
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