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The practical problems involved"in the siting of facili
ties lead to very interesting and important mathematics.
Dennis Lindley writes on what is involved in the siting of a
tornado s"hel ter to serve two communi ties. His article also
highlights the political difficulties involved in such
choices. Whi1e mathematics can "help in the allocation of
scarce resources, it provides little comfort for those who
miss out! "

John Stillwell writes on Pythagoras' Theorem ~ a topic
that never seems to lose its interest, Joseph Kupka continues
his account of measure theory, and there is much more besides.
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THE FRONT COVER

J.e. Stillwell and M.A.B. Deakin,

Monash University

The curve

3 3
x + y = 3axy (1)

is known as the Fo lium of Descartes. The graph opposi.te, a
computer-drawn curve prepared by Peter Fox of Monash University,
shows its sh~pe very accurately. Descartes did discuss .the
curve in 1638 and found the leaf-shape - the closed portion
to ·the right of the double point. So the curve is aptly
named (the Latin wordfol,ium means "leaf n ).

However, b~cause of his neglect of negative coordinates,
Descartes misunderstood the rest of the curve and it was the
Dutch physicist and mathematician Christiaan Huygens who
first produced a correct account. Our cover picture is
Huygens' drawing, taken from a letter to the Marquis de
I 1 Hospital (now referred to as ItHopital) dated 29 December
1692. These two continued to explore the properties of the
curve in subsequent. correspondence.

~ecause Equation (1) contains terms of third order, but
not higher, it is said to be of third degree. First degree
curves are the simplest possible, namely straight lines;
second degree are the next simplest and are conic sections,
which were known to the ancient Greeks. The conic sections
are the ellipse (of which the circle is a'special case), the
parabola and the hyperbola. (See Funation~ vol..7, Papts 2,3.)

The notion 'of the degree of a curve was introduced. by
Descartes and has proved to be a useful measure of complexity.
Curves need to be of degree three or more to exhibit certain
features. The folium of Descartes possesses a double pqint
(or self-intersection) at the origin. As will be evident
from the previous paragraph, curves of degree one or two do
not ever pos~ess such a feature.

As x gets very large, positive or negative, the curve
lies closer and closer to the line

x+y+a=O (2)

which is the asymptote to the folium. (The.hyperbola, alone
of the simpler curves, possesses asymptotes.) The inter
sections of this line with the axes give a scale to the
curve, and it is seen that when x = ±3a, the limit of our
,.1 ... ~n.'; ..... ,.. ......... +-1-.,;,.... -.n_..... +l-. ..... -P",1";,,-w. .;~ n1,...r:o..ftMTT TIT""""1 n""""""""''';Wln+ ..... A
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by its asymptote.

We may also provide a scale by determining the length of
the leaf. To do this, put Y = x and so reach, from (1),

2x 3 3ax2

or
x = 3a/2.

Similarly we· find

y = 3a/2,

and so the length, m~asured along the line y

/e;)2 + e;)2 = (3~a .
x, is
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PYTHAGORAS' THEOREM

J.e. Stillwell, Monash University

Introduction.

If there is one theorem which is familiar to all mathe
matically educated people, it is probably the theorem of
Pythagoras. It will probably be recalled as a property of
right-angled triangles (Fig.i):

a

b

Figure 1.

the area of the square on the hypotenuse equals the sum of the
areas of the squares on the other two sides. This may also be
recalled in algebraic form

2 = a 2 + b2c _,

perhaps along with some interesting numerical examples, such
as the triangle with sides a = 3, b = 4, C = "s.

This theorem has in fact held a fundamental position be
tween number and geometry throughout the history of mathe
matics. Sometimes this has been a position of conflict, as
followed the discovery that 12 is irrational (see below),
and sometimes one of cooperation. It is often the case that
new ideas emerge from such areas of tension, resolving the
conflict and allowing previously irreconcilable ideas to
interact fruitfully.
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In the present article I shall illustrate this process
with some episodes in the history of Pythagoras' theorem.
This is appropriate since Pythagoras' theorem is undoubtedly
the first theorem in history to have a really deep and last
ing influence on mathematics.

Pythagorean triples.

The story of Pythagoras' theorem begins long before
Pythagoras, in Babylonia around 1800 BC. Clay tabletssurvi
ving f'rom this period, inscribed in the Babylonian cuneiform
script, indicate that the Babylonians knew the theorem, and
also knew ways of finding instances in which the sides a,b,e'
of the triangle are integers. Such triples (a,b,e) for example
(3,4,5), (5,1~,13), (8,15,17), are known as Pythagorean triples.
(See Func tion~ Vol. 6~ Part 3.) .

We now know that the general formula for generating
Pythagorean triples is

a = (p2 _ q2)r, b = 2pqr, a= (p2 + q2)r.

It is easy to see that a 2 + b 2 = e 2 when a,b,c are given
by these formulae, and of course a,b,a will be integers if
p,q,r are. Even though the Babylonians did not have the
advantage of our algebraic notation, it is plausible that this
formula, or the special case

a = p2 _ q2, b = 2pq, a = p2 + q2

(Which gives all solutions a,b,c without common factor as well
as some with a facior) ~s the basis for triples they listed. '
Less general formulae have been attributed to Pythagoras him
self (c~'500 BC) and Plato while a s61ution equivalent to the
general formula is given in Euclid's EZements. As far as we
know, this is the first statement of the general, solution, and
proof that'it is general.

The EZements were written around 300 BC, so this gives a
date at which the problem of Pythagorean triples reached a
certain maturity. However, important as the Elements are for
other topics we shall bypass their treatment of Pythagorean
triples. A more satisfactory approach, for our purposes,
emerges from the work of Diophantus around 250 AD, and we
shall describe it in the next section.

Rational" points on the, aircle.

We arrive at the equation to the unit circle, in a way
which would have been comprehensible to the Greeks of Euclid's
era, by constructing a righ-t-angled triangle OAP as shown in
Figure 2. Applying Pythagoras' theorem to this triangle,
which has sides x,y and hypotenuse 1, we get

x 2 + y2 = 1.
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y

x

Figure 2.

Now any Pythagorean triple (a,b,a) satisfies

a2 + b2 = a
2

can

gives

1

or

(~)2 + (~)2

and hence gives a point (~,~) on the unit circle with

fractional, i.e. rational, coordinates. We call such a
point a pationat point. Conversely, any rat~onal po~nt

(~ ,~) on the circle (and of course any rational point

be written in this form by taking a common denominator)
a Pythagorean triple {a,b,a).

Thus the problem of finding Pythagorean triples is the
same as finding rational points on the circle, or of.finding

rational solutions of the equation ~2 + y2 = 1.

Such' problems are now called Diophantine, after Diophan
tus, who was the first to deal with them seriously and
successfully. Diophantine. equations have acquired the more
special connotation of equations for which integer solutions
are sought; however, Diophantus himself sought· only rational
solutions. [There is an interesting open problem which turns
on this distinction. In 1970, the mathematician Matiasevich
proved that there is no algorithm for deciding which polyno
mial equations have integer solutions. It is not known
whether there is an algori thm for deciding which polynomi·al
equations have rational solutions.]

Most of the problems solved by Diophantus involve quad
ratic or cubic equations, usually with one obvious trivial
solution. Dio~hantus used the obvious solution as a stepping
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stone to the non-obvious, but no account of his method sur
vived. It was ultimately reconstructed by Fermat and Newton'
in the 11th century, and we shall say more about its general
form later. At present, we need it only for the equation

x 2 + y 2 = .1, which is ,an ideal showcase for the metho·d in i ts
simplest form.

A trivial solution of this equation is x = -1, y 0,
which is the point Q on the unit circle (Fig.3).

y

Q

x

Figure 3.

In fact a line through Q,withrational gradient t,

y = t(x + 1) (1)

will meet the circle at a second rational point R. This is

because substitution of y = t(x + 1) in x 2 + y2 = 1 gives
a quadratic equation with rational coefficients and one
rational solution (namely x = -1), hence the second solution
must also be a rational value of x. But then~he y value of
this point will also be rational, since t and x will be
rational in equation (1). Conversely, the line through Q and
any other rational point R on the circle will have rational
slope. Thus by letting t run through all rational values, we
find all rational points R 1 Q on the unit circle.

What are these points? We find them by solving the
equations we have just discussed. SUbstituting y = t(x + 1)

in x 2 + y2 = 1 gives

or
x 2 + t 2 (x + 1)2 = "1

x 2 (1 + t 2 ) + 2t 2x + "(t 2 - 1) o.
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(1So that2ty =
1 + t 2 .

triple.

T ' -1' . 1 - t
2

his quadratic equation in x has solutions, The
1 _ t 2 1 + t 2 .

non-trivial soltition x = 2 ' substituted in (1); gives
1 + t

t 2 ,2t,1 + t 2
) is a Pythagorean

Right-angled triangles.

It is high time we looked at a Pythagoras' theorem' from
the traditional point of view, as a theorem about right-angled
triangles, however we shall be rather brief about its proof.
It is not known how the theorem was first proved, but probably
simple considerations of area were involved, perhap$ arising
from reflection on floor tiling patterns. Just how easy it
can be to prove Pythagoras' theorem is shown by the following
figure.

Figure 4.

Each big square contains four copies of the given right-angled
triangle. SUbtracting these four triangles from the b~g square
leaves, on the one hand, the squares on the two sides of the
triangle (first picture). On the other hand (second picture),
it also leaves the square on the hypot'enuse.

This proof, like the hundreds of others that have been
given for Pythagoras' theorem, rests on certain geometric
assumptions. It is in fact possible to transcend geometric
assumptions by using numbers as the foundation for geometry,
and when this is done Pythagoras' ~heorem plays'a different
role, becoming true almost by definition, as an iinmediate
consequence of a more sophisticated definition of distance,
chosen so as to make the theorem hold.

The development of a geometry based on number is a beau
tiful example of the reconciliation of conflicting ideas. In
the next section, we shall see how the conflict first arose.

IrrationaZ numbers.

We have mentioned that the Babylonians, although aware
of the geometric meaning of Pythagoras' theorem, devoted most
of their attention to the whole number triples it brought to
light, the Pythagorean triples. Pythagoras and his followers
were even more devoted to whole numbers. It was they who dis
covered the role of numbers in musical harmony - the fact
that dividing a vibrating string in 2 raises its pitch by an
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octave, dividing in 3 raises the pitch another fifth, and so
OD. This great discovery, the first clue that the physical
world might have an underlying mathematical structure, inspired
them to seek numerical patterns, which to them meant whole
number patterns, everywhere. Imagine their consternation, then,
when they realised that Pythagoras" theorem implied the exis
tence of irrational quantities!

The irrational enters geometry in a way that cannot be
ignored - as the diagonal of the uni t squareo. It follows
immediately from Pythagoras' theorem that the diagonal has
length 12, so the Pythagoreans were obliged to consider, as
they saw it, the fractional value

12 = !!!.
n '

where m,n are integers. They argued as follows. We can assume
m,n have no common factor. Squaring gives

2
2 = !!L

2 'n
2= m ,

which means that m2 is even, and hence so is m. Say,

2n

Then

hence

m = 2p.

2 2m 4p,

2p2

which similarly implies n is even, contrary to the hypothesis
that m,n have no common factor. In other words, the assumption
that 12 is rational leads to an absurdity and hence cannot be
true.

The shock of this discovery was traumatic. Legend has it
that the first Pythagorean to make the result public was
drowned at sea. It led to a split between the theories of
number and space which was not really healed until the 19th
century (if then, some mathematicians would add). The
Pythagoreans could not accept 12 as a n~mber, but no one
could deny that it was the diagonal of the unit square. Con
sequently, geometrical quantities had to be treated separate
ly from numbers, or rather, without mentioning any numbers
except rationals. And so it was. Greek geometers d~veloped

ingenious techniques for precise handling of arbitrary lengths
°in terms of rationals, known as the theory of proportions and
the method of exhaustion.

When these techniques were reconsidered in the 19th
century by Dedekind, he realised that they provided a recon
ciliation of number and space, after all. But that is another
story.
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EASTER

s. Rowe, StUdent,

Swinburne Institute of Technology
The date of Easter is very important in the Christian

ecclesiastical calendar. It governs events over almost a
third of each year, from Septuagesima Sunday (nine weeks
before Easter Sunday) to Trinity Sunday (eight weeks af.ter).

The date of Easter Sunday is derived astronomically. At
first Easter was synchronized with the Jewish Passover, but
this, although accepted by the Eastern Church, was rejected
by the Church in Rome. In the year 325 it was decreed at the
Council of Nicaea that Easter should be celebrated on the
same date by all Christians. The date was decided to be the
first Sunday following the first full moon on or after the
vernal (or spring) equinox. The vernal equinox, in simpli
fied terms, occurs when the Sun passes the point above the
Earth fS equator, from north to south. At, the time of the
Council of Nicaea, the vernal eqUinox was assumed to be fixed
at March 21.

The old Julian calendar had a year that was too long. . By
the sixteenth century the vernal equinox was actually occurring
on March 11, not March 21. Thus the celebration of Easter
would iDevitably~move toward the summer seaSOD. To stop this,
Pope Gregory XIII introduced h~s revised calendar to maintain
the Easter celebration in the spring season and to maintain a
better approximation of the solar year.

Today Easter Sunday is calculated as the Sunday follow
ing the first full moon after the vernal equinox, which
occurs on March 21. It cin thus fall as early as Ma~ch -22 or
as late as April 25. Passover is also governed by the vernal
equinox full moon, but while Easter intentionally falls after
the full moon, Passover coincides with the full moon. Con-
~equentlY1 Passover cannot begin on Easter Sunday. '

To determine the date of Easter, the following calcu
lations need to be made. Let

x = the year in question

t This article is based on one which-appeared in the April
Bulletin of the Lions Club of Belgrave.
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Divide by Quotient Remainder

the year x 19 a
the year x 100 b a
b 4 d e
b + 8 25 f
b - f + 1 3 g
19a +b-d-g + 15 ·30 h
a 4 i k
32 + 2e + 2i - h - k 7 £
a + 11h + 22£ 451 m
h + R, - 7m + 114 31 n p

Then we get

n = number of the month (3 = March, 4 = April, etc.)

p..+ 1 the day of the month upon which Easter Sunday falls.

The extreme dates of Easter are March 22 (as in 1818 and
2285) and April 25 (as in 1886, 1943 and 2038).

The above works for the Gregorian calendar which was
introduced in 1582. To determine the date of Easter under the
Julian calendar, the following routine needs to be used.

Divide by ~uotient Remainder

the year x 4 a
the year x 7 b
the year x 19 a
19a + 15 -30 d
2a + 4b - d 34 7 e
d + e + 114 31 f g

Then we. get

f

g + 1

number of the month (3 = March, 4 = April, etc.)

the day of the month upon which Easter Sunday falls.

The date of the Julian Easter has a periodicity of 532
years. For instance, we find April 12 for the years 179, 711
and 1243. .

The computer printout below gives the date of easter
for 1980 and each of the following 25 years.

EASTER SUNDAY IN 1980 IS APRIL 6
EASTER SUNDAY IN 1981 IS APRIL 19
EASTER SUNDAY IN 1982 IS APRIL 11
EASTER SUNDAY IN 1983 IS APijIL 3
EASTER SUNDAY IN 1984 IS APRIL 22
EASTER SUNDAY IN 1985 IS APRIL 7
EASTER SUNDAY IN 1986 IS MARCH 30
EASTER SUNDAY IN 1987 IS APRIL 19
EASTER SUNDAY IN 1988 IS APRIL 3
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EASTER SUNDAY IN 1989 IS
EASTER SUNDAY IN 1990 IS
EASTER SUNDAY IN 1991 IS
EASTER .sUNDAY IN 1992 IS
EASTER SUNDAY IN 1993 IS
EASTER SUNDAY IN 1994 IS
EASTER SUNDAY IN 1995 IS
EASTER SUNDAY IN 1996 IS
EASTER SUNDAY IN 1997 IS
EASTER SUNDAY IN 1998 IS
EASTER·SU~IDAY IN 1999 IS
EASTER SUNDAY IN 2000 IS
EASTER SUNDAY-IN 2001 IS
EASTER SUNDAY IN 2002 IS
EASTER SUNDAY IN 2003 IS
EASTER SUNDAY IN 2004 IS
EASTER SUNDAY IN 2005 IS
EASTER SUNDAY IN 2006 IS
EASTER SUNDAY IN 2007 IS
EASTER SUNDAY IN 2008 IS
EASTER SUNDAY IN 2009 IS
EASTER SUNDAY IN 2010 IS
EASTER SUNDAY IN 2011 IS
EASTER SUNDAY IN 2012 IS
EASTER SUNDAY IN 2013 IS
EASTER SUNDAY IN 2014 IS
EASTER SUNDAY IN 2015 IS
EASTER SUNDAY IN 2016 IS
EASTER SUNDAY IN 2017 IS
EASTER SUNQAY IN 2018 IS
EASTER SUNDAY IN 2019 IS
EASTER SUNDAY IN 2020 IS
EASTER SUNDAY IN 2021 IS
EASTER SUNDAY IN 2022 IS
EASTER SUNDAY IN 2023 IS
EASTER SUNDAY IN 2024 IS
EASTER SUNDAY IN 2025 IS

MARCH 26
APRIL 15
MARCH 31
APRIL 19
APRIL 11
APRIL 3
APRIL 16
APRiL 7
MARCH 23
APRIL 12
APRIL 4
APRIL 23
APRIL 8
MARCH 31
APRIL 20
APRIL 11
MARCH 27
APRIL 16
APRIL 8
MARCH 23
APRIL 12
APRIL 4
APRIL 17
APRIL 8
MARCH 31
APRIL 20
APRIL 5
MARCH 27
APRIL 16
APRIL 1
APRIL 21
APRIL 12
MARCH 28
APRIL 17
APRIL 9
MARCH 31
APRIL 13

THE AMERICAN SCENE

Mathematics today is a tale of two cultures. It is the
best of times, and the worst of times. Mathematics enrol
ments are at all time highs, yet the nU~ber of undergraduate
majors are near record lows. Applications of mathematics
permeate science and society, yet students are generally un
able to apply mathematics to complex problems. Demand for
mathematics teachers exceeds supply, yet salaries remain un
competitive. It is an age of wisdom and an age of foolishness.

Lynn Arthur Steen, President of the
Mathematical Association of America,
writing in their newsletter Focus,
VoL.5, No.2 (March-April 1985).
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A·VISIT TO FLATLAND

P.E. Kloeden, Murdoch University

Frequent exposure to science fiction and TV fantasies
such as "The Hitchhiker's Guide to the Galaxy" has made most
of us familiar with such higher-dimensional terms as "hyper
space" and "space-time", even if we can 1 t really say quite
what they are. To a modern mathematician and physicist they
are now common ideas, but this has only been so for a few
decades. Indeed, it was re~lly only with the introduction
of the theory of relativity by Albert Einstein at the begin
ning of this century that most people became aware of folir
dimensional space-time. In view of this, the delightful
little book "Flatland" written by Edwin A. Abbott in the
early 1880's was i~deed remarkably imaginative and ahead of
its time. While it may not seem so utterly way out to the
modern reader, it is still good fun to read.

Flatland is a two-dimensional world, a surface, inhabited
by planar beings of simple geometric shapes. The lowest, un
couth, classes are sharply acute angled isosceles triangles,
while the more refined classes comprise the more polygonally
shaped beings, with the noblest of all being almost circular.
Women of all classes, alas, are merely thin parallelograms.
This social hierarchy mimics that of the Victorian Era in
which Abbott lived, but is presented as a scathing parody of
that society - Abbott was ahead of his times in more than
just mathematical imagination.

The story "Flatland" is told in first p~rson by a planar
mathematician A. Square, who has been imprisoned for life for
making heretical suggestions that the two-dimensional world
in which they live may be part of a three-dimensional space.
The story has two parts, the first being a brief description
of Flatland, its inhabitants, customs and history, while the
second part describes Mr Square·'s encounters with creatures
from the three-dimensional world and his subsequent woes in
trying to explain his experiences to his planar peers:

One of the big problems in the daily lives of Flatland~rs

was how to identify one another, since a triangle, square,
polygon or circle all look like straight line segments when
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viewed side on from within their plane. Mistaken identity in
a class conscious society could lead to many embarrassing
social problems. Our ,friendly square recounts how in the far
historical past Flatland was racked by the Chromatic Sedition,
in which the lower classes, and women too, painted themselves
in various hues to give the impression of manysidedness and
hence to improve their social image. This was of course too
much for the haughty polygons of manysides and a ~loody civil
war ensued. As a result all colour was banned, on the penalty
of death, from Flatlapd except "at our University in some of
the, highest and most esoteric classes ... [where] the sparing
use of Colour is still sanctioned for the purpose of illus
trating some of the deeper problems of mathematics".

The real purpose of Mr Square's memoir is to recount
his discovery of a third 'dimension in space land to describe
the violent reaction this sparked in his fellow Fl~tlanders.

He first tells of a dream in which he discovered a one
dimensional Lineland, and of the difficulty he had in descri
bing to its inhabitants his own world. Af:ter this dream, he
himself experiences a visit from a three-dimensional sphere,
who appears a most perfect Holy Circle in intersection with
Flatland. Ironically, Mr Square has almost exactly the same
difficulty in 'comprehending this strange visitor as the
Linelanders had with him. Finally: the sphere convinces him
and takes him high above Flatland from where he can see every
thing in Flatland, even the intestines of his fellow Flatlan
ders. Our hero Mr Square returns to Flatland a convert and
apostle for the "Gospel of Three Dimensions", which leads to
his ultimate incarceration.

I can heartily recommend that you read this little book
of scarcely one hundred pages. It requires no deep mathe
matical background, just a familiarity with everyday geome
trical shapes t and a good imagination.

Referenae.

E.A'. Abbott, "Flatland", ,A Romance in Many Dimensions by
A. Square.

Many editions) put out by several different publishers,
exist. The most accessible is the Dover Reprint in paperback.

MATHEMATICS" BEAUTY AND NATURE

It can hardly be an ~ccident that Nature betrays her
partiality for the beauty of mathematical reasoning.

C.N. Yang, Nobel Prize
Winn~r in Physics

tIn two and three dimensions, of course!
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MATHEMATICAL

MEASURE THEORY: II. BIRTH

Joseph Kupka~ Monash University

Mathematical measure theory traces its modern 'orlglns to
the work of Peano in the 1880's. Before. this time, people
had. imagined that they understood the concept of the area of
a plane region. Moreover, it was Widely felt that evepy sub
set of the plane did in fact have an area. If the subset was
tlcivilized", then its area could be obtained at once from the
Fundamental Theorem of Calculus. If not, then the area could
at least be estimated, somehow, by a paved area. The precise
nature of this estimation was not clear in the general case,
but the problem very likely held little interest for the tra
ditional mathematician. It was the modern inclination to
study the totality of objects which possess some interesting
property that led Peano to consider area, in its own right,
as distinct from integral.

Although Peano drew his in
spiration from Newton's "wall
paperings tl

; both "inner" and
"outer", and from the work of
Riemann, his definition of area
would certainly-have been
claimed by the Greeks to be a
restatement, in updated language,
of precisely their idea. Let s
be a subset of the plane. Peano
considered the totality of rec
tangular pavings of s (and not
just paVings consisting of long,
thin strips) which lay entirely
within S, thus:
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The area covered by such a
paving ,would have to be equal
to or less than the area A of
8. It follows that the maxi
mum (or, where this does not
exist, the "generalized maxi
mum" or supremum) of all such
paved areas constitutes a
possible underestimate of A,
a number which is equal to or
less than A. This number is
called the inner content of 8
and is denoted 0*(8). At
the same time Peano considered
the totality of rectangular
pavings which completeZy oover
8, as at right:

The minimum (or, where this does not exist, the infi~um) ofthe areas covered by "such pavings constitutes a possible overestimate of A, a number which is'equal to or greater than A.This number is called the outer content of 8 and is denoted0*(8). So we have 0*(8) ~ A ~ 0*(8). If it happens thatc*(8) = 0*(8), then A must exactly equal the common value ofc*(8) and 0*(8). This was Peano's definition of the areaA of 8. It is also called the oontent of 8 and is denoted0(8). If it happened that 0*(8) < 0*(8), then, so far asPeano was concerned, the set S did not have an area. It wasnot measurable.Peano's work was independently redis60veredand extended by Jordan in the 1890's (in particular, to acorresponding definition of volume), and Jordan's name isnow attached to the general notions of content.

If every set S had a content in the sense of Peano andJordan, the story might have ended with them. But it is veryeasy to describe a set 8 for which c*(8) < 0*(8), and yetwhich people felt ought to have an area. Let us say that· acollection or family of objects ° is countabZe if theseobjects may be indexed by whole numbers, thus: 01;02'03' ....
(Two different objects must receive different suffices.) Everyfinite collection of objects is thus countable, and some in-
finite collections are countable as well. t Let us now take,say, a square s .with area 1, and riddle it with "bulletholes" ,thus:

t see Function, VoZ.2, Papts 1, 2.
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Let us make each bullethole
exceedingly tiny, a single
point in fact. But let there
be a countable infinity of them.
With some care we m~y arrange
the bulletholes so evenly
throughout Sthat no rectangle
in S, however small, fails to
contain a bullethole. You
will ask: Can any of S be
left over after such a mur
derous fusillade? The
answer is yes: An uncountable
infinity of points of Swill
remain. This is known from a
celebrated argument of Cantor,
the first prominent mathematical set theorist. From here itis not hard to see that our riddled square will have innercontent 0 and outer content 1, hence' no area. The set B ofbulletholes which we have removed from also has inner content 0 and outer content 1. (One can already imagine thetraditional mathematician recoiling in fright and horror.)

But now B is a countable set. Many people felt that anycountable set should have an area, and that this area shouldbe zero. It can be shown that if a rectangle is subdividedinto countably many smaller rectangles, then its area is always the sum of the areas of the smaller rectangles', evenwhen there are infin~tely many of these smaller rectangles.Likewise the set B may be subdivided into countably manysingZe poi.nts. A single point has zero area by anybody'sdefinition. So B ought to have zero area as well, and,therefore, the riddled square ought to have area equ~l to 1.In th~s way intuition called out for an extension of thePeano-Jordan definition of area. But it was not immediatelyclear how to proceed.

The spark of inspiration came from Emile Borel aroundthe turn of the century:

Use infinitely many 'paving stones~

More specifically, cover an arbitrary set S with infinitelymany nonoverlapping rectangles instead of just finitely manyas Peano and Jordan had done. (However, because of the nonoverlap, this infinity would have to be countable.) An infinity of stones, most of them exceedingly t~ny, could undoubtedly percolate more effectively down through the variousnooks, crevices, cracks, potholes, or other irregularities inthe shape of s. Con~equently one should be able to achieve abetter fit between S and the region covered by the stones.

Borel's idea was seized upon and developed into a propermathematical theory by his student Henri Lebesgue. TheLebesgue outer measure m*(S) of a planar set S is definedby exact ana~ogy to the outer content of S, except thatinfini te pavings are us·ed as well as fini te ones. This, increases the number of paved areas under consideration, and so
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the mlnlmum (or infimum) of these areas has to be corres
pondingly smaller, i.e~ m*(8) ~ 0*(8).

Lebesgue hoped that m*(S) would serve as a "true"
area measure of S. But this hope needed to be justified on
rational grounds. 'Otherwise m*(S) would have been an
"abstract nonsense" of little enduring interest. The pre
liminary ev~dence was encouraging. If S already had an area
A from some earlier definition" then, in all cases, it could
be proved that A = m*(S). This even included the case in
which the set S "extends out to infinity" and which ther'efore,
by definition, cannot be completely covered with only finitely
many rectangles. Moreover, the outer measure of the riddled
square was 1, and the outer measure of the set B of "bullet
holes" was 0, as intuition had demanded.

BUT - there was one tiny problem. It was not clear for
the Lebesgue oute~ measure, nor was it true, that the whole
was going to be equal to the sum of its parts.

Lebesgue dealt with·this problem in the spirit of Peano
.and Jordan by creating a new notion of inner measure m*(S)
of S. However, this notion was not analogous to the inner
content a*(S) and it'isnow archaic.

Our present notions follow a different path, opened up
by Caratheodory. Caratheodory developed a new and much more
abstract notion of measurability - created for the sole pur
pose of foraing the whole to be equal to the sum of its parts.

The greater 'abstractness of the Lebesgue theory gave to
it an aura of remoteness, 'of detachment from' reali ty. The
scientt'st can readily accept a*(S) as the area of S whe.n
a*(S) = c*(S). But can we really say that m*(S) is the
true area of S when S is "measurable" in this very technical
sense? To this question the mathematician responds with the
serene air of one who knows that he is going to win the argu
ment: . "What do you mean by the 'true area' of S?" he says.
The scientist does not know. Neither does the mathematician.
All the mathematician can do is to adduce evidence in the form
of mathematical theorems' and examples which will persuade the
scientist to accept Lebesgue 1 s measure as the definition of
area. The posixive evidence is strong. Area is countably
additive on rectangles. This can be proved. If the scien
tist will believe, on this evidence, that area is countably
'additive in general, then it can again be proved that the
Lebesgue measure of a measurable set is precisely the area
of that set. There is no negative evidence. No one has
found an example of a. m'easurable set (and this includes all
of the sets whose areas had previously been defined) for
which any sort of intuition demands an area other than the
Lebesgue measure of that set. Nor has anyone found an example
of a nonmeasurable set for which there is any intuitive'idea
about what its area should be.

The notion of Lebesgue measure has been extended to
three and more dimensions and by giving a more abstract
nature to the "paving stones". In this way the modern theory
of abstract measure was born.



19

WHERE TO SITE

A TORNADO SHELTER

Dennis Lindley, Minehead, .England

Two small and equal communities decide to build them
selves a communal tornado shelter. The countryside around
the communities is flat and virtually all places are possible
sites for the shelter. A reasonable mathematical description
of the situation is to think of the countryside as a plane con
taining two points J A and B, describing the positions of the
two communities. Without loss of generality we can take as
the x-axis in the plane the line joining A-and B and suppose
the origin to be the midpoint of the segment AB. And choosing
our scale suitably we can suppose A is at x = -1 and B at
x = +1. Figure 1 shows such a representation.

Figure 1.

A
I

-1 o

B
I

+1

Our problem is where to put the shelter, its position
being described as (x,y) in the coordinate system we have
used. (The y-axis is naturally-perpendicular to AB J passing
through 0.) We first show that only a very few places are
reasonable sites.

c

Figure 2 .. B
x

Consider any point in the plane not on the line segment AB,
such as C in Figure 2. Obviously both communities want the
shelter to be as near to themselves as possible. The point
D, in Figure 2, on the line segment AB, is nearer, both to A
and to B, than is C. (D may be the foot of the perpendicular
from C to the x-axis but clearly there are other possib~lities.)

Consequently D is a better position for the shelter than C.
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The argument holds for any C not on AB, so that the only
sites we need consider are those on AB. None of these can
be ruled out, as C has just been ruled out, because any move
of D nearer to A will make it further from B. The strong
feature of the above argument is that D is nearer to both
communities than is C. Now the problem is to find D, or
equivalently to find x, -1 ~ x ~ +1, such that (x,O) is.
the best place.

So· far quite weak assumptions have been made. To make
further progress we need to be more precise. The dominant
considerations in choosing the site will be the distances the
two communities have to travel to reach the shelter and whether
these distances can be cover~d in the interval between receipt
of the tornado warning and the arrival of the tornado. If the
shelter is too far away the community will be exposed to the
full force of the wind: otherWise they will be safe in the
shelter. To model this, introduce S as the distance that a
community will be able to travel "between the warning and the
arrival of "the tornado. We suppose that S is a continuous
random variable having probability distribution function
PCs) = PreS ~ s) and probability density function pes)
given by

Pes) = dP(s)
ds

Of course P(O) - 0, PCs) increases with s, lim pes) 1,
and s~oo

p ( s) = J:P ( u )du .

One other assumption has to be made. This concerns how
serious it is for a community to be caught outside the shelter
when the tornado arrives. There are three possibilities

(a) both communities are in the shelter,
(b) one is in and one is outside the shelter,
(c) both are outside the shelter.

The seriousness of these will be assigned values 0, 1 and 2
respectively: the units will not matter. Equivalently 1 is
the loss of one community: both communities lost counts
double. There are obviously other possibilities.

Now suppose the shelter is at x (see Figure 3)

Figure 3.
-1

~x ....
I J

o +1

Then the probability that the community at A will be outside
the shelter is the probability that the most it can cover is'
1 + x: this probabili ty is P(l + x). For B the" similar
value is P(l - x). Each of these events will cause a loss
of 1. So the loss expected with a shelter at x is
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(1)

(In ~mplification: an expected loss is obtained by multiply
ing each possible loss by the probability of that loss and
adding over the possible "values. Here each community can
either lose zero or one. The first 6f these contributes
zero to the expected loss, the only term is therefore one
times the probability.) There are cogent reasons for choos
ing x to minimize the expected loss and so we "now have a
little problem in calculus, namely to minimize (1) with
respect to x. .

A minimum is typically found by differentiating and
equating the result to zero. If we do this here and remem
ber that dP(s)/ds = pes) we easily find

p(l + x) - p(l - x) = 0 (2)

and solutions to this equation are candidates for the site
of the shelter. We must however remember to check (a) whether
solutions are truly minima ·(and not maxima), (b) if there are
several local minima which is the least, and (c)" to look at
the end points x = ±1 since minima there are notnecessari
~y found by differentiation.

Let us try a few cases. The simplest distribution is

p(x) =.Ae- AX ,

for some positive

Equation (2) is

A, wi th P(x) =~ 1 

e -:-A( l+x)

-AXe
(3)

or on taking logarithms

-AX = +AX

with unique solution x = 0 irrespective of A.· This is
easily seen to be a minimum and to give a value of (1) less
than at x = ±l. So we conclude that the best place for the
shelter is at the Qrigin, namely mid-way between the two
communities. At this point some of you will say that is
obvious without any mathematics. But let us consider other
cases .

. The form p(x) = Ae- AX is· not very realistic. The
exponential decreases with x and hence so does p(x) implying
that avery small distance of travel is more likely than a
large one. This is not true: usually the warning time is
qUite appreciable and the most probable value is about 15
minutes. Therefore a more sensible distribution of distance
would have the general shape illustrated in Figure 4, rising
to a ma~imum and then falling as B increa~es. A simple
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p(s)

s (distance)

Figure 4.

function with this property is

p(s) = A28e~AS

for some positive A. Equation (2) is then

A~(l + x)e- A(l+x) A2(1 _ x)e-A(l-x)

or 2AXe (~)1 - x
(4)

Now the roots are less clear. An obvious one is
before: but are there others? To consider this
rithms of both sides of (4) and consider whether

10g(~ ~ ~) - 2AX

equals zero'. The derivative of this function is

x = 0 as
take loga-

2
2 - 2A

1 - x

and there are two possibilities (excluding the intermediate
case A = 1)

(a) A < 1 and the derivative does not vanish in
-1 ~ x ~ 1, or

(b) A > 1 and the derivative vanishes twice in -1 ~ x ~ 1.

The first case, A < 1, means that (4) has only one root, so
this must be the obvious one, x = o. Hence again the optimum
place for the shelter is midway between the communities: (It
is easy to show that x = 0 is a minimum, not a maximum, and
is less than at the extreme values x = ±1.)" "The case A > 1
is more subtle. Now there are 3 roots: one is our old friend
x = 0 but there are two others at x = ±xO for some xO. It

is easy to verify that x = 0 is now a local maximum! So
that the mid-point is worse than nearby points. It is equally
easy to see that x = ±xO are both true minima. Consequently
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there are two, equally good, best sites for the shelter as
shown in Figure 5 by the points G,H.

A,
-1

G H
I I

B

+1

A numerical example may prove instructive. If A = It
the roots are at X o = 0·859 s9 that H is near B (at x = 1)

and G is near A ·(at x = -1). To put the shelter at H means
that the community at B will almost certainly be saved and
that at A will not. To place it midway at x = 0 would
place both communities in jeopardy. From the viewpoint of an
outsider interested in saving the total number of people our
mathematics has done a good job in finding G and H. From the
viewpoint of either of the two communities our solutions are
not so apposite, B desiring H and A going for G. We conclude
with a few comments.

1. Notice how it was possible by a very elementary argument
to rUle out almost all possible sites, namely those nqt in AB.
This is very common. In economics there are many c·ases where
possible values could lie in a region yet all can be ruled
out except those on the edge. These are often called Pareto
optimal. The difficulty is to select amongst the few left:
with us those in AB; in economics, those on the edg~.

2. The quantity A has a simple interpretation. p(x)
remember is the probability of being able to travel a distance
x between the warning and the arrival of the tornado. .The

expected distance is therefore I;XP(X)dX using the concept

of expected value explained above and replacing summation by

integration. With p(x) = A2xe- AX
, the distribution that

caused the surprising roots when A> I"it is easy to see
that the expectation is .

-1f'<lD 2 -udA u e u
o

2).-1.

with u = AX.

Denote this by ~. Hence A > 1 means that .~ < 1. So
that if the communities could only expect to cover less than
half the distance between their homes and the midway site, it
would be better to site the shelter near to one of the communi
ties, at G or H.

3. When the mean is less than! this problem illustrates in
a rather simple' situation the conflict between society and
the individual. Looked at from society's viewpoint, where
the communi ti·es are two individual groups, G or Hare 'clearly
the best sites: but from the viewpoint of one individual B,
G is clearly bad. The concept of mini~izing an expected loss

continued on p.2~.
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AN HISTORICAL CURIOSITY

J.A. Deakin,
Shepparton College of TAFE

Did you know that you can use your "sine tables" to find
the product of two numbers? Neither did I until I read of a
process called "prosthaphaeresic multiplication" in a recent
publication (1), in .. which roul tiplication of numbers is carried
out by the addition of trigonometric functions. My curiosity
aroused, I consulted some references, and pass on to readers
the results of my investigations.

The process known as prosthaphaeresis was in use for
approximately 100 yea~s prior to the ~nvention of iogarithros,
and requires only the use of a table of sines (or cosines) for
carrying out a multiplication. The method is based on the
identity

sin A sin B = ~[COS(A - B) - cos(A + B)] .

The angles A and B, whose sines, omitting the decimal point,
are equal to the numbers to be multiplied, and can be found from
a table of sines. Then cos(A -B) and cosCA + B) can be
found from the same table, and half the difference of these
gives the required product (2,3). An example, using modern no
tation, illustrates the procedure.

E.g. to fi~d the product 83-96 x 236-2.

Since 83-96 = 0-8396 x 102 and 236-2 = 0-2362 x 103 ,

we have 83-g6 x 236-2 = 0-8396 x 0-2362 x 105 • Now
0-8396 = sin 57°6' so that A = 57°6' and 0·2362 sin 13°40'
so that .B = 13°40'. Henc·e A - B == 43°26' and A + B = 70°46'
and sin A sin B ~(cos 43°26' - cos 70°46')

i (sin 46 °34' - sin 19 0 14 ' )
= !CO-7262 - 0-3294)
= 0-1984

so that 83·96 x 236-2 = O·i984 'x 105 19840. A calculator
gives 19831 for the product.
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This historical curiosity illustrates the fact that in
Mathematics, as in science, theories and methods become unpopu
lar and are neglected, so that work-passes into obscurity and
is only brought to the notice of latter-day mathematicians by
historians. With the now universal pocket calculator, will
articles be written in the future in which the use of logarithm
tables will be cited as an historical curiosity? Already slide
rules are museum pieces, since they are no longer manufactured.

References:

1. Davis, P.J. and Hersh, R., -The mathemati·cal-experienc.e,
p.19, Penguin, Harmondsworth, 1983~ .

2. Hobson, E.W., A treatise on p~an~ and advanced trigonometry,
Dover, New York, 1957.

3. Glaisher, liOn multiplication by a table of single entry",
Philosophical Magrezine, 1878.

[This curiosity was the basis for Problem 3.3.3. Eds.)

SQUASH MATHEMATICS

. Stepl;1en R. Clarke,_
Swinburne Institute of Technology

In a previous article t we saw how to evaluate chances of
players winning matches, and the mean length of matches. In
this article we see how to extend that ~or games like squash,
volley ball and badminton, where a point is scored only if a
player Wins a rally which he has served. -

_But first consider a game up to n points where the winner
of any rally scores a point and then serves for the next rally.
[In fact this is how American squash is played.] Consider two
players Alice and Bill. Let a be the probability that A wins
the-next point when A is serving, so 1 - a is the probability
that B wins the point when A is serving. Similarly let b,
1 - b be the probabilities ·that B will win, lose the· point
when B is serving.

t see Function~ Vol.9~ Part 2.
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Let P(i,n) be. the probability that A will win the game
when the score is (i,j) and A is serving, and P'(i,j) be
the probability of A winning the game when the score is (i,j)
and B is serving. Since if a player wins a point, he serves
the next point we·have:

Score (i·, j)
A serving P(i,j)

a

1-a

A wins, Score (i+l,j) A
still serving so probability
now P(i+1,j)'

A loses, Score (i,j+l), B
now serving so probability

. now P'(i,j+1)

A similar diagram can be drawn if B'is serving. So

P(i,j)

P'(i,j)

P(i,n)

P(n,j)

aP(i+l,j) + (1 - a)P'(i,j+1)

(1 - b)P(i+l,j) + bP'(i,j+l)

pI (i,n) 0

P'(n,j) 1 0 ~ i, j < n (1)

While these equations are slightly more complicated than
we had before, they can still be solved iteratively, beginning
at i = j = n - 1 and working down to i = j = 0, the
probabilities at the" beginning of the game. The following

Microsoft· B~sic Program does this. t

tObserve that the table P(I,J) is being filled in the
manner suggested by the diagram:

p

J

!
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10 DIM P(20,20),D(20,20)
20 INPUT "length of game ntl;N
30 INPUT "Probability of A, B,winning serve";A,B
40 FOR ! = O· TO N-l
50 P(I,N)=O:D(I,N)=O:P(N,I)=l:D(N,I)=l
60 NEXT'!
70 FOR I = N-l TO 0 STEP -1
80 FOR J = N-l TO 0 STEP -1
90 P(I,J) = A*P(I+1,J) + (l-A)*D(I,J+l)
100 ,D(I,J) = (1-B)*P(I+1,J) ~ B*D(I,J+l)
110 NEXT J
120 NEXT I
130 PRINT P(O,O),D(O,O)
140 END

Now in Australian squash, badminton and volley ball, you
only win a point when you win a rally that you serve. Thus a
point become~,a series of rallies, with serve al~ernating un
til a server wins a rally [or effectively until someone wins
two rallies in a row]. The preVious model applies, prOVided
we ensure that a and b are probabilities of winning points,
not rallies.

For simplicity, we will assume player A has a constant'
probability p of winning a rally. Thus q. = 1 - P is the
probability of B winning any rally. In squash, unlike tennis,
there is not much advantage in serving. However you could re
peat this with different probabilities PA,PB of players A and,
B winning their serve.

Consider a point (i.e. a sequence of rallies) to which A
begins serving. If A denotes rally won by A, B won by B, this

'sequence could be any of

A, BB~ BAA~ BABB~ BABAA~ BABABB~

These respectively have probabilities

p, qq, qpp, qpqq, qpqpp, qpqpqq,

or denoting qp by x

22222
p~ q , xp, xq , x p, x q ~ (2)

Thus the probability that A wins the point to which she begins
serying is

and

2a = p + xp '+ x ,p + .•. ---E.- = P
1 - x 1 - pq

2 2= --9..-. = --=--....q__
. 1 - x 1 - pq .

In a similar manner, or by symmetry, the probability that B
wins a point to which he begins serving is

b q= l' ,- pq so that 1 - b
2

P
1 - pq
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These can now be substituted in the original equations, or
more simply an extra line in the program included to calculate
a, b from p.

30 Input "Probability of A winning rallytl;P
35 A = PI(! - P*(l - P)): B = (1 - P)j(l - P*(l - P)).

Running this program with p = q = -5, n = g gives
P(O,O) = 0-535, P'(O,O) = 0-465 which shows a 3% advantage in
winning the toss at squash. These values can now be used as
a and b with n = 3 . to simulate the match which gives
P(O,O) = Oo513,P'(O,0) = 0-4857. Using this method we can
calculate chances of winning matches from any position for
different players. For example a player who wins only 58%
of rallies will win 96% of squash matches.

Note that 1D the above we have assumed games are played
to 9 po~nts. In fact at 8-8~ the receiver has the choice of
playing to 9 or 10. We could Use the program above to deter
mine if P'(O,O) is greater for a 2 point or 1 point game,
and so decide the best str~tegy for the receiver.

continued from p.23.

is. a beautiful solution to society's problem but is less
satisfactory to the individual B who partially perceives the
situation as a conflict between itself and A~ A major mathe
matical problem, at present unsolved, is that of finding
solutions acceptable to individuals in disagreement. The
problem becomes even more serious when individuals are re
placed by governments and disagreement by conflict. Game
theory is a branch of mathemat~cs that has something to .say
about conflict but is totally inadequate as a model of most
conflict situations .

. 4.· Many generalizations of the simple problem are possible.
What if the communities are unequal? Or there are more than
two of them? There is a continuous generalizat·ion to where
p(x,y) is the population density at (x,y): where should a
communal facility.be placed? How could one allow for
differences in· the terrain?

WOMEN IN MATHEMATICS UPDATE

A recent article and letter in Monash Reporter (May,
June· 1985) highlight the extent to which young women mathe
maticians are beginning to penetrate a hitherto almost ex
clusively male field: Applied Mathematics. Of the post
graduate stUdents enrolled in this field at Monash, sixteen
are men and six are women. This gives the women 27% of the
places. Still a long way to go till equality is ac~ieved,

but if we thirik that only a few years ago, the expected
figure would have been 0%, Monash and the six women mathe
maticians involved have cause f~r some pride.
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LETTER TO THE 'EDITOR

In Funotion 3 VoZ.9 3 Part 1, the decimal expansion of
100 ,-
81 is given and the question is asked what

1 0 2345678901234567890 ... equals. The answer to this is not
particularly interesting, but what is of interest is the
rapidity with which Euclid's algorithm tells 'us we can't do
much factoring.

10 x O·i234567890

10 x 1234567890
9999999999

137174210
10 x 1111111111 .

Euclid's algorithm quickly (and mysteriously?) tells us
that there is no further factoring.

gcd(1111 111 111, 137 174 210) (1111 111 111, 13 717 421)

(101 010 101, 13 717 421)

(13 717 421, 4 988 154)

(13 717 421, 2 494 077)

(2 494 077, 1 247 036)

(1 247 036, 5)

1.

David L. Dowe,
Monash University.

PROBLEM SECTION
SOLUTION TO PRQBLEM 9.1.2.

If 1 '1 + 1 1
A = 1984(1 +'2 3 + + 1984)

and B 1 +1 + .1 + 1= 1985(1 2 3 + 1985)'

which is the larger, A or B?

This problem was solved by Hai Tan Tran of Plympton Park,
S.A. and 'also by Justin Lazar of,Malvern, Victoria.

Both solvers reached, with slightly different notation,
the equation
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B = ( 1984)A
1985

+ __1_

19852 .

. Hai Tan Tran now argued: Suppose B > A, then

(1984)(1985)A + 1 > 19852B and as B is assumed greater than

or equal to A, we would need A < 19~5 ' which is re~dily
shown to be false. Thus A > B •

Ju~tin Lazar used the equation in a slightly different
way, writing

"'=1+!+!+ + 1- 2 3 . . . 1984·

He then found A/x 1/1984,

B/x (1/1985) + (1/198S2x)

< (1/1985) + (1/19852 ) (as x is clearly
greater than one). T~is last value he computed and found to
be still less than A/x. Thus A > B.

Another more general, and hence more informative,
approach is possible.

Put

A(n) = 1(1 +! + 1 + ... + -n1 )
. n 2 3

and ask when is A(n) > A(n + 1)?

The condition for this becomes

1 1 1 n 1 1 1) + n
1 + '2 + "3 + ... + n > n+l( 1 + '2 + "3 + ... + n (n + 1) 2

or

n ~ 1(1 + ~ + ~ + ... +~) > (n n
+ 1)2

or

l' + 1 + ! + 1 n 1 12 3 ... +. n >~ = -~ .
Clearly this last statement is true and so the value of A(n)
always decreases as n increases.

We would like to give potential solvers more time with
the other problems and so give no o~her solutions this time.
Instead, we go straight to this issue's problems.

PROBLEM 9.3.1 (Submitted by Garnet J. Greenbury).

(i) Show that any positive integral power of the pro
duct of the first four odd numbers leaves a remainder 1 when
divided by 8 or 13.
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(ii) Find the set of numbers, such that anyone of

them when divided into' (5 x 7 x 11)n, where n is any posi
tive integer leaves a remainder of 1.

(iii) Is there a similar result for (7 x 11 x 13)h?

PROBLE~ 9.3.2 (Submitted by John Barton from E.W. Hobson's
"A Treatise on Plane and Advanced Trigonometry").

Prove that a triangle with angles A~B3C is equilateral if
cot A + cot B + cot C = 13.

PROBLEM 9.3.3- (Submitted by Hai Tan Tran).

If 0 is the centre of a circle and M lies on its circum
ference and if A,B lie outside the circle, show that AM ~ ME
will be maximised if OM bisects LAMB. Show the same
property if this distance is to be minimised.

PERDIX

Some good news~ The Federal government, through the per
sonal intervention of Prime Minister Bob Hawke, so we are told,
has cpme to the help of the Australian 1988 Mathematical Olym
piad hopes. In the bicentennial year 1988 Australia -has
offered to act as host country for the International Mathem
atical Olympiad. The host country pays all expenses of com
peting teams once they have 'arrived in the country.
Estimated cost in 1988 for Australia will be about $300 000.
The offered Federal support will be $150 000. .

Australia still remains virtually the only country com
peting in the International Olympiad whose team's travelling
and training expehses are not fully'guaranteed by the govern
ment.

During January 19·86 various mathematics camps will be
held, as in previous. years. In Victoria there are two:

Somers :': 28 January to 2 February : Educ~tion Depart
ment Mathematics camp.

Lady Northcote:: 27 January to 1 February: Mathematical
Association of Victoria camp. J

There is 'also the

Canberra:: 7 January to 19 January :- National Mathem
atics Summer School.

The National Summer School is a selective camp for highly
talented students, while Somers and Lady Northcote are open to
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all qualifying students subject to their school's recommendation.

For further information consult your teachers or contactthe Mathematical Association office, telephone number(03)347 5329.

* * * * *
Now ~or some more geometry.

Here is our first problem set in three dimensions, ratherthan just in a plane.

PROBLEM 13. (Question 3 of the 14th U.S.A. Mathematical.Olympiad, April 23, 1985: this was one of 5 questions that hadto be completed in 3i hours.)

Let A~B,C and D denote any four points in space such thatat most one of the distances AB, AC, AD, BC, BD and CD isgreater than 1. Determine the maximum value of the sum of thesix distances.

Send m~ solutionB please.

RESULT 9. If two circles touch at a point P then the linejoining the centres of the two circles passes through P.

PROBLEM 14. Suppose' we have a circle centre A. Now chooseany two circles, centres Band C, say, that lie inside andtouch the circle centre A, and which also touch each otherexternally. Show that the length of the perimeter of triangleABC is independent of the choice of the two circles lying within the circle centre A.

We now state some well-known results about lines associatedwith a triangle that meet at a point, i.e. that are concurrent.
RESULT 10. The perpendicular bisectors of the sides of atriangle are-concurrent. The point of con-
currency 0 is called the CIRCUMCENTRE of Athe triangle.

[This is easy to see: for let ABC be
a triangle and consider the circle passing
through A,B~ and C~ called the CIRCUMSCRIB
ING .CIRCLE OF ABC. Let·its centre be o.
Then OA = OB = OC. Hence the perpendicularfrom 0 to AB bisects AB, i.e. the per
pendicular bisector of AB passes through 0.]

RESULT 11. The three perpendiculars from vertices to opposite-sides of a triangle ar~ concurrent. The point of concurrencyH is called the ORTHOCENTRE of the triangle.

We can deduce Result 11 from Result 10 by showing that His the circumcentre of another triangle. Indeed, let ABC



be a triangle and through each vertex draw a line parallel to
the side oppos'ite. The lines through Band C then meet
at D, say,' through C and A meet at E, say, and
through A and B meet at F.

D

CA-----_.....;),..B

E~ ---'lIl'-- ~F

A

B C E A is a parallelogram,
so BC = AE; and B C A F, is a
parallelogram, so BC = AF.
Thus A is the mid-point of EF.
Si~ilarly B is the mid-point
o£ FD and C is the mid-point
'of DE. The circumcentre, H,
say; of D EFis the intersection
of the perpendicular bisectors of
EF> FD and DE (Result 10).
But these perpendicular bisectors
are just the lines from the ver
tices A,'B and. C perpendicular
to the opposite sides.

RESULT 12. The three lines, called MEDIANS, each of which
connects a vertex of a triangle to the mid-point of the opposite
side, are concurrent. The point of concurrency G is called
the CENTROID of the triangle.

[G is the centre of gravity of three equal masses'each at
one of the veitices; it is also the centre of grav~ty of a
plane sheet, imagined to coincide with the triangle, and of
hniform density.] -

Using the comment about centres of graVity it is easy to
establish that the three medians meet in a point. Here 'is an
alternative geometrical proof.

II

c

C', we have AC' ~ C'B.
passes through G.

Let ABC be the triangle and let
A'~B' be the mid-pbints of the
sides (see diagram) BC> CA
respectively. Let AA' and BB'
·meet at ·G. Extend CG to H,
sO that GH = CG. Then BrG
joins the mid-points of the sides
CA~ CH of the .triangle C A H'.·
Hence B'G, and so BG is parallel
to AH. Similarly, .AG is
parallel to HB . Hence HAG B
is a parallelogram. But the
diagonals of a parallelogram
bisect each other. Hehce, in
particular, if CG m~ets AB at

Thus CC' is the third median' and it

Note the following ~orollary to the proof.

COROLLARY. C' G : GC = "A i G : GA = B' G : GB = 1: 2.

This follows because GH is bisected at' C' and so

C' G = i GC. By symmetry, A ' G = *GA and B' G = ! GB.
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