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For those studying probability theory, this issue of
Funation will be of special interest. Dr Tim Brown, formerly
of Monash University and now working at the University of
Melbourne, has described some aspects of his recent research
on the Poisson distribution. Thi$ is one of "the basic dis­
tributions studied. in school syllabuses, but it has aspects
that go well beyond this. Dr Brownts recent work appears in
full in Ameriaan MathematiaaZ MonthZy (Feb. 1984) and one
aspect of it is summarised here.
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THE FRONT COVER

Suppose a 'planet ci~cles round a sun and further suppose
that a small body is introduced into·the.combined gravitational
field of these two bodies. This third.body is subject to three
forces:

(a) the gravitational attraction of the sun,
(b) the gravitational attraction of the planet~

(c) the centrifugal force caused by the rotation of the
system.

(It' would be'possible to recast the working .in terms of a fixed
set of ~xes and so avoid this last force, but this makes the
calculation much more complic.ated.)

There are five points at which the third body may remain
at rest (relative to the sun and its planet) .. These are indi­
cated in the diagram below as L1 '£2'£3'£4'£5. They are the so-
called Lagrangian poi~ts (named after the mathematician and
astronomer J .L .. · Lagrange 1 1736-1813, who discovered them).

At L1 , the combined ~ravitational pull of sun, S, and

planet, P, to the left exactly counteracts the centrifugal
force acting to the right. A similar analysis applies to £3
(with le~t and right interchanged).

At £2' the (stronger) leftward attraction of S is balanced

by the sum of the (weaker) rightward pull of P and the centri­
fugal force.
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Two other Lagrangian points, L 4 ,L
5

, also exist. These lie

60 0 ahead of and behind the planet in its orbit around the sun.
Analysis of these equilibria requires vector diagrams and is
left to you to complete.

Equilibria are classified as being e~ther stable' or unstable.
A pivoted rod hanging with its centre of mass below its point of
support is in stable equilibrium. Such a rod with its centre of
mass poised above the point of support is in equilibrium but is
unstable and will eventually fall.

A particle situated at L1 ,L2 or L3 is in unstable ~quili­

brium, and so we do not expect these points to be as significant
astronomically as L

4
,L

5
. The point L

2
has a theoretical.signi-

ficance for moon-probes which (as some accounts rather loosely
put it) pass'through or near this "point of zero gravity".

Some authors believe that there is a cloud of small particles
to be fo~nd at the point L1 in the sun-earth system and that these

are sometimes seen as the gegenschein (or counterglow), a faint
brightness in the night sky 180 0 from the position of· the sun.
Calculations have shown that although in tbis case L1 is unstable,

particles tend to linger near it for a long time if they arrive
there. Other authors dispute this explanation, doubting that
meteoric particles would reach L_1 in sufficient numbers.

L4 ,L5 are points of stable equilibrium. In the sun-Jupiter

'system they are occupied by the so-called Trojan asteroids. The
corresponding points of the earth-moon system are also occupied
by what might be thought of as two further natural' satellites of
the earth, but as these are 'extremely faint dust clouds they
usually pass unremarked.

Our ·cover diagram comes from a computer simulation of such
sys'tems and was produced by Professor R.F.E. Van der Borght of
Monash University. L

4
,L

5
, the' stable points, appear as oval

regions and are readily visib~e. £1,L 2 '£3 are less obvious.
L 2 may be seen a~ an X-shaped patch between the ~un and the

planet, and, in principle, such patches could be made to appear
near L 1 and L 3 . This, however ,WOUld have, cluttered up the pic.-
ture too much, so, in the interes.ts of clarity, they were ami tted.

You may like·to explore some of this for yourself. Remember
that a planet· and sun revolve around their. common centre of mass
(assume the mass of the small body is too tiny to disturb this
appreciably) and that the centrifugal for.ce on the planet as it
circles around this exactly balances its gravitational attraction
toward the sun. For a body at L 4 , say, two components of force

must cancel. The centrifugal force out from the centre of mass
exactly equals the attraction toward that point and motion at
right angles to this direction is prohibited' by the exact balance
of attraction toward the sun and attraction toward the planet~
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TURING MACHINESt

J.N. Crossley; Monash University

Alan Turing was a British mathematician whose work on compu­
ters underlies much of their,present-day theory. Although he
worked on the actual construction of comput·ers, as well as on
their theoretical description, he is best remembered for his work
on computability, which he was the first to characterise in a full
and'rigorous way.

To 'do this he devised what are today called Turing machines~

rather simple machines but extremely versatile ones. It is now al­
most universally agreed that if a function is computable at all,
then it is computable by such a machine. Note, however, that when
one speaks of a -"machine" in this context, one is .Dot just talking
of an actual machine such as an Apple or a Commodore, but of any
conceivable abstract machine.

Such a machine is defined mathematically and 1 although you
could build a Turing machine (and some of my students have simu­
lated them on the Monash computers), Turing machines are more im­
portant from the point of view of ideas rather than of practicali­
ties.

Turing machines appear very simple and in many ways they are
simple. They can, however, treat very complicated problems in­
deed. In particular, as remarked earlier, aLL functionscompu­
table by any.computer, no matter how powerful, can be computed by
Turing machines.

What is a Turing Machine?

A Turing machine consists of two parts:

1. A reading-and-writing head.
2. A tape.

The tape, which can be indefinitely extended to both left and
right, is marked out in squares on which symbols can be written
by the head. The set of possible symbols (e.g. those available
on a keyboard) is called the aLphabet and is finite. The symbols
are usually denoted by SO,S1'··· ,8m •

t The original version of this paper was given as the first lecture
in the University of the Philippines Diamond Jubilee mathematics
lectures in November 1982 and will appear in the journal Matimyas
Matematika.
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The machine itself is considered to have a finite number of
internal $tates or machine configurations (analogous to the
various states in which an electronic computer finds itself).
These are usually denoted by QO,Ql'·· ·,Qn ·

A Turing machine is characterised by its program, which
consists of a set·of instructions of the form

q S L q'

which is interpreted as:

If in st:ate Q ~ reading symboZ S on the tape"
move one square to the left and go into state q' 0

The instruction

q. S R q ,

is interepreted in the same way, but the word ttleft" is replaced
by "right".

The instruction

q S S' q'

is interpreted as:

If in state q" reading symboZ S on the tape"
replace this by symbol S' and go into state q'.

Numbers may be represented on the tape-by using S to repre­
sent the number 0, S8 the number 1, SS8 the number 2 and so on.
(We use 8 to represent the number 0 to distinguish the number °
from a blank tape.)

The concept of program distinguishes versatile computers
from the earlier hard-wired models. Before the work of John
von Neumann in the mid 1940's, computers had fixed configura­
tions and could only compute specific functions (rather like
the non-programmable pocket calculators of_today). Von-Neumann
invented programmable machines and the theoretical idea behind
these is that of a universal. Turing machine.

Programs for Turing machines consist of finite sets of in­
structions, each involving finitely many elements 8 0 ,81 ' ... 'Sm;

q0' q l' ... ,qn; L,· R) . To each element on this list we assign a
number as follows:

qo + 3,80 + 5, q1 + 7,81 + 9, ... , L + 2, R + 4.

Then we can code (e.g.) qo 81 L ql in the following
manner. First write down the corresponding numbers (392 7).
Next use these as exponents of the first fe~ prime numbers
(2,3,5,7) ... ) and multiply. This gives

2 3 .39 .52 .77 ,
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a very large number, but this is not a problem. We note that
every number may pe decomposed into primes in one and only one
way. (This is called'the unique factorisation theorem or the
fundamental theorem of arithmetic.)

So if

n =
n n n n n

2 0.3 1. 5 2. 7 3. 11 4

we can recover the numbers nO,n1 , ... from the'single number n.

These exponents can then be decoded to give the original string
of elements '- in our case the exponents are 3, 9, 2, 7 corres­
ponding to qo 8 1 L q1 ·

By using more and more primes we can code longer expres­
sions. In particular we can ,code those programs of Turing
machines. Any particular Turing machine is characterised by'
its program. This··machine may then also be represented by the
number m which codes its program along the lines described above.

The Universal Machine

Suppose now a machine represented by the number m acts on an
input represented by the number x . .We may now construct a
machine U which will act in exactly the same way as the first
machine if Uh~s on its tape the representation of the number
pair (m,x). U does this by digging out the mth set of in­
structions from the coding and then applying these to simulate
a tape with x represented on it.

So now we have .one Turing machine which will compute all
computable functions of the one argument x and it is easy to
generalise to othe~ numbers of arguments. (Merely replace x in
the aoove reasoning by x 1 ,x2 ,··· ,xn .)

There is .an apparent paradox here however .. The machine U
will compute all functions tha:t can be computed. This is .not to
say however that it,can compute all functions. It cannot. There
are uncountably many functions, but the universal machine ean com­
pute only countably many - one for each Turing machine encoded.
(See the articles on Infinite Numbers in Function Vol.2, Parts 1,2.)

It follows that there exist non-computable functions and
these represent unsolvable problems in the sense that there is
no mechanical procedure for solving them. Examples of such pro­
blems abound and it is easy to give one. This we now proceed
to do.

The Ha~ting Problem

This is the so-called Halting problem. We ask whether there
is a machine which will tell us whether Turing machine number m
will halt (i.e. come to a stop rather than go into a loop or
otherwise calculate endlessly) when presented with the input x.

Suppose such a machine does exist. Call it H. Now construct
a new machine G which depends on H 'as follows. Let U(m,x) be
the value computed by the ·universal machine for the input (m,x).
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Then set

1
U(x,x) + 1 if machine x halts on input x

G(x) =

o if not.

This function is clearly computable assuming H exists. Now,
however, let g be the number of the machine G. We consider
G(g). G must eventually halt because G(x) has a value for
every x, in particular forgo Thus, if we 'put x = g in the
formula above, we find that

G(g) = U(g,g) + 1 .

But U(g,x) is the value computed by the universal machine
for input (g,x) and this is the same as the value computed by
the machine G for input x that is to say G(x). Now put x = g
and we find

G(g) = U(g,g) .

But by the definition of G given above

G(g) = G(g) +. I .•

which is a contradiction.

It follows that our assumption that H exists is false. We
thus have the

THEOREM: The halting problem for Turing machines is not computable.

ComputabiZity.

TUring machines have proved immensely valuable and have given
us great insight into the concept of computability. The notion 'of
computability however does not. depend on the rather special
character of Turing machines. There are several other -definitions
of computability. What is really surprising is that all the formal,
mathematical definitions give "exactly the same computable functions.
Mathematicians generally agree that 'our intuitive idea of 'compu­
table' really means the same as 'computable on a Turing machine':
no more and no less.

Perhaps most surprising of all is' the fact that Turing in­
vented the mathematical notion of Turing machines before he
started building computing machines at the National Physical
Laboratory in London and yet all the things that can be computed
on any modern computer can already be computed by his abstract
Turing machines.

For an example of a calculation involving a Turing machine,
see p.-13. (Eds) "
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EUCLID'S ALGORITHM t

J.A. Deakin,
Shepparton College of TAFE

In your early mathematical training you almost certainly
learnt to find the highest common factor (HCF) and lowest common
multiple (LCM) of two positive integers a and b by first ex­
pressing a and b as a product' of prime' factors. -Thus for the
numbers 540 and 168 we 'have

540 22
x 33

x 5

168 23
x 3 x 7.

The highest common factor is- h 22
x 3 = 12. The lowest

common mUltiple is m = 23
x 33

x 5 x 7 = 7560.

However, this procedure is only satisfactory when the
resolution into prime factors can be carried out easily by in­
spection. I~ the numbers a and b are large, it is inconvenient
to spend time seeking prime factors, and a much more efficient
procedure is to use Euclid's algorithm.

We say that an integer b (~ 0) is a divisor of an integer
a if and only if there is an integer q such that a = qb. More
generally, if a and b are any positive integers, there exist
non-negative integers q and r such that

a = qb + r, o ~ r < b.

The integer q is called the quotient, .and r the remainder'when
a "is divided by b ..

The highest common factor (HCF) or greatest common divisor
(GCD) of two integers a and b is the unique positive integer h
which has the two properties:

(i) h divides both a and b,
(ii) if a is any positive integer which divides both a

and b, then a divides h.

In order to determine h, we use the following process:

t Many of the ideas in this article relate closely to those used
in modular arithmetic as discussed by Perdix tn his recent
columns.
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Assume that b < a, and divide a by b to. give the quotient q1

and remainder 1'1.

Divide b by P1.to give the quotient q2 and remainder P 2 ,

Divide Pi by P 2 to give the quotient q3 and remainder r3~ and
so on.

Since b > Pl > P 2 > P3 ' .. , the sequence must end after a

finite number of divisions, the last giving a zero remai-nder.
At this point we stop. Suppose that P n+1 = O. Then we may
write the process as follows:

a = q1b + 1'1' 0 < P1 < b (1)

b q2r 1 + P 2 , 0 < P 2 < P l
(2)

P1 Q3P 2 + P 3 , 0 < P 3 < P 2
(3)

P n-2 qnr~_l + r n' 0 < Pn < Pn-l
(4)

P n-1 Qn+1P n + O. (5)

We show that the HCF of a and b is the last non-zero remainder
Pn in the Euclidean algorithm. To show that Pn divides both a
and b, note that:

from (5), P
n

divides r n _1 ,

hence from (4), Pn divides Pn - 2 .

ContinUing in this way, from (2) we find that since P n divides

P l and P 2 , it also divides b, and from (1) it divides a. Also,

if a is any integer which divides a and b,

from (1), a divides P l

from (2), a divides 1'2

from (4), a divides P
n

"

Hence the HCF of a and b is the last non-zero remainder p in the
Euclidean algorit~m. n

Furthermore, we can show that if h. is the HCF of a and b,
then there exist integers (positive or negative) A and B such
that

aA + bB = h.

Consider the set S of all integers of the form aA + bB. From
(1), P1 E S. Substituting the expression for'r l in (1) into

(2), we see that P2 E S. Then continuing in this way, we see

that every remai~der is an element of the set 5, and finally
that P n ' the HeF 'of a and b is an element of S.
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We illustrate the algorithm by 'means of the example used
to introduce this pape~,

540 3 x 168 + 36 (1)
168 4 x 36 + 24 (2)

36 1 x 24 + 12 ( 3)

24 2 x 12 + 0 (4)

Hence the ReF h of 540 and 168 is 12.

Also,

12 1 x 36 1 x 24 by (3)

5 x 36 1 x 168 by (2)

5 x 540 16 "x 168 by , (1).

. We say that two positive integers a and b are relatively
prime if and only if there exist integers A and B such that
aA + bB = 1, i.e. when the ReF of a·andb is 1. In particular,
we note that if a and b are positive integers with HCF h, the
integers a/h and b/h are relatively prime. The lowest common
multiple (LCM) of two positive integers a and b is the unique
positive integer m such that:

(t) a divides m and b divides m,
(ii) if.a is any positive integer such that both a and b

divide c, then m divides c.

We show that m = ab/h. For a = 540 and b = 168,
m = 540 x 168 f 12 = 7560 as before. Let a 1 = a/h and

bl = b/h. Then ab/h = a 1b1h = ab 1 = bal' i.e. both a and b

·divide ab/h. If a divides c, let 0 = ra = ra 1h. If b divides

0, let 0 = sb. = sb l h. Then pa1h = sblh, i.e. pal = sbl.

Since a l and b l are relatively prime, a 1 divides 8. Let ~ =qa 1 .

Then c = qa1b1h = q(ab/h», so ~hat ab/h 'divides c, which proves

the theorem.

There are a number of interesting applications of Euclid's
algorithm. Although it is easy 'to express the sum of two numeri­
cal fractions such as 2/5 + 3/7, as a fraction with a single
denominator,

2/5 + 3/1 = (14 + 15)/35 29/35

the reverse process of expressing a fraction such as 43/77 as a
"sum of fractions whose denominators are the factors of 77, i.e.
in the-form a/7 + b(ll is more difficult. Apart from methods
of trial and error, the only procedure for doing so depends on
Euclid's algorithm.
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we have

11

11 1 x 7 + 4

7 1 x 4 + 3

4 1 x 3 + 1

3 3 x 1 + 0,

1 4 1 x 3

2 x 4 1 x 7

2 x 11 - 3 x 7.

Then

Hence

1/77

43/77

(2 x 11 - 3 x 7)/77

2/7 - 3/11.

86/7 - 129/11

(12 + 2/7) - (12 - 3/11)

2/7 +3/11. .

More generally, suppose that it 'is required to resolve k/(ab)
into such "partial fractions", where a and b are relatively prime.
Since a and b are'relatively prime, there exist integers A and B
such that aA + bE = 1. Hence (aA-+ bB)jab = l/(ab) and
kl (ab) = (kaA + kbB) / (ab) = kA /b + kB / a which gives the re­
quired partial fractions.

We can also apply Euclid's algorithm to find the solution
of linear diophantine equations in two unknowns, i.e. we seek
integers re,y which satisfy the equation

ax + by =·e

where a,b,c are integers.

This equation has an unlimited number of solutions corres­
ponding to the coordinates of the points on the straight line
ax + by = e. If a and b have a factor k which does -not divide
e, the equation cannot be satisfied by integral values of ~ and y,
since ax + by is then divisible by k, and e is not. Hence we
suppose that a,b,c have no common factor, afid that a and bare
relatively prime.

Since a and b are-relatively prime, there exist integers xl
Yl such that

and x = h = exl , Y

original equation.

Then

aXl + bYl 1

... aexl + baYl = a

k = cYl is clearly a solution"6f the

ax + by ~ ah + bk

a(x - h) + bey k) 0

.. (x h)/b = Ck ... y)/a. t, an integer

i.e. x = h + by, y = k at, which is the general solution. To
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illustrate by means. of an example? suppose th~t it is required
to find all i~tegers x,y which satisfy the equation

3x + 5y ;: 11 ~

From Euclidts algorithm, we find that

1

.. 11

2 x 3

.22 x 3

1 x 5

.11 x 5,

so that one solution of the .equation is x = 22, y ;: ....11 ~ Th.en
3(x - 22) + 5(y + 11) = 0 and 5(y· + 11) = ~(22 - x) so that
(22 - x)/5 = (y + 11)/3 = t, an integer, whence x = .22 - 5t ,
Y = 3t - 11 (t E J) is the, general' solution~

The algorithm may also be used to solve linear congruences,
If a and b are any two inte·ge:rs which when divided by m leave .
the same remainder, we say that a and b are congruent, modulo m,
Then a - b is a mul tiple of m1 and we write .

or
a - b (mod m)

a - b -.0 (mod m).

If a is relatively prime to m, then the congruence ax - b (mod m)
has an integral solution x. By hypothesis, the RCF of a and m
is 1.

and so

.. 1 ='sa '+ tm for suitable integers sand t,

b = bsa + btm.

Since ·the final term is a multiple of m,b == (bs)e (mod m), and
x = bs is the required solution of the congruence. As an example,
suppose we wish to solve the congruence

5x = 4 (mod 3).

We seek integers x,y such that 5x

i.e. 5x

4

3y

3y

4.

The general solution of this diophantine equation is x = 3t - 4,
Y = 5t - 8, t E J and the smallest positive integral value of x
is obtained by SUbstituting t = 2, giving x = 2 as the
solution of the congruence.

In this paper I ha¥e discussed Euclid's algorithm for finding
the RCF of two positive.integers. However the theory can be ex­
tended to the case of polynomial functions. If I(x), g(x) are
polynomials ~ver a field ~,then there exists a polynomial h(x),
unique apart from an arbitrary factor taken from fJ> such that

(i) hex) divides both rex) and g(x)
(ii) p~lynomials F(~), G(x) can be found such that

F(x)!(x) + G(x)g(x) = hex).

I will not give the proof of this result here; the interested
reader is referred to Littlewood's book [2]. The most important
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application of the division a~gorithm tor polynomials is in
finging algebraic partial fractions? and th.e det~iled the'ory
of algebraic partial fractions will be found in Barnard and
Child I3] ~
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1st edition (Chapter 7).
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. MORE ON TURING MACHINES

Head Tape

I

STATE A STATE B

1 . ERASE THE 1. .1 . SCAN NEXT CELL ON RI GHT .
1 2. SCAN NEXT CELL ON RIGHT. 2. STAY IN STATE B.

3. GO TO STATE B.

+
1. ERASE THE +.
2. PRINT 1.
3. STOP.

The Dumber 4 (represented 'as 1111) is to be added to the
number 3 (111). Check that this Turing machine, programmed as'
above, does this. Assume that the machine is initially in
State A, and that, the reading head is situated as shown in the
diagram.

Can you now complete the program to remove these restric­
tions? What if the number 1 were represented, as Professor
Crossley suggests, as 11, 2 as 111, etc.? How would you then
modify the program?

Based on an example in Saientifia A'mepiaan,
July, 1971.
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THE POISSON APPROXIMATION TO

BINOMIAL

T.e. Brown, Monash Universityt

The binomial distribution arises frequently in probability
and statistics. As an example, suppose that a random sample of
1000 people is chosen from a population in which 0 0 1% of people
have a rare disease. If the.sampling is done with replacement,
then the probability that j people in the sample have the disease
is given by the binomial probability

(lOJO)eo.oOl)jeo.999)lOOO-j

where j could be 0,1,2, ... ,1000. The expected number of disease
victims in the sample would be 1000 x 0·01 = 1. If j is at all
large, it is' tedious to calculate this probability exactly. In­
stead, we could approximate it by the corresponding probability
from the Poisson distribution of mean 1. This is

e-1 1i /iI = (e(jI»-l

and is considerably easier to calculate. However, some readers
may have calculators that will compute binomial probabilities
exactly and they may wonder about the relevance of the Poisson
approximation. These readers may care to tryout the following
problem on their binomial calculator. Suppose a room has'

1026 particles in it and that each particle has probability

10-12 of be.ing 'special'. What is the probability of having

less 'than 106 special particles in the room? (For solution t

see iater.)

In this article, the quaZity of the Poisson approximation'
to the binomial will be examined. Let us first recall the general
approximation. Take the non-negative integers {0,1,2, ... } as
sample space. Let A be an event, so that A C {O,1,2, .".. } .
The binomial probability of A with parameters-n and p is B(A)
given by

B(A) = I
jEA

t Now at the University of Melbourne.
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In the first example, B(A) is the probability that the number of
disease victims lies in A if n = 1000 and p = Oq001. The
approximation to B(A) using the Poisson distribution with mean
np (coinciding with the mean of the binomial distribution) is

Po(A) = L e~np(np)j/j! .
jEA

In the second example above A = {0,1, ... ,106-1}

"P = 10-12 , so that np = 10
14

, n and

Readers may be familiar with the advice that

'the Poisson approximation may be used when. n is large,
p is small and np is moderate'.

The implication of this advice would appear to be that in these
circumstances

IPo (A) - B ( A ) I
will be small for all events A. In fact, this implication is
true, but overly cautious, the circumstances in which the approxi­
mation is appropriate are much wider.

But let us first look at the example in which n = 1000 and
p = 0·001. In Table 1 the individual Binomial and Poisson proba-
,bili ties are listed.

Tabl-e I

Binomial and Poisson probabilities, n = 1000, P = 0·001 to
5 decimal places

.j Binomial Poisson Difference

0 0·36770 O· 36788 -0·00018
1 0·36806 0·36788 +0·00018
2 0·18403 0·18394 +0·00009
3 0·06128 0·06131 -0·00003
4 0·01529 0·01533 -0·00004
5 0·00305 0·00307 -0·00002

6 0·00051 0·00051 <10-5

7 0-00007 0·00007 <10-5

8 o·oooof 0·00001 <10-5

9 "<10-5 <10-5 <10-5

total 1·00000 1·00000 0·000000

For some values of j, namely j = 0,3,4, and 5, the Poisson
probability overestimates the binomial probability. On the
other hand, for j = 1 a.nd 2 the Poisson prob"ability underes'ti­
mates the binomial probability, which for all other j the two
probabilities coincide to 5 decimal places. In general, let
AD be the event consisting of those j for which the Poiss?n
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probability is an overestimate and Au be the event consisting of

those j for which either the Poisson probability is an under­
estimate or both are equal. So, in the example, ~o ~ {O,3,4,5}
and A ~. {1,2}. We do not know whether 6,7,8,9, ... ,1000 are inu -

.Au or A
O

but certainly 1001,1002, .. ~ are in AO because

B{lOOl,1002, ... } = .0. Notice that

B{1,2} - Po{l,2} sum of positive differences in Table 1
0·00018 + 0·00009
0.. 00027

and

Po{O,3,4,S} - B{0,3,4,S}

In general, since

0 0 00027.

Po(A
U

) + Po(A O)

we have

1,

(1)

Equation (1) is more important than it might seem at first
sight. From it we may deduce that poeAO) - BeAO) and

B(A ) - Po(A) are events A for which !B(A) - Po(A)1 is maxi-u. u .
mal over all events A. To see this, .suppose that A 1S an event
for which B(A) > Po(A). For concreteness, let us take

A = {-1,3} in the first example. Then

!B(A) -' Po (A) ! 0·00018 - 0 ·00003
< 0·00018
< 0 0 00018 + 0·0009

B (Au) + Po (Au) .

Thus, in general, we increase B(A) - Po(A) by adding back the

negative differences and the result, since it omits some terms
of B(A

u
) - Po(A

u
) ' is still smaller than B(A

u
) - Po(A

u
)' A

similar argument shows that Po (A) - B(A) E;;; Po (A O) - B(AO) if

Po(A) ~ B(A). Thus equation (1) tells us that for all A

IBCA) - Po(A)! ~ B(Au ) - Po(Au )

Which is 0·00027 in the example.

(2)

The problem' then is to try to find a general fopmula for
B(Au ) - Po(A u ) in terms of nand p; if you are at all success-

ful then you deserve great praise, for this~is a very hard
problem. Using quite advanced mathematics, general upper bounds
for B(A u ) - Po(Au ) can be found and we mention two of these

shortly. However, in one general case, it is possible to find
B(A

u
) - po(A

u
) exactly.
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This is the case for which n = 1. The crucial point is
that for p > 0

1 - P < e-P

~" tden~ity which is illustrated in Figure 1.

Figure 1.

y

(3)

o p

Au

Thus

and

o E A
O

{1}
and since B{2,3,4, .•. } = 0., {2,3,4, ... } £ A

O
Thus, for any A, from equation (2)

IB ( A) - Po ( A ) I ~ B { 1} - Po {1}

pC 1 - e- p ).
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It may not appear very impressive that we have been able to
find B(Au ) - PoCA u } in this case; p and .1 - P are much

simpler than e-P,pe- p ,., . . However, the "above calculation is a
key step in showing that. for alZ n

B(Au ) - Po(Au } ~ np(l "- e- p }

2
< np

by (3). This is a special case of a more general result I
proved recently (Am. Math. Monthly, Feb. 1984). Its

implications are clear. Since np2 = (np).p, Equations (2)
and (4) tell us that no matter what event A is chosen, the
PO.isson approximation is always ac~urate if

'p is small and np is moderate' .

Thus, we can already see that the advice given before is caut~ous

because n need not be Zapge in order that the approximation be
accurate.

Unfortunately, the bound of (4) is not always adequate; in

the second example, we have np2 = 102 and it is'hardly in­
terestingto know that the difference in two probabilities is
less than a hundred. However, a deeper analysis of
B(A

u
) - Po(Au ) shows that it is always bounded by p/~.

Hence, the.best general advice is

'the Poisson approximation may be used if p is small' .

In particular, the apprOXimation will be excellent i~ the

second example, as p/~ < v'2 x 10-12 . Thus with an error

of at most 12 x 10-12 the probability of less than a million
particles in the room is

6PO{O,l, .. ~ 10 -l}
i06-1 14 j

I e -10 (1014) / j !
j=O

14 " 6
< 106

x e-10 (1014)

replacing each term in the sum by the (much larger) constant

10
14

( 14)6 .term e- 10 . It is straightforward therefore to see
that the req ired probability is zero to many decimal places!

THE POISSON DISTRIBUTION APPLIED

A famous and often quoted historical example is .that of
Bortkiewicz, who discovered that the 'number of men kicked~o
death by a horse in a Prussian army corps each year closely
followed the Poisson distribution.

~.~.J. Bailey, statistical Methods in BioZogy, 1959.
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LE'ITER TO THE EDITOR

A MORE COMPLETE RESULT

Problem '8.3.2 naturally suggests the following question:
Of all triangles with sides of integral length, which ones
have a perimeter equal to the area? We settle this question
by showing that the only such triangles are those with side­
lengths (5,12,13), (6,8,10), (6,25,29), (7,15;20), (9,10,17).

Let a,b,a be integers which can be the sides of a tri­
angle. Let P = a + b + o. Heron's formula for the area of
a tr~angle (Function VoZ.S, Pa~t 1) then gives, if the perimeter
equals the area:

or

l6P = (P - 2a)(P - 2b)(P - 2c). (1)

Now if P were odd, all the factors on the right would be
odd and so would be their product. But this cannot be as 16P
is even. Thus P is also even. If then

a =!(P - '2a), 8 = ! (P .- 2b), y = i (P - 20),

these expressions are all integral. Furthermore, we may assume
without. loss of generality that a ~ 8 ~ y.

Equation (1) now becomes

4(a + 8 + y) a8y. (2)

Now suppose y ~ 4. Then, by Equation (2), as a8y ~ 4a8,

4(a + 8 + y) ~ 4a8

or

Thus

y ~ as - (a + 8) (0 - 1)(6 - 1) ~ 1.

y + 1 ~ (a - 1)(8 - 1).

But a ~ 8 ~ y, and so

y + 1 ~ (y - 1)2

or

y ~ 3
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contradicting our assumption. Thus y < 4 and the possible
values are 1,2,3 .

. Return now to Equation (2) and write it as

4y(a + 8 + y) = a8y2

or

a8y2 - 4(a + 8)y + 16

or

(ya ... 4)(Y8 - 4) = 4(y2 + 4).

We investigate first the case y = 3. If now a

ya - 4 would be 5 which does not divide 4(32 + 4)
() :; 3 and a ~ 4, 8 ~ 4. But then (3a - 4)(38 - 4)
~ 82 64 > 52 and so there is no solution if y = 3.

If now. y =,2, Equation (3) becomes

(a, - 2)(8 - 2) = '8

which implies that a = 10, 8 = 3 or a =' 6, 8 4.

( 3)

were 3,

52. Thus
~ (38 - 4)2

Finally·if y 1, Equation (3) becomes

(ex - 4)(8 4) 20,

which implies that ex = 24, 8
8 8.

5 or a = 14, f3 6 or a = 9,

B~t from the definitions of a,f3,y we have a = B + y,
b ~ + ~, a = a + S and so the result follows.

Colin Wratten
20 Wilson Street, Highett.

MATHEMATICS MODELS REALITY

The essentials of the abstract general truth in a physical
situation can be described in mathematical terms incomparably
better than in other ways. This description, is unlike an
exact photographic reproduction of reality. It is in no sense
a record or a moving pict~re. A physical law mathematically
described reveals certain general essentials, not just anyone
particular sequence of events. But it can, be used to describe
and predict actual physical events.

Francis Bitter, MathematieaZ Aspects of
Physics., 1963.
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PROBLEM SECTION

We here give solutions to many of the outstandi~g problems!
Some of these were quite difficult,

SOLUTION TO PROBLEM 8.2.1.
This concerned the packing of tubes 'into hexagonal arraYSt

Such arrays contain 1,7,19,37·,61,91,.;. tubes. We asked what
was the 69th number ending in 69 and belo~gi~g to this sequence,

David Shaw of Geelong West Technical School sent us a
detailed solution which we summarise here, He first found the
nth term in the sequence to be

t = 3n
2 - 3n.+ 1.n

Then using congru~nces (see recent Perdi$ columns), he wrote

t n - 69 (mod 100) 1

an equation that reduces to

n 2 - n - 56

where t is integral. Then

lOOt,

n = i(l ± 5/9 + 16t)

and so

9 + 16t = N
2

,

where N is integral. So now

N2
- 9 (mo~ 16.).

This congruence is' readily solved. We find

N = 3,5,11,13 (mod 16).

Thus

N 16K + 3, 16K + 5, 16K + 11, 16K + 13.,.

where K is ~nteg~al. Then

n = 40K + 8~ 40K + 13, 40K + 28, 40K + 33

for K = O,l r 2,3, ....
40 x 17 + 8 = 688, and

The 69th member of this sequence is
t 68S = 1417969.
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SOLUTION TO PROBLEM 8t2~2,

This problem asked for th.e circumradius of each of the five
regular solids: the tetrahedron, the cube, the octohedron~ the
dodecahedron and the icosahedron.

No one sent in a solution, even though 'the first three
cases, especially the octahedron, are' not difficult. Take, in
each case, the edge to be 1. Then the answers are~ respectively~

1"3/212, 13/2, 1/12, 13/(15 - 1), 1/(2 - 2/15).

The problem is. fully discussed in H.B.M. Coxeter's Introduction
to Geometry (Wiley, 1961), Chapter 10, and we refer readers to
this account. An article on the icosahedron will shortly appear
in Function. This will show this case very clearly.

SOLUTION TO PROBLEM 8.2.3,
The problem read:

(a) Show that in any party of, six or more people, there
is at least-one set of th~ee people all acquainted with
each other or at least o.ne set of three people no two of
whom are acquainted.

(b) In a party of six people must there be either four
,mutual a~quaintances or four mutual strangers?

It helps to put the problem in terms of graph theory (see
Jacqueline Wong's article in Function, VoZ.S, Part 3). Represent
each person by a point and acquaintance by a l~ne between two
points. The graph G then consists of 6 points anq some subse.! of
the 15 possible connectionsbetw~en them. Draw also a graph G
consisting of the 6 points and ~recisely those lines not in G.
Then (a) says that either G or G
contains a triangle of lines.

Consider one particular per­
son and the point (1) ~epresent­

ing him/her. Either this point
connects to 3 or more others (in
G) or it doesn't, i~ which case
it will connect in G. Suppose
the connections occur in G.

2

o

o

43
Call these points 2,3,4.

Then if no. connections exist
between these points'in G" they form a triangle in G. But if they
allow a connection (say 2-3) then a triangle (1-2-3) is formed.

The answer to part (b). is "no". 'ro see this, consider the
case in which G consists of two disjoint triangles. Then every
person is acquainted with exactly two other people.
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SOLUTION TO PROBLEM 8.3','1.
The problem read:

In the year 1949, a man turned 67. His four sons
turned 37, 31, 29, 23 respectively. All five reached
prime age in a prime year. It was the golden year for
that family. When. was or will be their next golden year?

D. Halprin (P.O.. Box 23, North Carlton) found the ages were
97, 67, 61, 59, 53 (all prime) in 1979 (also a prime) .. David
Dyte (Year 10, Scotch .College) found that in the prime year 1913,
the father was 31, and his only son alive at that time 1 (almost
a prime). He 'also notes that in the prime year 1889, the father
was 7 and the sons could be thought of as being -23, -29, -31,
-37, the exact negatives of their present ages and so also prime!

SOLUTION TO PROBLEM 8,3.2,
Are there Pythagorean triangles whose perimeters equal their

areas?

Colin Wratten (12 Wilson Street, Highett) sent in two proofs
that the only cases are 5, 12, 13 and 6, 8 1 ~Ot Here is one of
them.

Let a,b be the legs and c the hypotenuse of the triangle.
Then the area. is ab/2 and tbe perimeter is a + b + a, where
0

2 a2 + b2 and. a,b,c are all integers.

It is well-known (see e.g., Function~ VoZ~3~ Papt 3) that
we now need a = 2pst, b = p(s2 - t 2 ), c =p(s2 + t 2 ) where
p,8,tare positive integers and 8 > t. Applying these formu­
laeto the equation ab/2 = a + b + C we find

r(2st +"8
2 _ t 2 + 8

2 + t 2 ) = P28t(8 2 _t2 ),

which simplifies to

rt(s - t)' = 2.

This equation has three solutions in integers

r = t = 1, 8 = 3; P = 1, t = 2, 8 = 3; r ~ 2, t 1, 8 2 .

and these give respectively

a = 6, b = 8, C = 10; a = 12, b = 5, c = 13; a

and the first and third of these are the same.

SOLUTION TO PROBLEM 8,3.3.

8, b ,6, c 10

Toss a.fair coin 100 times and keep. a tally of
progressive numbers of heads and tails. ·How many
times (on average) will the lead change from one to
the other?
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Number the·tos~es 1,2,3, ... ,100. The progressive totals
can be equal (say when there have been kheads and k tails)
after an even number of tosses (say 2k tosses). The probability
that they ape equal after 2k tosses is the binomial probability

After the next (2k + 1) toss, the lead may change from what
it used to be, with probability i (if heads used to be ahead,
then ! is the chance that a tail will be tossed on toss 2k + 1,
and similarly with heads and tails interchanged).

So the probabil1ty that the lead ~ill change on toss 2k + 1
is !Pk. The expected number of changes in lead on toss 2k + 1

is . 1 x !Pk + 0 x (1 ~ !Pk) = !Pk because there can either be

one, or none, changes of lead on toss 2k + 1. The total expec­
ted number of changes of lead over all the (odd-numbered) tosses
is

*Pl + !P2 + iPS + ... + !P49 (1)

To calculate this note that P1 (n(l)2 = l ; and it is easy

to see in general that Pk = (1 2l)Pk-1° Then a calculator or

computer can be used to add up (1). The answer is about 3·48.

SOLUTION TO PROBLEM 8.3.4.
Is there a.cuboid whose sides and diagonals all have
integral lengths?

Yes. The smallest has .sides 44., 117, 240. This discovery
is credited to the 18th century mathematician Leonhard EU1~r;

see Saientifia Ameriaan, July 1970, p.l18.

SOLUTION TO PROBLEM 8.3.5.
In a common type of logic-puzzle, we are" confronted

with two categories of person: those who always lie and
those who always tell the truth. A traveller reached a
land in which the inhabitants all fell into two such
classes and, seeing a house, he wished to ascer~ain

whether it was an inn where he could spend the night.
Approaching two people, he asked the first, .but re­
ce~ved a cryptic reply, insufficient to give him his
answer. He addressed exactly the same question to the
second person and received exactly the same reply. He
then knew the house to be an inn.

What was the cryptic reply?

David Dyte writes:



25

My solution is this: "It isn't an inn at all, but he
would say that it is." (You said crypt·ic!)

To test this solution, the feasibility of the three possible
combinations of the two men must be tested. These are: True
True; True False; False False.

1. True True~- This combination is impossible, as both men,
with knowledge of each other's honesty', could not reply in contra-
diction of each other. - -

2. True False. This combination is also impossible, be­
cause, if one tells the truth, it must be not an inn, but his
falsehooding counterpart says it isn't also, creating paradox
and impossibility.

3. False False. This combination is possible, -if both say
it isn't an inn and lie about the other's reply, then it must be
an inn.

Q.E.D.

By deduction, the traveller works out it must be an inn.

This solution is simpler (and hence better) than that
pUblished in The MathematiaaZ Gaze.tte where we found the problem.

SOLUTION -TO PROBLEM 8.4.1.
This asked for the sum of a continued.fraction whose

numerators were all 1 and whose denominators all 2i.

To solve such problems merely ~ote that if x is the value,
then

1
x = 2i + x

So 2 + 2ix 1 0x

i.e. (x + £)2 0

or x -i

as given.

SOLUTION TO PROBLEM 8.4.3.
A regular octagon, with all its diagonals, is drawn. How

many points of (interior) intersection are found?

By drawing a reasonably accurate diagram and counting, we
find the answer 49 .. Does any reader know of a reasonably ele­
mentary theoretical approach?

No pattern seems to be discernible: if n is the number of
vertices and N the -number of intersections, we find

n 3 4 5 6 7 8

N 0 1 5 1 35 49
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which seems to lead nowhere.

Our problems for the long vacation all come from Colin
Wratten.

PROBLEM 8.5el.
Let r~ x, y and z be real or complex variables. Show that:

(i) y ~ x if y changes by a factor of r whenever x changes
by a factor r. [Assume y is known to be a function of x.]

(ii) z ~ xy if z ~ x for each fixed y and z ~ y for
each fixed x. [Assume z is known to be a function of both x
and y, i.e., to each suitable x and. y, there corresponds just
one z.]

PROBLEM 805.2.
Let A = 15 + /22 + 2/5 and

B = 111 + 2129 + /16 - 2129 + 2/55 - 10129. Prove that A B.

PROBLEM 8.503 '
A particle is projected vertically into the air; it ascends

to a certain height and then descends to the point.of projection,
all in the same straight line. Taking air-resistance into
account, show that the initial (projection) speed is greater
then the final ,(impact) speed and that the ascent time (the
time- to reach maximum height) is less than the descent time.

PERDIX
We now have the full results for the 1984 International

Mathematical Olympiad. Australia's creditable performance in­
dicates a steady improvement ·in.our'position, but, as you can
see, there is still a long way to go.

Pas. Country Marks POSe Country Marks
(Poss. max.252.)

1 Russia 235 18 Brazil 92
2 Bulgaria 203 19 Greece 88 .
3 Romania 109 '20 Canada 83
4 U.S.A. 195 21 Colombia 80
4 Hungary 195 22 Cuba 67
6 Great Britain 169 23 Belgium 56
7 Vietnam 162 23 Morocco 56
8 East Germany 161 25 Sweden 53
9 West Germany 150 26 Cyprus 47

10 Mongolia 146 . 27 Spain 43
1'1 Poland 140 28 Algeria 36
12 France 126 29 Finland 31.
13 Czechoslovakia 125 30 Tunisia 29
14 Yugoslavia 105 31 Norway 24
15 Australia 103 32 Luxembourg 22
16 Austria 97 33 Kuwait 9
17 Holland 93 34 Italy 0
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These were the questions set.

First day~ 4 JuLy~ 1984.

1. Prove that

7o ~ y z + zx + xy - 2xy z ~ 27 '

where x, y, z are non-negative real numbers for which x + Y + z 1.

2. Find one pair of positive integers a,b s~ch that:

(1) ab(a + b) is not divisible by 7,

(2) (a + b)7 - a
7 - b7 is divisible by 77 .

Justify your answer.

3. In the plane two different points O,A are given. For each
point X of the plane, other than 0, denote by a(X) the measure
of the angle between OA and OX in radians, counterclockwise
from OA (0 ~ a(X) < 2~). Let ·C(X) be the circle with centre
o and radius of length OX + a~i). Each point of the plane is

colored by one of a finite number of colors. Prove that there
exists a .point Y for which a(Y) > 0 such that its color appears
on the circumference of the circle C(Y).

Time allowed: 4i hours. Each question is worth 7 points.

Second day, 5 JuLy, 1984.

4. Let ABCD be a convex quadrilateral such that the line CD is
a tangent to the circle on AB as diameter. Prove that the line
AB is.a tang~nt to the circle on CD as diameter if and only if
the lines BC and AD are parallel.

5. Let d be the sum of .the lengths. of all the diagonals of a
plane convex polygon with n vertices (n > 3), and let p be its
perimeter.

Prove that

n- 3< 2; < [~][n ; 1] - 2.
([x] denotes the greatest integer not exceeding x.)

6. Let a, b, c,"d be odd integers such that 0 < a < b < c < d
and ad.= bo.

Prove that if a + d = 2 k , b + 0 = 2
m for some integers k

and m, then ·a·= 1.

Time allowed 41 hours. Each question is worth 7 points.

We now conclude our discussion of the problems in Vol.S
Part 3 by solving Problem 3 of that issue.
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PROBLEM 3. (Twelfth International Olympiad, 1970, problem 4)

Find the set of·alZ positive integeps n with the ppopepty
that .the set {n., n+l" n+2, n+3" n+4, n+5} can be partitioned into
two sets suah that the ppoduat of the numbeps in one set equals
the ppoduat of the numbeps in the othep set.

Solution

We shall assume that you know (or will accept) that any
positive integer is the product of uniquely determined prime
numbers, each occurring as a factor a unique number of times.
For example 23 x 52 x 7 is the only way of expressing 1400 as
a product of prime numbers. .

When the set· A = {n,n+l,n+2,n+3,n+4,n+5} is partitioned
into two sets such that tbe product of those in one set equals
the product of those in the other 'set, then each of these pro­
ducts equals the same product of prime numbers. Hence any
prime that divides one product must divide the other. So each"
prime p dividing anyone of these numbers n,n+l, ... ,n+5, must
divide another of the numbers.

Now if a prime p divides an integer k, then· the next lar­
g~st integer that p divides is k + p. Hence the only primes
that can divide two of the' members of the set of numbers A are
2, 3, and 5.

S~ppose 5 is a divisor, so that 5 divides k and k + 5,
where k is a member of A. This can happen only if k = n. In
this event, n + 1, n + 2, n + 3, and n + 4 have to be pro­
ducts of powers of 2 and 3. But this is impossible for four
consecutive integers, because (a) if n + 1 ·is divisible by
both 2 and 3 then n + 2 is di~isible by neither; (b) if n + 1
is divisible by· 2 but·· not by 3" then n + 2 is a power of 3 and
hence n + 4 is divisible by neither 2 nor 3 (it is congruent
to 1 mod 2 and congruent to 2 mod 3); (b) if n + 1 is divisible
by 3 but not by 2, ·then n + 2 is a power of 2, whence n + 3
is not divisible by either 2'or 3. Thus the assumption that 5
is a divisor of a~y member of A leads to a contradiction .in all
cases.

Hence the only possible prime factors of each of n, n + 1,
n + 2, n + 3, n + 4, n + 5 are 2 and ·3. But, in the previous'
paragraph we have shown that no four consecutive integers can
be such that their only prime factors are 2 or 3. Hence we are
again led to a contradiction.

Hence there are no positive integers n satisfying the
stated conditions. The set we have to find is the empty set.

* * * * * * *
The methods we have developed to solve problems 1, 2, and

3 should now enable you to have an e.ffective attack on problem
4 of" Volume 8, Part 3. Have a shot if you have not yet
managed to solve it.
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Here are some further problems using the same circle of
ideas.

PROBLEM 5 (First Hungarian Eotvos Competition, 1894, problem 1)

Prove that the expressions 2x + 3y and 9x x 5y. are
divisible by 17 for the same set of integral values of x and y 0

PROBLEM 6 (Eotvos Competition, 1898, problem 1)

Determine aZl p.ositive integers n for .1.Vhich 2n
+ 1 is

divisible by 3.

PROBLEM 7 (Eotvos Competition, 1899, problem 3)

Prove that, for a~y natural number n, the expression

A = (2903)n - (803)n - (464)n + (261)n

is divisible by 1897.

PROBLEM 8 {Eotvos Competition, 1900, problem 1)

Let a,b,c,d be fixed integers uJith d not divisible by ~

Assume that m is an integer for which

am 3 + bm2 + cm + d

is divisibZe by 5. Prove that there exists an intege:!' n for
which

is also divisible by 5.

DO NOT READ ON UNTIL YOU HAVE CAREFULLY CONSIDERED THESE
PROBLEMS.

SoZutions

PROBLEM 4. Let m be an odd. positive integer.

is a positive .integer k such that m divides
(Function, "Vol.8, Part 3, ·inside back cover.)

Show that there

2k - 1.

Instead of solving this problem we. shall. establish the
following important result, from which a solution to the problem
follows as aspe~ial case.

RESULT 3. Let m and n be positive integers that are ao-prime,
i.e. such that their highest common facto:!' is 1. Then there ex-

ists a positive integer. k such ~hat m divtdes nk - 1.

Proof. A hint of how to prove this is suggested by the solution,
in the last issue, of Problem 2, and the SUbsequent remarks, in­
cluding Result 1 and Result 2, on modular aritbmetic. What was
shown there was that the remainders, i.e. residues, on division

by 7, ·of the powers 2,22 ,23 ,24 , ... , repeated themselves in

cycles. The same happens to the residues of n,n2 ,n3
, ... , on
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division by m~ We need slightly less than this to establish
Result 3: all we need is that two remainders are the sIDne.

Let us assume that

and, since
true when

m x 0 = 0, m
n 10

n > 1.

divides
n = 1, then n k - 1 = 0

i. So the result is

Wh 1 th 2 3 . . f· .en n > , e sequence n,n ,n ,0 •• 1S an 1n ln1te
sequence, but, on division by m, the residues we get can only
take a finite number of values, namely an integer r such that
o ~ r ~ m ~ 1. Hence the residues of' two distinct powers of n
are the same, i.e. there exist positive integers, k and t,
say, such that

Then

k+tn
k+tn

_ n t (mod m).
in = qm,

for some integer q, i. e.

n 1 (nk - 1) = qm.

Since m and n are co-prime, no factor of m can divide n~. Hence

m di'vides n k - 1; which is what we had to show.

Remarks. Taking into account that there are only m possible dis­
tinct residues, modulo m, and observing that, since nand mare
co-prime, no power of n gives residue 0, it follows that the

a a+l a+2 . . 'longest sequence n ,n ,n ,0 •• ' of powers of n, that glve
residues modulo m that are all distinct, is of length m - 1:
there must be a repetition of a previous residue at the mth
term, if there has not been one already. Hence, we can sharpen
the above argument, used for the proof of Result 3, to show
that t and k can be chosen so that k ~ m - 1. Thus we have

RESULT 3'. If m and n are co-prime integers~ then there
is a positive integer k, less than or equal to m - 1, such

that m divides nk - 1.

UNSOLVED PROBLEM.· Find a formuZa, depending on m and n~ to

give the smallest positive k, suah that m divides n k - 1.

In dealing with Mathematical Olympiad problems you are
trying to solve problems that someone else has already solved.
In addition to knowing that they can be solved, yo~ know that
the solutions' are not too long; for, in the competition, you
have only a limited time to find and write out your solutions.
Unsolved problems, that no-one has yet solved, are -qUite a "
different kettle of fish. -

The kind of argument' that was used tO,establish Result 3,
is somet,imes called the Pidgeon-hole P,rinaiple. This states:

If you put more than m Letters into at most m pidgeon­
holes~ then there must be two or more letters in at lea~t one
of the pidgeon-hoZes.

Before continuing to our next problem let us draw another
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conclusion from Result 3 that is extremely useful and. which we
shall use shortly ..

RESULT 4. Let m and
thepe exist integers r

n be co-prime positive integer80
and 8, say, such that

pm + 8n = 1.

Then

Proof· By Result 3, there exist a positive integer k and an in-
teger q such that k 1. Thusqm = n -

(~q)m + (nk-1)n = 1.

Take and k-1 interpr.eting k-l to be 1, whenr = -q 8 = n , n
k = 1. Then

pm + 8n = 1,

as required.

PROBLEM 5 (Function, this issue,p.29). Prove that the expre8sions
2x + 3y and 9x + 5y are divisible by 17 for the same set of in­
tegral value8 of . x and Yo

Solution. Observe that

4(2x + 3y) + (9x + 5y) = 17(x + y).

Hence, if 17 divides 2x + 3y it divides

9x + 5y 17(z + y)' - 4(2x + 3y).

Similarly, if 17 divides 9x + 5y, it divides 2x + 3y, since 4
and 17 are co-prime.

PROBLEM 6 (Function, this issue p.29)~· Detepmine all p08itive in.

tegers n for which 2n + 1 i8 divisible by 3.

Solution. This problem is similar to the Olympiad problem, Problem
2, solved in the previous issue.

Observe that 2
n

+ 1· = 3q if and only if 2n = 3(q - 1) + 2.
Hence 3 divides 2n + 1 if and only if 2n :: 2(.mod 3). It is
quickly checked that, if k > 0,

2 2k 4 k ~ i k = 1 (mod 3)~

and that 22k+1 = 4k x 2 :: 2 (mod 3)

(use Result 2, previous issue). Hence 3 divides 2n + 1, with
n" > 0, if and only if n is odd.

PROBLEM 7 (Function,this issue p.29). Prove that, for any natural
number n, the ezpression

A = (2903)n - (803)n - (464)n + (261)n

is divisible by 1897.
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Before solving this problem, another well-known result,
that we now prove, will help.

RESULT 5. Let
integep. Then

a and d. be integeps and let n be a positive
a - d divides an _ dn .

Ppoof. If n = 1 the result is immediate. Suppose that n > i
and set

S- an- 1 + c n - 2d +- ... + adn - 2 + an - 1 .

Then' eS n + e n - 1d + + c 2dn - 2 + edn- 1a

and dS an- 1d + + e 2dn - 2 + ean - 1 + an.

SUbtract, to get

(e - d)S

and the result follows.

Solution (to Problem 7).

Factorize: 1897 = 7 x 271, and it is easily checked that 271
is prime.

We now iook at the number A, o"f the problem, in two different
ways. One way of looking at it will show that 7 divides A; the
other way will show that 271 divides A. .Since 7 and 271 are both
prime, therefore 7 x'271 = 1897 divides A.

We have

A = B - O~

where

and

B = (2903)n,- (803)n,

C = .(464)n - (261)n.

By Result 5, 2903 - 803 = 2100 is a factor of B, whence 7 is a
factor of B, and similarly 464 - 261 = 203(=7 x '29) is a factor
of 0, whence 7 is a factor of" C. Since 7 divides Band C it
divides B - 0 = A.

We also have

AD, - E~

where

and

D

E

(2903)n - (464)n,

(803)n - (261)n.

Hence, 2903 - 464 = 2439 divides D and 803 - 261 = 542 divides
E, again,using Result 5. But 2439 = 271 x 9 and 542 = 271 x 2.
Hence 271 divides D and E and so divides D - E = A.

Hence 7 x 271 = '1897 divides A. The argument just given
does not preclude the possibility that A =0, when 1897 (and all
other integers divide A). But this degenerate case cannot occur



here because, for all positive n, the first term of A is much
bigger than the remaining three.

To bring Problem 7 up-to-date , to the year 1984, "try the
following problem.

PROBLEM 9. Show that~ fop all positive integers n~ the exppes­
sion

is divisible by 1984~

PROBLEM 10. Devise aopresponding problems in whiah 1984 is pe­
plaaed by other numbers.

There remains one problem to be solved:

PROBLEM 8 (Funation, this issue, p.29). Let a~b.,a~d

tegers with d not divisible by 5. Assume the m
forwhiah

be fixed in­
is an integer

is divisible by 5. Prove that there exists an integer" n for
whiah

is also divisible by 5.

Solution. Since, .for some integer q,

am 3 + bm2 + am +·d = 5q,

we h~ve d 5q - m(am 2 + bm +a).

Thus, if m is divisible by 5, so also is d, contrary to assump­
tion. Hence 5 does not divide m, whence 5 and m are co-prime.

Now apply Result 4 (wi th m and n in that 'result replaced by
m and 5, respectively), to obtain

rm + 5s = 1

for some integers rand s. (In Result4,m was taken to be posi­
tive .. If m is here negative, then repl.ace it by -m, and then
replace r by -r in thIs equation:.) Thus

mr == 1 (mod _5) . (0:)

Hence, using Results 1 and 2 of the previous issue, we have

(am 3 + bm 2 + am + d)p3 = 5r3q _ 0 (mod 5)

i.e. a(mr)3 + b(mr)2r + a(mp")p2 + .dr3 _ 0 (mod 5),

i.e~, using the congruence (a), a + br + ar2 + dr 3 :: 0 (mod 5).

Good hunting for further problems!
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