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In our last issue we began our new Perdix column devoted
to mathematics competitions and to the question of problem-
solving skills. These may be developed by guided experience.
Tricks learned in one context often turn out to be useful in
another. A problem may be the same as, or very similar to,
one that at first sight seems quite different. These are the
matters that Perdix will discuss in each issue. His column
begins this time on p.29 and discusses modular arithmetic.

THE FRONT COVER

This issue's front cover shows two views of a Raba Teasa-
scope. See the article on p.2.
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RABA’'S TEASASCOPE

Our front cover for this issue shows two views of a puzzle,
related to Rubik's cube, designed by the French sculptor,
Raoul Raba. Figure 1 shows the construction. Three overlapping
circles, themselves dissected by circular arcs, are cut from a

Figure 1

flat board as shown. The puzzle has fourteen pieces:

3 pointed cusp pieces, a,b,c,

9 shields or "Tasmanias'" 1,2,...,9,
1 centrepiece,

the surround.

Each of the circles is free to rotate with respect to the
rest of the puzzle. Call each circle after the cusp piece, a,
b or ¢, contained in it. It will be found that there are two
constraints on the motion:

1. The cusp pieces cannot leave their assigned
circles;

2. A circle, if it is to turn, must contain the
centrepiece.
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The first of these constraints allows the notation introduced
above to be applied unambiguously, )

As with Rubik's cube, the object of the puzzle is to upset
an initially ordered design and then to re-establish it. From
any of the allowable disorderings (not all disorderings may be
reached ''legally"),we would like to get back, via some algorithm,
to the originally ordered state, The analogy with the cube is
strong (quite strong, as we shall see below), but it is easier
to "cheat' with the teasascope by pulling it to pieces and re-
assembling it correctly. .

We may now use these same symbols a,b,e to apply to 60°
clockwise rotations of the circles a,b,ec respectively, and
denote by a.b,c, the inverses (anticlockwise rotations) respec-—
tively of these.

Suppose now that operation b is applied. The centrepiece
now occupies the position of piece 2 which is common to cireles
a,b. By the second of our restrictions, these are the only
circles that can now turn. Further application of » restricts
any movement of circles other than b, unless circle b is
rotated so far that operation b results. We thus neglect this
possibility. Application of % immediately following application
of b restores the status quo and is uninteresting. We thus con-

sider a,qa.

If a is applied, only circle a can move and again a degen-
eration has occurred, so we concentrate on the final possibility:
a. This restores the centrepiece to the centre and so we may
proceed. .

We have applied first » and then a, and we write this ab.
(Note the reversal of order here.) We now have permuted the
order of the pieces .

1,2,3,0,4.5,8,9,a

by moving each into the position originally occupied by the next
term in the sequence. This is referred to as an elementary
operation for the puzzle, and is denoted C. (The bottom picture
on the cover is the result of applying operation ¢ to the top
picture.) There are two other elementary operations: _be,_di.e.
4, and ca, or B. Each of these also has an inverse: ¢ = ba,
etc. Strings of these elementary operations may now be envisaged
as for the cube. :

Raba called his device a taquinoseope from the French words
taquiner, to tease, and taquin, meaning puzzle. This dual mean-
ing does not translate precisely into English, "but teasascope is
probably the best approximation. )

We learned of the teasascope through a sister journal Ie
Petit Arehiméde+, with which Funetion has an exchange agreement.

+Available through the library of the Mathematical Association
of Victoria.



. They also sell teasascopes for FF50 and solution booklets (in
French) for FF10 (FF50 = A$10). Complete the order form be-~
low and remit to ADCS~Abonnement-B.P,0222-80002 AMIENS Cedex-
France, with the money, to obtain your teasascope. The edition
is limited to 1000 copies,

The teasascope is patented (French patents, Nos. 77-30347,
79-21130) but this does not prevent one from making one's own,
which is what we did to get the photographs on the cover. The
numbering differs from that of Figure 1 as we wanted to get a
full clock-face. There. are severe problems, however; the
individual pieces must be very exactly cut if rotation as
described is to be possible. Furthermore, a low friction
material is necessary. (Ours, cut from strawboard, is very
poor in . this regard.)

The mathematics of the teasascope have been worked out by
André Délédicq, who has published two articles on the subject.
One is that available from Le Petit Archiméde referred to above.
It is co-authored with Raba and gives a full algorithm for
solution. The other is a beautifully illustrated one in the
French glossy La Recherche (Hargrave Library at Monash and the
State Library of Victoria each have copies).

According to this latter one, Raba began by making a plane
"cube', illustrated there,.akin to but not equivalent to, Rubik's.
More recently, he has produced a modified Rubik's cube precisely
equivalent to a slightly simplified teasascope.

For more on this topic, you could consult his articles:
Autour du cube de Rubik: une nouvelle génération de taquins,
La Recherche, No.128, Dec.1981, p.1450; Le taquinoscope de Raba,
Le Petit Archiméde No.93-94, Sept.1983, p.23.
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THE FORGOTTEN ARTS OF
ARITHMETIC:
THE “LONG DIVISION” PROCESS FOR
EXTRACTING SQUARE ROOTS

J.A. Deakin,
Shepparton College of TAFE

Calculate the square root of 823288249. Find the cube root
of 445943744. A student's nightmare? Yet not so many years ago
such questions regularly appeared on secondary school arithmetic
examination papers. The long division processes for extracting
Square and cube roots of numbers and algebraic expressions are

arts which seem to have been forgotten by all except a few mathe-
maticians of the old school.

>

The procedure for exfracting the ‘square root of a number or
an algebraic expression is made to depend on the identity

(a + )% = a2 + 20p + b2

a® + b(2a + b) .

To find the square root of the expression az + 2ab + b2 , we
note that the expression consists of the sum of two terms:

(i) az , the square of a, the first term of the root, and

(ii) the product of » and the expression (2a + b), consisting
of the second term of the root added to twice the first
term of the root.

In order to extract the square root of the given expression, we
simply reverse the process, and the work may be set out as follows.



a +5b
a az + 2ab + b2
2
2ab + b3
2a + b 2ab_+ b?

2

To extract the square root of the expression ¢ + 2ab + b2, we
proceed as follows.

(1)

(2)

(3)

(4)

(5)

Arrange the terms of the expression in descending powers of
one pronumeral (ag).

The square root of az, a, is written down as the first term
of the root, and its square is subtracted from the given
expression. '

The first term of the remainder is divided by twice the
first term of the root to give the second term of the root, b.

The second term of the root is added to twice the term al-
ready found, to form the complete divisor, 2¢ + b. -

The product of the second term » and the divisor 2q + b
is subtracted from the first remainder.

By repeating steps 3,4,5, the square root of any algebraic ex-
pression may be found.

The rule may also be applied to extract the square root of

ordinary numbers. Thus, to find the square root of 823288249,
we proceed as follows.

2 8 6 9 3

218 23 28 82 49
4 .
48 | 4 23 48 = 2(20) + 8 (cf. above:
3 84 a=20, b=8.)
566 39 28 566 = 2(280) + 6
33 96
5729 5 32 82 5729 = 2(2860) + 9
' 5 15 61
57383 17 21 49.57383 = 2(28690) + 3
17 21 49

In numerical examples such as this, it is customary to omit .the
ciphers in the successive steps The procedure may be summarized
as follows.

(1)

Divide the number into periods of 2 digits. from right to
left, as shown.
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(2) Below the first period on the left, write the largest
square that is equal to it, or less (4), and write its
square root (2) as the first digit of the root.

(3) Subtract the square from the first period, then bring down
the next period to make the first remainder (423).

(4) In a second column to the right, double the quotient so far
as it goes, adding a zero (40).

(5) Now estimate the digit which must be added to this number so
that when the total is multiplied by the same digit, the
product will be the largest possible number equal to or less
than the first remainder (8). Write this digit as the
second digit of the quotient. ’

(6) Write the new product, 8 x 48, under the first remainder,
subtract, and bring down the next period to form the second
remainder.

(7) Repeat steps 4,5,6 until all the periods .are exhausted.

The process can be used to extract the square roots of numbers
which are not perfect squares, and of decimal fractions, to any
desired number of significant figures. It will be instructive
for the reader to use this process to find the square root of

(1 + 2), and to.compare the result with the binomial series ex- _

i
pansion for (1 + x)2®; under what conditions do these series
converge?
In a similar way, an algorithm for extracting cube roots can
be constructed depending on the identity

3 2

(a + )3 = a3 + 322 + 3ap2 + b°
3

@ + p(3a% + 3ab + b2) .

Can you work out the steps in it?

It is of interest that the procedures for extracting square
roots and cube roots are both easier to apply to algebraic ex-
pressions than to numerical examples. In simple cases, the
square roots and cube roots of algebraic expressions can be found
by direct factorization; however, the above algorithms provide a
systematic procedure for use when the factors of the given ex-
pression are not readily found by inspection. Also, with a little

practice, the reader should be able to find mentally the square root

of any perfect square less than 10 000 and the cube root of any
perfect cube less than 1 000 000; this skill was expected of

" students in the author's own junior secondary school days.
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THE LAW OF AVERAGES

The most important questions of 11fe are, for the most part,
really only problems of probability.

P.S. Laplace, 1812.
Théorie Analytique des Probabilités



GAUSS:
THE MATHEMATICAL MOZA
Trevor Halsall, Ursula College, A.N.U.

Many consider Johann Karl Friedrich Gauss to be one of the
three greatest mathematicians of all time. He is classed with
Archimedes and Newton. His work encompassed all branches of
mathematics - an extraordinary feat in itself. Although crowned
as the '"Prince of Mathematicians' Gauss had a very humble back-
ground indeed.

His father, a bricklayer, wanted him to follow in a similar
career. Gauss, however, started to show his genius early. At
the age of three, he is said to have spotted a mistake in his
father's calculations and promptly stated the correct answer.
His schooling was dotted with such achievements, but on a much
grander scale. As a twelve year old, he was already question~
ing the universality of Euclidean geometry. Fortunately, an
assistant at the school, Johann Bartels, had a similar passion
for mathematics. The two studied together. Through Bartels,
Gauss came to the attention of Duke Ferdinand of Brunswick.
From then on, he was educated at the expense of the Duke.

Like Mozart, Gauss showed his genius at an early age and
continued to display it throughout his life. Like Mozart too
he was versatile, conversant with the entire body of the mathe-
matics of his day and indeed greatly extending it. Gauss and
Mozart, each in his own field, reached the very highest levels
of genius, enriching the world of today. The two men were
approximate contemporaries, Mozart being 21 years the senior.
However, Mozart's early death in 1791 occurred before any of
Gauss's major achievements.

At fifteen, Gauss entered Caroline College in Brunswick.
He was gifted at languages and literature as well as mathematics.
A year later, the concept of a non-Euclidean geometry was intro-
duced to him. ’

By 1795, Gauss had invented the method of "least squares'.
It has direct applications in surveying, astronomical calcula-
tions and making predictions based on a large number of statis-
tics. Essentially, it involves finding the best curve to fit
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Gauss entered the University of Gottingen in 1795, It was
here, at nineteen years of age, that he gave the first proof of
the law of quadratic reciprocity (a result that shed light on
the division of a square number by a prime leaving a prime re-
mainder). . He went further and gave a total of six different
proofs. 1In 1796, Gauss decided that his career lay in mathe-
matics (he had been considering philology!).

While at university, he constructed a regular polygon of
seventeen sides using only a straightedge and compass. This
was an unsolved problem left by the Ancient Greeks.  He showed
that only polygons of certain numbers (related to the Fermat num-

n

bers, primes of the form 22 4 1)  of sides could be constructed

by classical methods.' Gauss made many more discoveries in the
field of number theory before returning to Brunswick in 1798.
Here he earned a modest living by giving private tuition. He
disliked teaching and so had few students.

Gauss began a small diary in 1796, which he continued until
1814. It contains 146 very concise statements relating some of
his discoveries. Most are remarkable in themselves although
they were never published in his lifetime. All traces of how

“he arrived at them were destroyed. It took several decades for

mathematicians to provide their own proofs. Many of Gauss's
contemporaries would communicate a result to him only to find
that he had reached the same conclusion many years before.

Gauss is reported to have said that '"...he undertook his
scientific works only in response to the deepest promptings of
his nature, and it was a wholly secondary consideration to him +t
whether they were ever published for the instruction of others."
Many other important and extensive papers were discovered un-
published after his death. "...He could have advanced mathe—
matics by a half-century or more if he had chosen to make his
knowledge available during his lifetime."

Gauss held steadfast to his personal motto "Few, but ripe".
There were untold numbers of brilliant, original ideas in his
head but he chose carefully. He released them to the world only
when he had found an entirely rigorous proof. Despite his
attention to detail, Gauss still managed to publish over 155
papers.

In 1799, he proved the fundamental theorem of algebra.
Simply stated, it says that every algebraic equation in one un-

known has a solution of the form a + bi (where i2 = -1; and
a.b are real numbers). For this, Gauss received his doctor's

TSee Courant and Robbins, What is Mathematics?

t )
Bell, E.T.: Men of Mathematics (Penguin, 1953) p.251.

§ . . . .
Siedel, F. & J.M.: Pioneers in Sceience (Houghton Mifflin, 1968)
p.78.
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degree in absentia from the University of Helmstedt, He

came to the notice of many fine mathematicians with the publica-
tion of Disquisitiones Arithmeticae in 1801. In the same year,
he proved the fundamental theorem of arithmetic: that every
natural number can be represented as the product of primes in
only one way.

After calculating the orbit of a new planet, Ceres, Gauss
gained international fame. He declined an offer of a Professorship
in St Petersburg in 1803. In 1806, when his sponsor, the Duke,
died fighting against Napoleon, Gauss had to find an alternative
means of support. His work on Ceres led to an appointment as
director of the GOttingen Observatory and Professor of Astronomy
in 1807. The wages were minimal but adequate for Gauss's needs.

He remained in these posts until his death. In fact, he only
once slept away from the Observatory - due to a scientific con-
gress in Berlin.

Gauss's first wife, Johanne, died in 1809 after the birth
of their third child. They had been married for four years. It
is said that their first son, Joseph, inherited his father's .
skill for mental calculations. Still grief-stricken, Gauss wed
Minna Waldeck and they had a further two sons and a daughter.
Minna died young and only one of Gauss's six children survived
him.

After many years involved in astronomical discoveries, Gauss
returned briefly to pure mathematics. In 1811, he developed the
theory of analytic functions of a complex variable but never pub-
lished it. The following year saw him publish a masterpiece on
the hypergeometiric series. Logarithms, trigonometric functions
and the general binomial theorem.are just some of the special
cases of this series.

From 1821 to 1848, Gauss ventured into the field of geodesy.
He was scientific adviser to the Hanoverian and Danish govern-
ments for an extensive geodetic survey. From his investigations
into certain types of curved surfaces, Gauss began the branch of
mathematics called differential geometry. He devised a helio-
graph, which uses the sun's rays as straight lines to mark the
earth's surface. This allowed more precise trigonometrical
measurements of the planet's shape to be calculated. Gauss made
numerous original contributions to the theories of surfaces and
conformal mapping (that is, preserving angles (at, for example,
road intersections) on a two-dimensional map). The latter has
important applications in electrostatics, hydrodynamics and
aerodynamics.

Gauss concentrated on mathematical physics between 1830
and 1840. In 1832, he introduced a logical set of units for
measuring magnetic phenomena. Working with W.E. Weber, he in-
vented the declination instrument and the bifilar magnetometer.
In the following year, they devised an electromagnetic telegraph
system which sent messages one and one quarter miles. Samuel
F.B. Morse patented his telegraph four years later. Gauss's
instrument could have made him a fortune if he had been interested
in developing it commercially. ' However, "he was not inspired by
the prospect of practical applications, for he sought truth for
its own sake, finding his reward and pleasure in the success of
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his efforts alone.”+

Terrestrial magnetism was another area in which Gauss
'specialised'. He instituted the first observatory designed
specifically for work in that field, His calculations con~
cerning the location of the magnetic poles were amazingly
accurate. It was Gauss who pointed out that the wunits of
quantities such as density and energy could be expressed in
terms of a few fundamental units (for example, length, mass
and time). :

The endeavours of the 'Prince of Mathematicians' were both
extensive and ahead of his time, His work helped to establish
the branch of pure mathematics. He was the first mathematician
to pay due attention to the question of the convergence of in-
finite series. He made many and deep contributions to number
theory (e.g. the theory of Fermat numbers), to geometry,
topology and the theory of optical instruments. His work on
the capillary action of a fluid led eventually to the principle
of the conservation of energy. He worked out theories of per-
turbations that helped towards the discovery of the planet Nep-
tune. His methods for astronomical calculations are still in
use today.

As can be surmised, his intense concentration resulted in
reduced contact with humanity. He did find time to read the
classics of European literature and keep up with world politics
in all the newspapers. His hobbies included foreign languages
and the new sciences such as botany and mineralogy. A fascina-
tion with numbers led to a large collection of numerical records.
They included such oddities as the length of lives of famous men
in days. As regards his disposition, it is generally agreed that,
"Gauss was deeply religious, aristocratic in bearing, and con-

servative".+

Sartorius von Walterhausen wrote, "As he was in his youth,
s0 he remained through his old age to his dying day, the un-
affectedly simple Gauss. A small study, a little work table
with a green cover, a standing-desk painted white, a narrow
sopha (sic) and, after his seventieth year, an arm chair, a
shaded lamp, an unheated bedroom, plain food, a dressing gown
and a velvet cap, these were so becomingly all his needs".'T

Even in old age, his agile mind constantly searched for
knowledge. He taught himself Russian at the age of sixty-two.
Within two years, he was writing and speaking the language
fluently. At sixty-eight, Gauss completed the huge task of re-
organizing the Fund for Widows and Children of Professors. Two
years later, he gave his fourth distinct proof of the fundamental

1.E'ncyelapaedia Brittanica-Macropaedia (Volume seven, 1979) p.967.

++Be11, E.T.: Men of Mathematics (Penguin, 1953) p.269.
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theorem of algebra. The city of Gbttingen made him an honorary
citizen. :

Early in 1855, Gauss began suffering from an enlarged heart
and shortness of breath. The symptoms of dropsy appeared. He
passed away peacefully in February at seventy~eight years of age.
Coins were struck in his honour and a statue was raised.

His name lives on in many scientific laws and theorems.
Magnetic flux density has the gauss as its unit. The 1001st
planetoid discovered was named Gaussia. Most of all, he is
remembered as the last man to contribute significantly to all
branches of mathematics.

It is unlikely that his achievements will every be surpassed.
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NOT SO SURPRISING AFTER ALL!

Eddington once told me that information about a new (newly
visible, not necessarily unknown) comet was received by an ob-~
servatory in misprinted form; they. looked at the place indicated
(no doubt sweeping a square degree or so) and saw a new comet.
(Entertaining and striking as this is, the adverse chance can
hardly be put at more than a few times 106.)

J.E. Littlewood, 4 Mathematician's
Miscellany, 1953.
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FAMILY RELATIONSHIPS
AND GRAPHS
Jacqueline Wong,
Student, Monash University

In graph theory, a graph is considered to be a set of
vertices (usually drawn as dots or small circles) and an
associated set of edges (drawn as lines). Each edge must
begin at a vertex and end at a vertex (either the same vertex
or a different one); a vertex may or may not be attached to
the rest of the graph by edges. Graphs are characterised in
various ways. A simple graph is one in which there are no
loops (edges which begin and end at the same vertex) and no
more than one edge between each pair of vertices; a connected
graph is one which cannot be divided into two isolated parts.
A complete graph has every vertex of the graph connected to
every other vertex; a complete bipartite graph consists of two
disjoint sets of vertices, v, and vyt each vertex of v,

being connected to all vertices of Vs and each vertex of v, to

all vertices of vy - We will see an example of this below.

(a) (b) (c)v
simple ;; non-simple

(e) ® '
(d) ()
non~connected
connected
complete
(h)r “““““““““““ 1
(g)
| v |
Lo - __*
| » I
| b

non-complete o

complete bipartite
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Note that some features of the graph (such as the arrange-
ment of the vertices and the shape and length of the edges) are
not important; if two edges are shown in a graph diagram as
crossing at a point which is not a vertex, they are treated as
if they ‘did not touch.

A graph is essentially an abstract diagram of the relation-
ships between a set of points (vertices), but it may represent a
great variety of physical or mathematical concepts - for example,
a map of towns and their connecting roads, an electrical network,
a chess problem. Here, I consider the relationships between
members of a family and how they can be represented by a graph
diagram. In general the graphs of family relationships are
.simple, usually connected, and can be split up into a series of
bipartite (mostly connected) subgraphs.

To consider family relationships as graphs let people be
vertices, and lines of descent (parent to child) the edges, (I
have put in "marriage' relationships as dashed lines - these are
not really part of the graph, but serve to tie parts of it to-
gether e.g.,. to include someone who has married into a family
but left no descendants.)

We have to impose a restriction on the arrangement of the
vertices - they must be so ordered that we can see whether or
not people are in the same generation, and, more importantly,
whether we are travelling "up" or '"down' the family tree as we
traverse the edges. (It would be possible to label lines of
descent with arrows pointing from parent to child, in which
case we would speak of going ''back' up the tree or "forward"
down the tree). For clarity, I will put vertices representing
people of the same generation in a horizontal line, those of
one generation earlier in a row above, those of a generation
later in a row below.

Note that each person should have 2 edges going 'up" the graph
(connecting to his parents); each person has as many edges going
"down' the graph as they have children. "Marriage'" lines are
the only horizontal lines in the graph.

Then a path of length 2 (i.e. containing 3 vertices) with
all steps down goes from grandparent to grandchild, and if the
steps are all up, grandchild to grandparent. A path of length
3 with 1 step up then 2 down connects aunt or uncle to nephew
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or niece, and with 2 steps up then 1 down, nephew or niece to
aunt or uncle. If all steps are down, the path connects great
grandparent to great grandchild and vice versa if all steps are up.

Paths of length 4 connect great great grandparents to great
great grandchildren or vice versa and there are also these
possibilities: .

i . -, uncle niece |

1 step up then 3 down: great aunt } to grand.nephew
. nephew aunt

3 steps up then 1 down: grand niece } to great uncle

2 steps up then 2 down: the two vertices represent first cousins.

As to other cousins, English family relationships have a
rather confusing nomenclature for the more distant cousins, but
by this method we can define them fairly accurately. If the
path lengths up and down are equal, the two people are 1st, 2nd,
3rd cousins, etc. if the path lengths are of 2, 3 and 4 steps
respectively. If the path lengths (up and down) are unequal,
the shorter path decides if people are 1st, 2nd etc. cousin (by
the same rule as above) while the difference between the path
lengths tells how many times "removed' they are.

E.g. (a) 2 up, 3 down - 1st cousin, once removed,
(b) 4 up, 6 down - 3rd cousin, twice removed.

(Notice that the "removed'" number is really an indication of
‘difference in generation level -~ one of the cousins in (b)
belongs to a generation two steps earlier than the other.)

The "nuclear family" forms a complete bipartite graph of
the form Uz n where n is the number of children:

e.g.

U2’4.

It should be possible, for any given family, to isolate from the
total graph a subset of the form of the above ~ i.e. a family
"tree'" is composed of interlocking family groups.

. Tracing the relationship between any two individuals in the
graph consists in counting the path length between them, noting
(a) the number of edges "up'" and "down" (b) how the path changes
from "up" to "down'" (c¢) in some cases, the number of paths
joining them.

Parents and children are. connected by a path length of 1,
going up or down depending on how we view the relationship. In
this graph, 1

—— — 2
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1 is parent of 3 (1 step down), and 3 is child of 1 (1 step up).

Sisters and brothers are connected by paths 1length of 2,
one step up and one down. Full siblings will each be connected
by two different paths, half-sisters and brothers by only one.
Step-brothers and sisters are only connected by descent lines
if you go up, then down then up then down (or across the
marriage lines). If you have to go down then up at any stage,
no blood relationship exists.

For example this graph

shows a family with two divorced parents each with one child
marrying and producing two further children. 2 and 3 are the .
parents, 1 and 4 their divorced spouses; 5 and 8 the children
of the previous marriages, 6 and 7 the children of the present
marriage.

6 and 7 are full siblings (2 different pathsof length 2:
6-2-7, 6-3~7), while

5 and 6 are half-brothersl(one path of length 2: 5-2-6).
5 and 8 are step-siblings (no path of length 2).
The only ways to get from 5 to 8 are
5 up 2 down 6 up 3 down 8
5 - 2 - 7 -3 - 8
5 -2 - 3 -8
The fact that you have to change direction from '"down" to
"up'", or else go across the marriage line, means that 5 and 8
are not related '"by blood'", but only "by marriage’.
(Similarly, a child's two sets of grandparents are not

related by blood, because to reach one from the other, you
must go down then up:
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Here is a more complicated example.

II2 and II3 are siblings, as are III2, III5, III7 and III8; IIIQ,
III111 and III13 and IV9, IV10, IV1l and IV12 (etc.).

II4 and II5 are half brothers (and the relationships between the
descendants of II4 and II5 should probably be designated "half"
relationships e.g. half-uncle, half-cousin etc., but this is
usually ignored, and certainly, from the point of view of near-
ness of relationship, becomes 1ess and less meaningful as you

go down the generations).

I3 and 14 are the common.grandparents of III2, III5, III7 and
ITI8 and of III9, III1l1l and III13, I1 and I2 are grandparents
of III2, III5, III7 and III8-but not of III9, III1ll and III13.

I12 is III9's aunt; II1 can be described as III9's “uncle by
marriage" - descriptions such as '"my cousin's father" or some-
thing of the sort are ambiguous and not usual in English.

II19 and III5 are first cousins.
IV9 and III5 are first cousins once removed.
V1l and III5 are first cousins twice removed.

Note that III3 is not related to the family except by marriage.
He could only be described as "my daughter's first husband" or
something of the sort.

In English usage, except for the case of aunt, niece,
uncle, and nephew, it is not necessary to specify the gender
of the people concerned in order to specify their.relationship.
(Gender-specific terms are common, of course. but there are
""non-sexist' terms available,e.g. grandparent, sibling.)
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In some other cultural systems, the sex of the two people con-
cerned is very important, as may be whether they are related
through a female or a male. This is true of Chinese family
nomenclature; as well, one needs to know which of the two people
is older or younger, and sometimes where they rank in their own
generation. For instance, there are different terms for: an
uncle who is one's father's older brother; an uncle who is one's
father's younger brother; an uncle who is one's mother's older
brother, etc. '

This makes it much more difficult to reduce the family
relationship to a graph. One can write different symbols for
male and female e.g. O for female O for male, as is common in
most ways of writing family trees; but to include information
about relative ages one would have to introduce some sort of
horizontal stratification into the generations, e.g. older
persons are always found to the right of younger persons - but
as cousin's families tend to overlap a great deal in age, this
would produce a very complicated and confusing graph.

Another complication sometimes arises where there is
(between cousins) marriage across the generations, e.g. between
IV6 and V1 in the example given above. Offspring of such a
marriage are related to the other members of the family in two
different ways, which can only be accurately specified by giving
both relationships - 'through the mother" and '"through the
father" [like J.R.R. Tolkien's characters Frodo and Bilbo
Baggins, who were '"first and second cousins, once removed either
way, as the saying is'"].

® @ o 6 © 0 K 0 W o ® © W

MATHEMATICS APPLIED

I am convinced that the future progress of chemistry as an
exact science depends very much indeed upon its alliance with
mathematics.

A. FRANKLAND

In mathematics we find the primitive source of rationality;
and to mathematics must the biologists resort for means to carry
on their researches.

A. COMTE

In the near future, mathematics will play an important part
in medicine; already there are increasing indications that
physiology, descriptive anatomy, pathology and therapeutics
cannot escape mathematical legitimation.

’ M. DESSOIR

The permeation of biology by mathematics is only beginning,
but unless the history of science is an inadequate guide, it
will continue.  Mathematics may very often help in proving the
obvious, but the obvious is worth proving when this can be done.

J.B.S. HALDANE
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LETTERS TO THE EDITOR

NEWTON'S FIRST THEOREM

The square root of every odd number that is not a perfect
Square generates (in a way I will make clear) at least one in-
finite set of Pythagorean triads such that for every triad in a
given set there is the same mathematical relationship between a
pair of corresponding sides in that triangle, and such that that
same mathematical relationship is unique to that ‘particular set,
and hence to the square root of that particular odd number.

Every odd number can be written in the form (2n = 1) ,
where n 1is a whole number. For v3 and V5 the relation-
ship is that the shortest side and the
hypotenuse are approximately in  the
ratio (n - 1):n . If that were the
precise ratio, then V3 and /5 would
not be irrational. The Y3 triads are
a different set from the 5 triads,

(n-1 ¢ because the ratios are not the same.
For V3 the ratio is approximately 1:2,
(i) Van-1 while for 5 it is approximately 2:3.

For the square roots of the other
odd numbers the relationship is that the
second shortest side and the hypotenuse are approximately in the
ratio (n - 1):n, provided that that odd number is not a per-
fect square.

Does the theorem hold for even
numbers? Yes, if and only if that
even number is not a perfect square,

and is of the form rz + 1, where
r is an integer.

(ii)
The square root of an even num-
ber with the above properties
generates only one infinite set of
Pythagorean triads. If the square
root is of the form r? -1,
it has as its mathematical relation-
ship that the shortest side and the

hypotenuse are approximately in the
ratio 1:»r .

If the square root is of the
/2

form P | T omrm Al o T 4




20

has as its mathematical relationship that the sides which
form the right angle, that is the two shortest sides, are
approximately in the ratio 1:r .

The square root of an odd number which is not a perfect

square and which gives the form ¢r2 + 1 where » is an integer
generates not one but two infinite sets of Pythagorean triads,
with the mathematical relationships that appertain to each set
being distinctly different, apart from the case of ¥3, which
is a special case for the following reason.

If n in diagram (i) and » in diagram (ii) are such that
n =1r = 2, the triangles are identical. TFor every higher
value of 7 and »r the two triangles in diagrams (i) and (ii) are
quite different triangles. That is why the two sets of triads
generated form a single set with the relationship between the
hypotenuse % and the shortest side s being

h=2s F1.

If the hypotenuse was precisely double the shortest side,
and there was not this discrepancy of just one unlt then V3
would not be irrational.

I will now make clear just 1n.what way the Pythagorean
triads are generated by generating them for the square root of
three.

.

Let =« = 3. Subtract 4 from both sides of the equation
xz -~ 4 = -1". The left-hand side is the difference of 2 squares,
(x - 2)(x + 2) = =1,
A € -2=-—"t = -1
x + 2 4 + {(x + 2) - 4}
. S
4 + (x - 2)
= -1 T (substituting for
4 - g >—%v (x-2) from the left-
4+ (= 2) and side)
- -1
4 - 1
4 - 1
a - L.
4 -_ ... ad infinitum,.

If the rth rational épproximation to this infinite fraction is

- %, then the (r+1)th approximation is - ) 1 - = (4;}n) = 4£in'
-4 T d
. C M1 1
The first approximation - is obviously - -
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-ZZ—=—_]—._6.—--—]T_=—T5_;—T=-‘BE;-E—=__§6§ and so on.

Now write each fraction as a parameter pair (p,m), giving .
(1,4); (4,15); (15,58); (56;209); and so on. Use the well-known
formulae for generating a Pythagorean triad from a pair of inte-
gers (p,m) that do not have any common factor, That is

(mz + pz); (m2 - p2); and 2mp . (1,4) gives the triangle

(8,15,17) Now 17 = (2 x 8) + 1, and the triads obey the
general law % = 2g + 1, when % is the hypotenuse and s is the
shortest side.

Observe that |z - 2| = [¥3 - 2] < 1. My routine works
only when the modulus of the infinite fraction is less than one,
and it was not necessary to go negative in order to achieve that.
What can we do to obtain the other infinite set of triads?

The above fractions form an infinite sequence in which the
fractions tend to the limit (V3 - 2) as » » ». To obtain
the infinite sequence in which the fractions tend to the limit
Y3 as r tends to infinity, it is only necessary to add 2 to

. 1 7. 4 - 26
each of the above fractions. Thus - z* 2 = i’ — 15t ? =35
and so on. Taking (4,7) as the first parameter pair (p,m),

2 2 2

generate a triad using formulae m“ + p2; m p~; and 2mp .

49 + 16 = 65; 49 - 16 = 33; and 2 x 7 x 4 = 56 .

Observe that 65 = (2 x 33) - 1, and the triads obey the
general law % = 2s - 1, where % is the hypotenuse and s is the
shortest side.

These two sets are different, and yet they may also be
viewed as one set with one missing triad in one case, the (3,4,5)
triad. The mathematical relationship for this one set is
h = 2sF1, where in each triad the hypotenuse is double the
shortest side alternately minus or plus one, being minus one for
the first and missing (3,4,5) triangle.

The most significant thing about this missing 3,4,5 triangle

is that 32 + 42 = 52 = 25, and I have discovered the second most

significant thing about it, that the perimeter 3 + 4 + 5 = 12 .

For just as the Newton sequence for V3 is 1,4,15,56,...
taking four times the previous term and subtracting the term
before that to get the next term in the sequence, the sequence
for Y2 is 1,2,5,12,... taking twice the.previous term and
adding the term before that to obtain the next in the sequence.

What are the next four terms in the sequence?

(i) (2 x 12) + 5
(iii) (2 x 70) + 29

29; (ii) (2 x 29) + 12
169; . (v) (2 x 169) +70

70;
408.

If the next triangle in the set generated by V2 after
the 3.4,5 triangle has a perimeter of 70 and a hypotenuse of 29,
we shall discover that this gives a 20, 21, 29 right-angled

triangle, for 202 + 212 = 292.
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And if the next triangle in this sequence after that has a
perimeter of 408 and a hypotenuse of 169, we shall discover
-that this gives a 119,120,169 right-angled triangle, for

1192 + 1202 = 1692 .

What is the mathematical relationship that is true for a
pair of corresponding sides in every one of these 3 triangles -
(3,4,5); (20,21,29) and (119,120,169) ? For every triangle in
this infinite sequence you will discover that the two shortest
sides forming the right angle differ by only one unit.

S.J. Newton,
348A Bourke Street,
Darlinghurst, N.S.W.

[Pressure of space has forced us to omit many other
interesting details supplied by Mr Newton, following his
earlier letter (Function, Vol.8, Part 1). PNewton's First
Theorem generalises a similar result, referred to in VOl.5,
Part 2 as Cohen's First Theorem. Eds.]

PROBLEMS AND CORRECTIONS

Two problems, not numbered as such, were posed on p.3 of
Funetion, Vol.8, Part 1. Here are the solutions.

First, let z = 1-2345678001234567890... . Clearly
1019 - x = 12345678900, and so
' _ 12345678900 _ 1371742100

1010 _ ;  IIimima

This fraction cannot be simplified, since

2 2

1371742100 x 5% x 3607 x 3803

2

and 1111111111 11 x 41 x 271 x 9091 .

Secondly, to prove Colin Fox's Theorem 1, note that
’ 2

As n+», this will behave like (sec en+1)/(sec en) , i.e.

(cos en)/(cos en+1).
But cos en = cos(90 - 10“”)° = sin(lo‘n)°, and similarly
cos 0.4 ='sin(10_n-1)° . But, for such small angles, we may

approximate the sines as

sin(10”")e

[

(1%6) x 107" | etc.
and from this it follows that

Lim tan en+1
tan 6
n

1>

= 10 , as stated.
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On p.25, a minor correction is needed. (a + b + 0)2 should

read (a + b + ).’ It would be possible to take an n~dimen-
sional analogue to give the kth "layer" of the sum to n terms of
the kth power. These coefficients are given by k!/(a1!a2!...an!),

where the numbers a; sum to k and each is non-negative.

Finally, a word on the problem of finding 100 consecutive
composite numbers. The smallest such set begins with 370262 and
continues for 111 comnsecutive integers. I found this by leaving
a computer searching for a couple of days. .

J. Ennis
Year 12, M.G.S.

[For the last paragraph, refer to earlier accounts in
Function, Vol.7, Parts 3,4,5, The improvement given here is
enormous. Eds.)

" MORE ON THE PAPERMOBILE

I would like to draw attention to the article by Jean-Pierre
Declercq entitled "A 'Papermobile' to Multiply Polynomials" in the
August, 1982, issue of Function.

Since, for example,

22 + 922 + 8z + 4 = 1984 if z = 10,

the "papermobile' method may be used to multiply base 10 numbers.
Example: 1984 x 123 .

Write 1 9 8 4 on a sheet of paper. Reverse the digits of
123 and write 3 2 1 on the papermobile, a narrow strip of paper.
Place the papermobile as shown

and multiply the adjacent digits, i.e. 1 x 1 = 1, Then move
the papermobile to the right one space at a time and calculate’
the sum of the products of adjacent digits. The final stage is
shown .
1 9 8 4
3 2 1
1 11 29 47 32 12

Now, "reallocate' the place values, i.e. 12 = 10 + 2, 33 = 30 + 3,
50 = 50 + 0 and so on, giving the product

2 4 4 0 3 2
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The method can, of course, be applied to numbers in other
bases.

My students (at all levels) have enjoyed using the ''paper-
mobile' algorithm.

David Shaw
Geelong West Technical School
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Oh dear! And after such a hooray-feminist article, too!

I1.D. Rae
Monash University

[Function is properly chastened. Eds.]

HAMILTON THE STONE-CARVER

In Function Volume 5, part 3, page 27, you quote from Sir
William Rowan Hamilton (via Crowe's A History of Vector Analysis)
some comments he recorded about his discovery of quaternions.

You then add: )

"Bell (in Men of Mathematics) has Hamilton pulling out a
pocket-knife and carving the basic table on the stone of the
bridge, but this story (like much else in Bell, see p.27) would
seem to be apocryphal."

The following is . a quotation from a letter by Hamilton to
his son Archibald.

"In October, 1843, having recently returned from a meeting
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of the British Association in Cork, the desire to discover the
laws of the multiplicatiom of triplets regained with me a certain
strength and earnestness, which had for years been dormant, but
was then on the point of being gratified, and was occasiocnally
talked of with you. Every morning in the early part of the above-
cited month, “on my coming down to breakfast, your brother William
Edwin and yourself used to ask me, 'Well, Papa, can you multiply
triplets?' Whereto I was always obliged to reply, with a sad
‘'shake of the head, 'No, I can only add and subtract them.' But
on the 16th day of the same month - which happened to be a Monday
and a Council day of the Royal Irish Academy - I was walking in
to attend and preside, and your mother was walking with me, zlong
the Royal Canal, to whick she had perhaps been driven; and al-
though she talked with me now and then, yet amn under-current of
thought was going on ir my mind, which gave at last a result,
whereof it is not too much to say that I felt at once the impor-~
tance. An electric circuit seemed to close; and a spark flashed
forth, the herald (as I foresaw immediately) of many long years
to come of defimitely directed thought and work, by myself if
spared, and at all events om the part of others, if I should

ever be allowed to live long enough distinctly to communicate

the discovery. I pulled out on the spot a pocket-book, which
still exists, and made an entry there and then. Nor could I
resist the impulse - unphilosophical as it may have been - to

cut with a knife on a stone of Brougham Bridge, as we passed it,
the fundamental formula with the symbols, £,7,k;

2222122 k= a1,

which contains the solution of the Problem, but of course, as an
inscription, has long since mouldered away. A more durable
notice remains, however, om the Council Books of the Academy for
that day (October 16th, 1843), which records the fact that I
theti asked for and cbtained leave to read 2 paper on Quaternions,
at the First General Meeting of the Session: which reading took
place accordingly on Monday the 13th of November following. "t

This extract from a letter of Hamilton disposes of the doubt
you raise about Bell's story. One wonders whether the denigrating
comment "like much glse im Bell"” that you throw.in, has any better
Jjustification.

We offer for your comsideratior the following comment of
E.T. Bell (Preface, The Development of Mathematics, 2nd Ed.
McGraw-Hill, New York, 1945).

"It has, unhappily, been necessary in writing the book to
consider many things besides the masterpieces of mathematics.
Rising from a protracted and not always pleasant session with the
works of bickering historians, scholarly pedants, and contentious
mathematicians, often savagely contradicting or meanly disparaging
one another, I pass on, for what it may be worth, the principal
thing 1 have learned to appreciate as never before. It is con~
tained in Buddha's last injunction to his followers:

3elieve nothing on hearsay. Do not believe im traditions
because they are oid, gr in anything on the mere authority of
myself cr any other teacher.

Bamford Gordon, 7 Burnside Ave. Hamilton

+ ; . . =

from Sir W.R. Hamilton to the Rev. Archibald H. Hamilton, August S,
1865. See R.P. Graves, Life of Hamilton, Volume II, p.434, arno
Press, New York, 1975.
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PROBLEM SECTION

The problems in Vol.8, Part 1 brought a most gratifying
response. Here are the solutions.

SOLUTION TO PROBLEM 8.1.1.
The problem read:

How man§ permutations are there of the digits 1.2,3,...,8
in which none of the patterns 12,34,56,78 appear?

Jonathan Ennis (Year 12, M.G.S.) writes:
"There are 8! permutations of 8 digits. Of these, 7! will

contain the pattern 12 and similarly for the other patterns. But
some of the 4 x 7! permutations just considered contain two

such patterns, so we have overcounted by (g) x 6! . But again
some of the permutations may contain three such patterns, so we
have undercounted by (g) x 51 . Finally, 4! permutations will

contain all four patterns.

] Thus the total number of allowable permutations is
8! - (i) X T+ (g) x 61 - (g) x 51 + 41 , which works out to be
24 024

" The problem may easily be generalised to the case of 2m
digits and the pairs 12,34,...,(2m-1)2m . "

SOLUTION TO PROBLEM 8.1.2.

Ten people form the queue at a bank. The first has a bank
balance of one cent, while the tenth has a little over
$5 million.  The accounts of the others are each computed by
adding ten elevenths of the account of the person ahead to one
eleventh of the account of the person behind. Can the sixth
person afford to buy a new car?

Let T, be the number of dollars in the nth person's
account. Then

3
|

= (10/11).7, 5 + (1/11).T,_,

[

®

=3
I

=-10.7, o, + 11.7,., .

David Halprin (P.0O. Box 23, Carlton North) now solved this
equation to find

T =4 + 1078,
n

where A4,B are constants. But T1 = 001 and TlO is a little
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over 5 000 000 . So

A + 10B = 0-01
4 +10%% = 5 x 10° .
These relations give 4 = 0-01, B =5 x 10'"4 , which may then
6

be checked. Then T6 = 10°B = 500 . This will not at today's
‘prices buy a new car.
Jonathan Ennis, who also solved the problem by a slightly

different method, using approximations earlier in the calculation,
remarked that T6 would not pay for a new car, but the account's

owner might try holding up the teller!

SOLUTION TO PROBLEM 8,1.3.

We asked for the value of

(9 + 4/5)1/3 + (9 - 4/§>1/3

David Halprin énd Jonathan Ennis both reasoned as follows.

(a + b>1/3 + (a - b)1/3 s

then SS a+b +a->b + 3.(a + b)Z/B‘ a - b 1/3
+3.g+p 8 4 _p 23

Therefore 53 2.a + 8.<a2 - b2)1/3.<(a + b>1/3 + (a - b)lls)

2.a + 3.S.(a2 - b2>1/3

If S

]

In this problem a« = 9 and b = 4./5, a2 - 52 = 1, and so
53 - 35 - 18 =0. Thus (S - 3)(s2 + 35 +6) = 0, which gives
S = 3 as the only real root.

A similar approach was used by R.P. Hale of Deakin University
and it was most likely this method of attack that the editors of
Mathematical Spectrum had in mind when they proposed the problem.
There is a formula for solving cubics and, in the case of the
cubic reached above, it gives the expression in the problem. How-
ever, we got three other answers also.

- Devon Cook, editor of Secientific Australian, put

(a + b/5>3 =9 + 4¥5 to get two simultaneous cubics

3 2 3

a3 + 15ap2 = 9, 342 + 5b° = 4.

He then put a = mb and found

2

amS ~ 27m2 + 60m - 45 = 0.

This equation has one real root: m = 3. This enabled a,b
_to be found and so the problem was solved.
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Leigh Thompson (RMB 5110, Bairnsdale) had yet another-
approach. Having been working with the Golden Ratio (1 * V5)
and investigating its successive powers, he noticed that

{%(1 £ /5)}6 =9 & 4/5 .
This meant that .
(9 x 4/5)1/3 - {%(1 s /5)}2 = (3 + V5),
and so the problem fell out!

Ricardo Montebon (Zamboanga College, Philippines) had yet
another approach. Setting

(9 + 4/5)1/3 =z x /y (1)
he multiplied to find

@2 -y = (81 - 80>1/3 =1 (2)
(by the difference of two squares in each side), He also cubed
Equation (1) to find
3

9 + 4Y5 = g +3x2/y+3:ny+y/y

and equated the rational parts to get

9 = 2% + 3zy . (3)

He then solved Equatlons (2), (3) by ellmlnatlng y and using

trial and error to find =x = %, Yy = Z’ giving now the result
as above.

SOLUTION TO PROBLEM 8.1.4,

111 players enter a tennis tournament. How many games must
be played to determine the winner? .

As such tournaments always adopt the.convention that a
player who loses one game is eliminated, the winner is the only
player to have sustained no losses, whlle all other players have
sustained precisely one. Thus 110 matches have been played.

This solution was submitted independently by Jonathan Ennis
and by David Dyte (Year 10, Scotch College).

We hope our readers can do as well with this set of problems.
PROBLEM 8.3,] (Submitted by D.R. Kaprekar.)

In the year 1949, a man turned 67. His four sons turned 37,
31, 29, 23 respectively. All five reached prime age in a prime

year. It was the golden year for that family. When was or will
be their next golden year?
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PROBLEM 8,3,2 (Submitted by Garnet J, Greembury.)

Are there Pythagorean triangles whose perimeters equal
their areas?

PROBLEM 8,3,3'(Submitted by Jonathan Ennis.)

Toss a fair coin 100 times and keep a tally of prégressive
numbers of heads and tails. How many times (on average) will
the lead change from one to the other?

PROBLEM 8.3,4 (Submitted by Jonathan Ennis.)

Find a cuboid such that its sides and the diagonals of its
faces all have integral lengths. Alternatively, prove no such
cuboid exists.

PROBLEM 8.3.5 (¥rom The Mathematical Gazette.)

In a common type of logic-puzzle, we are confronted with
two categories of person: those who always lie and those who
always tell the truth. A traveller reached a land in which the
inhabitants all fell into two such classes and, seeing a house,
he wished to ascertain whether it was an inn where he could spend
the night. Approaching two people, he asked the first, but
received a cryptic reply, insufficient to give him his answer.
He addressed exactly the same question to the second person and
received exactly the same reply. He then knew the house to be
an inn. . o

What was the cryptic reply?

® ©® o @ ™ @ 0 ©

PERDIX

The 1984 International Mathematical Olympiad will take place
from July 2 to July 10 in Prague. Australia will send a team of
six.

The Australian government will provide no help towards costs.
In 1983 Algeria, Austria, Brazil, Bulgaria, Columbia, Cuba,
Czechoslovakia, East Germany. Finland, France, Great Britain,
Hungary, Italy, Kuwait, Luxembourg, The Netherlands, Poland,
Romania, Sweden, U.S.S.R.. U.S.A.,Vietnam, West Germany, and
Yugoslavia each provided full financial support for correspondence
instruction, regular training sessions, final training camps for
up to four weeks' duration together with all travel costs for team
and officials. Except for three countries, namely Belgium. Morocco,
and Spain, where I have been unable to find out what government
support was given. I find that every country except Australia sub-
stantially supported its team. DO WHAT YOU CAN TO URGE AUSTRALIAN
GOVERNMENT SUPPORT FOR ITS MATHEMATICAL OLYMPIAD TEAM. :

Support for the International Mathematical Olympiads is not
just support for a game. Although only a handful are selected
for the final team the process of finding the right team involves
extra training in mathematics being given, or offered, virtually
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to all high school students, The consequent great interest
generated in mathematics directly helps all Australian techno-
logical and scientific development. Australia has made a magni~
ficent start in the Olympiads. We must make certain that the
sustaining interest in mathematics continues and that Australia
has the best team to compete for it internationally. There must
be no possibility that anyone is excluded from the Australian
team because they cannot personally pay all the costs involved.
URGE THE AUSTRALIAN GOVERNMENT TO SUPPORT THE AUSTRALIAN MATHE-
MATICAL OLYMPIAD TEAM. )

R

If you wish to try to get into the Australian Olympiad team
enquire at your school. In each State there are arrangements for
selecting possible members of the team. It is important to prac-
tice problem solving and the training sessions set up in various
centres in each State provide you with the opportunity to prac-
tice and also offer you guidance to improve your skills. If you
cannot get the information you need from your school, contact the
State organiser in your State. Here are their names and addresses.

New South Wales Mr G.R. Ball,
Department of Pure Mathematics,
Building S07, Sydney University,
SYDNEY, 2006.

Tasmania : Mr J. Kelly,
Mathematics Resources Centre,
2 Edward Street,
Glebe, 7000,

Victoria Mrs Judith Downes,
46 Hill Road,
North Balwyn, 3104.

South Australia/ Mr V. Treilibs,
Northern Territory Mathematics Project Team,
" Wattle Park Teachers Centre,
424 Kensington Road,
Wattle Park, 5066.

Western Australia Dr Phillip Schultz,
Department of Mathematics,
University of Western Australia,
Nedlands, 6009. '

Queensland o : Dr N.H. Williams,
Department of Mathematics,
University of Queensland,
St Lucia, 4067.

Australian Capital Dr R.A. Bryce,
Territory Department of Pure Mathematics,
A.N.U.,

‘P.0. Box 4, Canberra, 2600.

* ¥k ok ok
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The International Commission for Mathematical Instruction
organises an International Congress on Mathematical Education
(ICME) every four years. This year (1984) it is being held for
the first time in Australia and will take place in Adelaide from
24 -August to 30 August. Over 2000. mathematicians and teachers
of mathematics are expected to attend.

At ICME 1984 there will be six separate sessions devoted to
discussing mathematical competitions. The sessions are entitled:
The Creation of Competition Questions; National Mathematics Com-
petitions; A Kaleidoscope of Competitions; The International
Mathematical Olympiad; Why do 1 in 55 Australians enter a Mathe-
matics Competition? [Quarter of a million took part in such com-
petitions in 1983.1; World Federation of National Mathematics
Competitions.

Also at ICME 1984 will be a poster display of journals
(Funetion will be there) having problem solving sections for
school students. Some video films giving information about
some successful competitions will be shown.

If you need further information please contact Mr P.J.O'Halloran,
Chief Organiser, Competitions ICME-5, Canberra College of Advanced
Education, P.0. Box 1, Belconnen, A.C.T., 2616.

* kK %k

Solving problems

Olympiad problems are chosen so that they will stretch the
abilities of the contestants. Thus many of the Olympiad problems
are difficult. However, what makes a problem difficult? After
you have solved a problem, or after you have been shown a solution,
a problem that was found difficult often seems simple, and you
could kick yourself for not seeing how to do it sooner.

How should one set about trying to solve a difficult problem?
Clearly knowledge helps. The more mathematical results, i.e.
facts, that you know which are related to the questions posed by a
problem, the more likely you are to solve the problem.

We now consider a problem concerned with divisibility of
integers.

PROBLEM (First International Olympiad, 1959, problem 1)

2in + 4

Prove that the fraction I, 73 ts irreducible for every

natural number n.

Note first that a natural number is the same thing as a posi-
tive integer+. Note secondly that a fraction is irreducible if
its numerator and denominator have no common factors other than 1
(we may clearly restrict ourselves to positive integers). We now
understand the problem.

T . ’ i
Nowadays -0 1is often counted as a natural number. Not in 1959.
However in this problem it makes no difference: when »n = 0,
2in + 4

4 s s .
1an + 3 = 3 is irreducible.
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As the next step it is often useful to carry out some experi-
ments, i.e. look at some special cases. These special cases may
give you a feel for the situation and, by noting some common fea-
ture, may lead to a general argument.

Experiments
n (21n + 4)/(14n + 3) (21n + 4) - (14n + 3)
1 25/17 8
2 46/31 15
3 67/45 22
4 88/59 . 29

Two integers that haye highest common factor 1 are said to
be co-prime, or to be prime to each other. The above experiments
clearly show that (21n + 4)/(14n + 3) is irreducible when
n =1,2,3, and 4, for 25 and 17 are co-prime, 46 and 31 are co-
prime, etc. Can we glean any other information?

Well, 25 - 17 = 8 is prime to each of 25 and 17; similarly
46 - 31 = 15 is prime to each of ‘46 and 31. Is this generally
true? Yes. We have ’

(*) Let 2 and m be co-prime positive integers, with § > p.
Then L - m and % are co-prime, as are L - m and nm.

Proof. Suppose that the positive integer d divides ¢ - m and 2.
Thus, there are positive integers k and % say, such that

2
- m

kd (L
hd . (2)

Substituting from (1) in (2) gives

nd
(k - n)d .

kd - m
i.e. m

Hence d divides m. 1Thus d divides each of the co-prime integers
2 and m. Hence d = 1. This shows that & - m and 2 are
co-prime.

Simiiarly, .% - m and m are co-prime.
Exercise 1. Show that the following result holds.

(¥*) Let 2 and m be co-prime positive integers. Then & +m and
% are co-prime, as are & +m and m

Exercise 2. Results (*) and (**) may be generalised. Show that
(***) Let 4 and m be positive integers with highest common factor
d(>0) . Then the highest common factor of each of the pairs & -m
and %53 % - m and m; L +madnd L; & +m and m is also d.

As a corollary to (**) we have:

(¥¥%*) Lot ¢ and m be positive integers such that & > m and
£ -~ m and m are co-prime. Then % and m are co-prime.



Proof, By (**), since ¢ -~ m and m are co-prime so also
are (& -m) +m and m, i,e. & and m are co-prime,

It is a good idea when finding small results, such as (%)
here, that seem relevant to the solution of a problem, to note at
the same time other closely related results such as (*¥), (kk*)
and (****)  here. At this stage of solving the problem, you do
not know which facts may be relevant: collect facts as you go
along. '

We have. enough facts (together with some that are not
_necessary) to solve our problem, For, by (*) and (¥¥**),
(21n + 4)/(14n + 3) is irreducible, i.e. 21n + 4 and 14n + 3
are co-prime if and only if (21n + 4) -~ (14n + 3) and 14n + 3
are co-prime, i.e, if and only if 7n + 1 and 14n + 3 are
co-prime,

But, if 4 divides 7n + 1 and 14n + 3. then d divides
14n + 3 - 2(7n + 1) (=1) , and so 4 divides 1. Hence d = 1 and
"7n + 1 and 14n + 3 are always co-prime.

Hence (21n + 4)/(14n + 3) is always irreducible, Q.E.D,

Knowledge of some facts about divisibility was necessary to
solve Problem 1. Problems concerned with divisibility have fre~
quently turned up in the International Mathematical Olympiad tests
and other competitions. This is perhaps not surprising, because
the idea of divisibility is a simple one and divisibility is at
the heart of a major area of study in mathematics, the area
called the theory of numbers. In the same area is the next problem.

PROBLEM 2 (Sixth International Olympiad, 1964, problem 1)

(a) Find all positive integers n for whiech 2" - 1 is
divisible by 7.

(b) Prove that there is no positive integer n for which

" + 1 "is divisible by 1.

2

Send to Perdix your solutions to the problem - or your
attempts at a solution, Hint: if n, m, k and r are integers and
m = Tk + r, then mn and rn give the same remainder on division by 7.

PROBLEM 3 (Twelfth International Olympiad;'1970, problem 4)

Find the set of all positive integers n with the property
that the set {n,n+1,n+2,n+3 n+d n+5} ecan be partitioned into tuc
sets such that the product of the numbers in one set equals the
product of the numbers in the other set,

Note that a set 4 is partitioned into two sets when it is
divided into two subsets such that each member of 4 belongs to
one of the two subsets and no member of 4 belongs to both the
subsets.

PROBLEM 4. ILet m be an odd positive integer. Show that thers is

a positive integer k such that m divides 2k - 1.

Turn to Perdix's column next issue for a discussion of
solutions to some of these and further problems.
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