
April 1984

I

\

A·. SO.HOOt,.· MATHEMATICS MAGAZI~E

:Publisl1edbyMonash University

bpolster
Rectangle



PUOil[Jt'~on is a mathematics magazine addressed principally
to students in the upper forms of schools. today mathematics
is usedinmostef the sci ences, . ·physi c.al ,bie 10gicaJand
soc I aT , in businessma:riagemen t ,inenginee't j n9. There are few
human e nd ea v 0 U r 5 , f ·romweather p redi c tio n. tos i tin go f traffic
1 ights, that do not involve mathematics. Function contains
articles describing some of these uses of math~mat1cs. Lt also
has articles, for entertainment and instruction, about mathe-
matics and its history. Each issue contains problemS and
so~utions are invited.

It is hoped that the student readers of function will con-
t rib ute mater i a 1 f 0 .r pub 1 i cation . Art i c 1e s ~ ideas , cartoons,
comments, criticisms, a~vice.are ear~estly sought. Pleas~ send
to the editors your views about what can be done to make
Function more interesting for you.

EDITORS: M.A.B. Deakin (chairman) , G.B. Preston, G.A. Watterson
(all of MonaSh Un Ivers i ty); S.M. Brown (Swinburne
Ins tit ute); K.M c R. Evans (Scotch Col lege); J. B • Henry
(Victoria Colle ge ,Ru s qen); P.E.· K1oe den (Murdoch
Un i ve r sit y); J.M • Mack (Un i ve r sit Y of Sy d ne y) .

B'O 51 NE5 SMA NAG ER : J o·a n Will jam s (Te 1 • No. (0 3) 541 08 11
Ext. 2548

ART WORK: Jean Sheldon

Articles, correspondence, pr~bIems (with or without solu
t ion s) and 0 the r mat er j a 1 for pu b 1 i cat ion 01 e ; II V i (t:: J . AJ J r e.s s
them to:

The Ed i to r.s ,
function',
Departme~t of Mathematics,
Mo nash Un i ve r sit Y ,)
Clay ton, Vic tor i a, 3168.

Alternatively cor re-spondence may be add ressed individually
to any of the editors at the mathematics departments of the
insti\tutions shown above.'

The magazineisp~~iished five times a year, appearing in
Fe b r u a r y, Apr i 1, June, Aug·u s t, . Oc t 0 b er . Prj c e fo r five iss ue s
(including postage): $8.0·0"~; single issues $1.80. Payments
should be sent to the business manager at the ahoveaddress:
cheques and m.oney orders should be made payable to Monash
University. Inquiries about advertising should be directed to
the business manager.

*$4.00 for bona fide secondary or tertiary students

Reg i s t ere d for post i n g as ape ri 0 d jcal - II Cat ego r y BI I



Some things more impossible than others? Yes, indeed, and to
see how this can be, read. John, Stillwell's account of the tribar,
previously discussed in Funotion, Vol.7, Part 2. That such
"impossible" things can become possib.le. is a consequence of the
abstraotion process involved'in mathematical thought - mathematics
has its roots in the world of experience, but at the same time is
able to transcend that world. One spinoff from this is that when
we come to apply mathematics we may find ourselves doing this in
what at first seem to·be strange ways. Professor Sharfuddin gives
a very elegant example of exactly this' phenomenon.

Funotion is a journal for school students and, as such, does
not normally address itself directly to teachers. We make a
minor exception in this issue ~y printing Professor Tergan ' s
article. This paper first. appeared in a German periodical
addressed to mathematics teachers. Its beauty and importance in
duced us to break our usual ruie and publish it here.

And, of course, there is much more besides.
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THE FRONT COVER
M.A.B. Deakin, Monash University

At first sight, the object drawn looks rather straight
forward, but look again. Four axes 'meet at 0 J and all the
angles are perspective renderings of right angles. The object
represented is the four-dimensional analogue of a cube - known
technically as a tisseract. (See p.25.) Perhaps you will
feel as you look at it that you can almost glimpse the fourth
dimension for brief instants.

Let the lines dr,awn -all have length a. The sixteen vertices
are then connected by 32 linear edges of length a. Each adjacent
pair of edges defines a plane face and there are 24 of these in
all. Each adJacent triad of edges defines a three-dimensional
equivalent of a 'plane (known as a flat) and there are eight flat
regions surrounding the entire tesseract. These eight regions
are called cells. .

z

B

hi,..-----.,.-;--..,.p

x

y

The lines

Bh~ f~~ Cg~ g'y~ Df'~ h'B~ aP~

are parallel 'to the axis OX; the lines

are parallel to the axis OY; the,lines

Ag~ ho, Bf, f'S~ Dh', g'a, yP~

are parallel to the axis OZ; the lines-
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Af'~ !3g'., Ch'., fa.". gB" .hy~ OP."

are parallel to the axis QV.

The.co5rdinates of p are (a,a,a~a) and the co5rdinates of
the various angular points in the diagram, other than P,' are as
follows:

and

A
B
C
D

is the point
is the point
is the point
is the point

a,O,O,O, ~I
.O,a,O,O,
O,O,a,O, .
O,O,O,a, .

a
B
y
o

is the point
is the point
is' the point
is the point

o,a,a,a'i
a,O,a,a" .
.a,a,O,a, ,
a,a,a,O,

Further, the lines

f is the point O,a.,a,O,
9 is the point a,O',a,O,
h is the point a,a,O,O,
f' is the point a,OtO,a,
g' is the point O,a,O,a,
h.' is the point O,O.a,a,

Of., AO., Da., f'P., are parallel to one another } and of length
BC~ gh~ g'h' ~ yf3., • . .. . av'2;
Og., Bo" DB., g'P., • } and of length
CA~ gh" h 'f'., ay" . av'2 ;
Oh" Co., Dy~ h'P" • } and of length
AB~ gf" f'g'" Ba~ • al2 ;
Of' ~ By~ CB" fP" • } and of length
DA" g 'h., h'g~ao" al2 ;
Og' ~ Ca~ Ay., gP" } and of length
DB~ h 'f~ f'h" Bo" • al2 ;
Oh' " AS" Ba" hP~ } and of length
DC~ f'g~ g 'f" yo~ . . alZ .

Again, the lines
OCt t
AP ('

OB}BP ,

OY}CP ,

00}
DP ,

Bh'}
hB '

Cf'}fy ,

Dh }
h'o '

Af }
f'a '

Cg' \.
gy{'

Dg }
g'o '

Ag'}
ga '

Df }
f'o '

Ah'}
ha' ,

Bf'}
fs '

Ch ,}
h'y ,

are of length a 13, each bracketed pair of lines.being parallel.

Finally, the eight lines

OP; Aa, BS, Cy, Do; ff', gg', hh';

are of length 2a; and each of them has <la, la, ia, la) for its
middle point.

Each plane face has area 2
a and each cell has volume 3

a
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The entire tesseract has a hypervolume of 4
a

This account and the diagram are based on those found in
A.R. Forsyth's Geometpy or Four Dimensions (C~U.P.J 1930).

MATHEMATICS ACCEPTS THE .

IMPOSSIBLE

John Stillwell, Monash University

We are often inclined to think of mathematics as a very factu
al discipline~ with no room for fantasy or paradox. History
shows, however, that the fantastic and "impossible 't are' sometimes
useful, and eventually mathematicians find a way to accept them.
This was the case, for example, with negative and complex numbers.
We still call complex numpers "imaginary", even though we now view
them qUite concretely as points of the plane, but they were called
"impossible" once. In geometry, it was once thought impossible
for the angle sum of a triangle to differ from 180°, but such tri
angles are now accepted in noneuclidean geometry, and even in the
real world of astronomy (see for example my article "What is non
euclidean geometry?" in Function., Vol.3, Part 2). It may be that
the only truly imposs~ble objects are ones which are self-contra
dictory such as triangles with four edges.

The White Queen in Through the Looking Glass was able to
believe in' six "impossible things before breakfast. This takes'
practice, but by ~he end of this article I hope you will at
least be able to believe in the Penrose tribar, shown opposite,
which featured in Funotion, VoZ.7, Part 2.

As a warmup to believing in this difficult three-dimensional
object, let us believe in an impossible two-dimensional object
first. The object I have chosen is a polygon with two (!)
straight edges, and angles of 90° and 270°. Impossible? It
becomes believable if you know where to look for it: namely on
the surface of a cylinder: .



Figure 1

.-
_.-
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Admittedly? one cannot say which is the "inside" and "outside" of
this polygon, but at any rate the two ~ngles are on the same side
(on which the man is waiking). And .the edges are as straight as
l~nes can be on a cylinder, since they become ordinary straight
lines when the cylinder is rolled flat (they are shortest paths,
or geodesics, on the cylinder):

Figure 3
If the cylinder were a self-contained world in which light

rays travelled along these "straight" lines then the strip
picture above would be what the inhabitants of this world actually
see. People would see infinitely many images of themselves, re
sulting from light rays travelling round the cylinder again and
again in f'horizontal" circles (i. e. those which "are horizontal
in Figure 2). It might even be easier. for them to view their
world as an infinite strip in which everything repeats periodi
cally, rather than attempt to imagine it bending back on itself
in a higher dimensional space.

It is certainly true that we cannot easily imagine our
three~dimensional space bending backoD itself, enabling us to
see the backs of our" own heads if we look far enough ahead .

. But we can easily i·magi·ne this happening in a periodic universe.
Consider the following picture.

Figure 4
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If we accept that the infinitely many men in this picture are
really multiple images of the same man, then the pipe he is
carrying is in fact finite; and consists of thtee sections
joined together at right angles - precisely a tribar!

Mathematically speaking, the space in which the man lives

is called m2 x $1 or. "a plane cross a circle". Points in this
space have ordinary (x,y,z) coordinates, with the only
difference being that each.point has infinitely many different
coordinates. If we choose the y axis along the line of images
of the man· (as shown), and choose units so that the distance from
each image to the next is 1, then
(x,Y,z), (x,y,z±l), (x,Y,z±2), ...
will all be coordinates of the
same point. Conversely, if
(x 1 'Y1,zl) and (x 2 'Y2·,z2) are
coordinates of the same point,
then xl = x 2 , Y1 = Y2 and
zl - z2 is an integer. The
(x,y) coordinates describe a

plane lR2 , and the z coordi

nates describe a circle 81

(of circumference 1), which is
why the space is called
m2 x ~1 .

Portions of this space
which are "small" (i.e. in
which z coordinates differ by
less than 1) are exactly like
ordinary space. Hence it is Figure 5
possible in principle that we
live in an m2 x $1, with an

$1 of very large circumference, and that (very large) tribars
are physically possible.

Actually, physicists have proposed something much stronger
than this. A theory of Kaluza and Klein in the 1920's has been
revamped recently to suggest that space is in fact not ordinary

three-dimensional ]R3, but :IR3
x S7 , where S7 is a 7-dimen

sional sphere of very tiny radius. This means. that what we
presently take t~ be points are really very tiny (below atomic
size) 7-dimensional spheres! If this is SOF then tiny tribars

are also physically possible, because m3 contains m.2 , S7

contains 31 and hence ]R3 x 3)
7 contains m2 x $1. To explain

what else might exist in this extraordinary world would unfortu
nately require a lot more practice in believing the impossible
than I can give in this short article.
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GEOMETRY AND DIPLOMACyt

S.M. Sharfuddin, LA.S.T.T., Bangladeshtt

A statesman at an international congress was faced with the
delicate, task of forming committees to perform various functions
and decided that it would be tactful to form these committees in
acco~dance with the following conditions:

(a) Any pair of nations should appear on at least one
committee;

(b) Any pair of nations should not appear on more than one
committee;

(c) Any two committees should have at"least one nation in
common;

(d) Every committee should have at least three nations on it.

To the statesman it appeared to be a very complicated task so he
went to a mathematician. The mathematician at once pointed out
that these are ~quivalent to:

(1) Any particular combination of two nati-ons will appear
in one and only one committee;

(2) Any pair of committees will have one and only one nation
in common;

(3) Every committee should have at least three nations re
presented on it. (This could still leave many combina
tions of three nations that do not appear on any
committee.)

The mathematician recognised that the conditions on nations
and committees were precisely like the following statements' about

t ' '.
An excerpt from a talk to a conference on Mathematics and Lang-

uage (Calcutta, January 1984). We thank Professor Sharfuddin and
the conferen6e organisers for their p~rmission to reprodude this
material here.

ttMailing Address: G.P.O. Box 809, Dhaka, Bangladesh.
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points and lines§:

(~') Any pair of points appear on exactly one line.

(b') Any pair of lines meet in exactly one point.

(c') Every line contains at least three points.

The only difference between the.two sets of'statements is
that words "point" and "line" take the."place .of "nation" and
·"committee", respectively. Thus the absence of well-defined
meanings for the undefined terms "point" and ·"line tt proved to
be a great advantage.

MORE ON YAN-A-BUMFIT

Professor Clive Probyn has sent us another version of the
Anglo-Cymric score. It· comes from H.L. Gee's Folktales of
Yorkshire (Edinburgh, 1952) and runs

Yain~ tain~ eddero~ peddero~ pitts~

Tayter~ later~ ove~ro~ aoverro~ dix~

Yairt-dix~ tain-dix~ eddero-dix~ peddero-dix~ bumfit~

Yain-o-bumfit~ tain-o-bumfit~ eddero-bumfit~

peddero-bumfit~ jiggit.

From Tobias Dantzig's Number - The Language ofScie.nce
comes· the origin of those mysterious English words eleven and
twelve. They too are base ten, but they go back to a very early
Germanic base lif which means "ten", but has b:een replaced in
modern times by zehn, a close relative of El1glishten and -teen.
The older words for "eleven" and "twelve" were ein-Zif and zW.(J-lif
and it is clear, partiCUlarly in the latter case, how these have
given rise to modern usage.,

The older root survives also in modern German - the words
there are elf and zWBlf (but "thirteen" is dreizehn, and the
pattern is as in the English - so it was already established at
the time of the Saxon invasion of England: C5AD).

Lif derives from the root *lekwos meaning Hleft over" and we
see it in words like reliquary and tb~ word left itself, so ein
lif originally meant "one left (beyond ten)Tf i ·etc.

See also p.25.

§There are geometries (known as projective geometries) in which
these axioms hol~ true. For one example, see Prof~ssor Preston's
article on "The Seven Point Geometry" in Func.tion, Vol.4, Part 4.
Axioms (at), (b') are the basic axioms of plane ppojeotive
geometry. Eds.
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GUIDO GRANDI -
THE ROSARIANS MATHEMATICIAN t

Malcolm J. Cameron,
Burwood, Victoria

To Guido Grandi, priest and mathematics professor at Pisa
in 1723,. his newly created 'rosaces' curves had a mathematical
beauty equal to that of nature's rose.

This is the story of this man and .his graceful curves~ It
is written for rosarians -but one can hardly divorce a mathe
matician from his mathemati'cs, can one? A story of a hybridist

such as Francis Meillandtt must include so~e technical infor

mation. A story of a painter such as Pierre-JoSeph Redout~§
must include his painting. And sb for Guido Grandi, the
rosarian's mathematician, some high mathematical terms must be
written in ,passing., However, for the rosarian one hopes that
this does not spoil the unusual history of this man.

The 'Rosaces' Curve.

The f rosa.ces '_. are a. fami+y of mathematical curves rE3s~mbling
flowers - the multipetalled 'Roses of Grandi'. Our diagram shows
the rosaces with five and eight petals but varying the number
n in the formula will give curves with almost any number of'
petals.

,tThis article first appeared in The Australian Rose Annual,
1982 and is reproduced here with their kind permission and that
of Dr Cameron. The topic is also discussed in Dr Cameron's
book HeFitage Mathematics (Hargreen Pub!. 1983) and in Func~ion,

Vol.l, Papt t~~,

tt'For Love of a Rose' by Antonia Ridge.

§'The Man Who Painted Roses i by Antonia Ridge.
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Figure 1. The rosaces purves created by Guido Grandi with
5 and 8 petals. The curves have the form":
.r = R sin ne or x = R sin n6 cos e , y = R sin n8 sin e .
The curve has 2n petals when n is an even number and
n petals when nis an odd number. As e takes
values from 0 0 to 360 0 the point (x,y~ inscribes
the. curve.

To the modern rosarian the resemblance may be more to a
daisy or a buttercup. This is· not· Guido's fault but due to the
enthusiasm of modern rose hybridists in givin.g us tight multi
petal roses.

Obviously Professor Grandi had early eighteenth century
roses in mind, perhaps the common' Field Rose (Rosa Arvensis 
Figure 2). This 'is an old Gallica rose similar to the five
petal vigorous Dog-Rose often used as a st~ck for modern hybrids.

That is not to say that some old European ros~s did not
have plenty of petals, outnumbering our Olympic Torch with
40-45 petals or Folklore with 35-40. The white Rose of York
had 50-60 petals while the Old Cabbage Rose was not called
the 'Hundred Petalled Rose' without reason. Its mutation the
Moss Rose has 100-120 petals, but did not appear until 1750.

Compared with the eighteenth century roses, the modern
rose is one of composite beauty - brilliant colour, perfect
spiral form, longer petals, more pointed formation and perfume.

But to g~t back to Professor Grandi.
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~igure 2~ The common Field Rose (Rosa Arvensis) a five
petal oad Gallica rose with myrrh-scented
flowers.
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Guido Grandi - Mathematician and PhiZosopher

Guido Grandi was born in humble circumstances at Gremona,
Italy in 1671. He die<;i at Pisa in 1742 where he is commemorated
by,a bust and plaque at the Church of St Michael at Borgo,

As a youth he studied at the Jesuit School in his own city
and entered the CamaldoliteOrder where he distinguished himself
in philosophy, theology, and the study of the history of his own
order. In 1693 he went to Rome to continue his studies at the
CamaldoliteMonastery of St Gregory.

In Rome he realised that' a knowledge of mathematics was
necessary to teach philosophy well. After reading the classical
works he'continued by studying his contemporaries such as Torri
celli, Huygens, the Bernouillis, Leibniz and Newton.

A few years later he ret'urned to Pisa where, in 1700, he was
appointed Professor of Philosophy at the University of Pisa. Con
currently he held more practical appointments as Mathematician and
Theologian of the Grand-Duke, Director of the Waterboard for the
Grand-Dukes of Tuscany, and Pontifical Mathematician for the
questions of the waters of the Romagne. What these duties involved
is by now anyone's guess.

The Times of Guido Grandi

Today, as rosarians we live in the golden age in the develop
ment of the rose. Likewise Guido lived in a golden age in the
development of analytic geometry, calculus and astronomy.

This was after Newton's classical work in physics, astronomy
and calculus, at the time when Newton was -engaged in a bitter
debate with Leibniz, of Germany, concerning the originality and
superiority of theird-iffering forms of calculus . In the calm of
Italy, Grandi was able to teach the merits of both systems, in much
the same form as is done today.

Closer to home was the great debate, sparked by Galileo, that
the sun was the centre of the solar system. By defending Galileo~

Grandi himself was enveloped in bitter controversy, to the extent
of being accused of inventing documents. Be assured~ however, the
only problem was Grandi's love for the truth.

This was an age-when an individual could cover the whole
field of knowledge. Grandi wrote, for example on astronomical
problems, geometry, gravity, light, hydraulics and the nature of
infinity. He experimented' with a vapour machine, wrote prose
and poetry for the 'Journal of Literary Man', pUblished in Venice,
and was an active member of the Italian and foreign academies.

AnaZytia Geometry

For all this, it is only for the rosaces curves - in the
field of analytic geometry - that Grandi will be remembered. A
few words of explanation and history.

A fundamental mathematical advance was achieved when Rene
Descartes (1596-1650) combined the geometry of antiquity with
the newlv developed algebra. He saw that a pQint could be
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determined by x and y, its distances from two lines drawn at
right angles~ The equation of a curve could then be written as
a function of x and y. And, from this, all its properties could
be calculated.· ..

This set the scene for the application of algebra to geometry
as the equations of all sorts of curves were formulated - straight
lines, circles, parabolas, hyperbolas, etc.

It was toward the end of this period that Guido created his
curve. He was not alone. Many mathematicians of the time
achieved some ·fame with curves of their creation.

Blaise Pascal (1623-1662) challenged the mathematicians of
the world to reproduce the results he calculated for his cyc~oid 
the curve traced out by a point on the circumference of a rolling
hoop. SU~h public challenges were a feature of this age of science.

James Bernouilli (1654-1705) was so pleased with the proper
ties of his 'spiral' curve that he begged that an equiangular

- spiral should be engraved on h1s tombstone. .

Maria Agnesi (1718-1799), an associate of Grandi, created a
curv<? the shape of a witch's hat 1 now called. the 'Witch of
Agnesi·' or the 'Versiera', as she. preferred. Her .story is worth
telling. Firstly her abilities allowed her to fill her father's
professorial" chair at the University of Bologna during her father's
illness. Secondly Maria Agnesi was a somnambulist. Several times
it happened to her that she went to her study while in the somnam
bulist state, made a light, and solved some problem she had left
incomplete when awake. In the morning she was surprised to find
the solutioncarefully·worked out on paper. Oh, that mathematics
would come so easy to us! .

Again I have drifted from· the story of Guido Grandi!

Amongst all these curves; the 'rosace' is the most graceful.
It was published in 1723 in the Philosophical Transactions of the
Royal Society of London under the title of"Florum Geometricorum'.
In 1728 Grandi extended the idea to his 'Clelia' curve - an
analogous three-dimensional curve drawn on a sphere!

'rhe writer Montucla records that our priest Grandi was so
pleased with the result that he ceremoniously offered 'the
noble woman Countess Clelia Borromeo of Grillo an elegant bunch
of "flores geometrici" - geometrical flower~'.

Truth and Beauty

What manner of man was Guido Grandi', this mathematician of
the rosaces? Did naming the curve after the ros.e reflect his,
own love of roses and beauty?

The old manuscripts give us no clue. ·On the other hand,
since he chose the rose rather than the daisy or the buttercup,
we may safely include hi~ in the rosarian ranks.

A love of beauty he certainly had. Grandi. saw beauty and
mysticism in a mathematical function guiding a point along a
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graceful curve. There is a beauty in the world when a hybridist
creates a new rose. As with a poet, a novelist~ or a musician
linking notes together. Equally this applies in the creation of
a new mathematical curve.

A rosarian f s temperament he also had. He neve·r avoided
discussion or controversy, yet he still won wide respect. As
president of the Royal Society of London) Newton invited him to
become a member. A clue to his wellbeing in the church after
his defence ,of Galileo is obtained in the comment that 'his
critics did now knowhow to compete'with him, "because he ex
pressed himself so powerfully and knew how to choose the oppor
tune moment to expose fallacious arguments ... '.

All the pontiffs of his time held him in the highest
esteem. Saint Benedetto XIV, in a handwritten letter dated
1 July 1741 wrote: "He reflects the affection we have always
had for him, the high esteem we have always had for his value
the appreciation his,. name has received ... so great is our de
light in receiving his letter and evidence of his good health,
so important is this Iiterary .man ... It .'

Guido himself wrote in May 1736 tGod preserve us no more
than is necessary to preserve the honour of our country ... t and
prayed that God would keep him bUSy in his journeys and research
of documents of interest to him.

'He Lives on the Mountain Tops'

Guido Grandi is one among mathematicians, hybridists,
poets, musicians and writers whose endless time and patience in
the search for beauty was rewarded by his curves.

Such curves have a permanent place in mathematics,
usually in the early university years in the study of functions
expressed in this fo~m.

Yet time is against us in all things. When we plant a
new rose, do we know or remember the hybridist. who created the
variety? Likewise today's.students are unlikely to hear of'
Guido Grandi'. Even the old history books spare only a few lines.

Nevertheless, Newton once explained that 'if he haq
seen further than other men, it was only because he stood on the
shoulders of giants'. Among those giants was ProfeSsor Guido
Grandi - the rosarians' mathematician.

AaknotVZedgements

The bulk of information for this article originated from
the paper 'Guido Grandi'by Luigi Tenca of Florence (Physics Vol.
2, 1960, .pp.84-89) obtairied from the University of Adelaide
Library and translated by Mr Raphael Papandrea of Dee Why, N.S.W.
Additional comment was obtained from mathematical histories pub
lished in 1893, 1919 and 1966.

Figure 2 is reproduced from 'The Rose Garden' pamphlet
of the Royal Botanic Gardens. Melbourne.
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THE GENERALTRIANGLE t

Bernhard Tergan, Wandin Valley
Institute of Educational Innovation1.

Summary: The concept of the general triangle is introduced, the
general triangle and its most important properties are
·described. This concept is a·valuable aid for the
teaching of geometry.

According to Lockhead's Principle of Cognitive Specialisa

tion2 , the student tends to attain abstract concepts from con
crete examples and to construct them from special cases as re-
quired. Char~ton3 indicates that the educational aim, namely
the confidence with which the student can reproduce the general
rule, depends essentially on the kind of cognified example. In
vestigations involving primary school teachers have shown that
formal rules are often better retained than their underlying

assumptions; Pythagoras' Theorem4 and the theorem on trre sum of

"the angles in a triangle5 are more readily reproduced than the
fact that the first theorem holds only for right~angled tri
angles, the latter for all.

In view of this, a study of good examples appears to be
urgently needed, ahd this paper is intended as a first step in
this direction. It deals with the situation in which good
examples are especially hard to find, but nonetheless most im
portant: 'the theory of triangles in elementary geometry (c~f.

the example given above!). Everyone who has ever learned ele
mentary geometry will know of the following dilemma - to demon
strate a fact using an acute-angled triangle, we draw one on
the board only to discover that the diagram illustrates either
a right-angled or an isosceles triangle. But this is just what
we wanted to avoid so that tne student does not decide on too
narrow a Specialisation in the sense of Lockhead's Principle.

t This article is a translation of one which first appeared in the
German periodical Journal fUr Mathematik Didaktik~ Vol.l (1980) I

pp~102-l07 and which has been widely atithologised and has given
rise also to several sequels. We thank Dr H. Lausch for the
translation and the adaptation of this article to Australian
conditions and Professor Tergan for permission to publish this
material in Function. The numbered notes are to be found at the
end of the article, on p.20.
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The question as to whether it is at all possible to draw a
triangle which is neither right ....ang·led nor isosceles seems not
to have been studied'!"" probably b.ecause it seems absurd to the
mathematician. Of course it 'is easy to speak of such triangles.
However, classroom experience shows that this answer is ab
solutely Laputan. A triangle with angles 89°" 45°, 46° ·is no
better for' classroom demonstration than an isosceles right
angled tr.iangle. It is irrelevant to the Principle of Cognitive
Specialisation whether the t~iangle on the board is actually
right-angled or' isosceles or not~ Rat~er, ,what is essential to
the Principle is whether or not it is pepceived as being right
angled or isosceles. It is here that we discover; the missing key
to the construction of good examples. Hence, we will call an
acute-angled triangle a general triangle if it is seen as· neither
right-angled nor isosceles by ~ sufficiently large percentage of
the students. . .

First it must be determined when two angles are disti~guished
by the student. We thank Dr Wimsey, headmaster of Black Stump
High School, Wandin Valley, who ~as taken up this suggestion. (His
~esults are very shortly to be pUblished.) One of his SDA teachers,
in a field experiment with Ye'ar 11, stream d, students at the
aforementioned high school, has studied the ability to distinguish
plane angles.

To this end, the students were presented with pairs.of angles
and were asked to decide immediately whether they were' equal or
different. The results are summarised in the following table.

Difference of angles 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
in degrees

No. of students
answering "equal"

18 18 17 16 14 12 ~O 9.7 5 4 3 2 2 1

If we graph these results (Figure 1) we .see that the values
are normally distributed, and we can calculate the standard

deviation6 , which is found to be

o = 5· 77 .

Statistical wisdom has it that
fewer than 1% of the population
lie further than 2-60 from the
mean. We may thus proceed on .
the' assumption .that at least 99%
of all students (and this we may
very well take to be a suffic
iently large proportion!) dis
tinguish two angles if they
differ by 15° or more. The
figure of 99% may appear to
be chosen arbitrarily, but we
shall see later that for com
pletely different reasons that
a higher level of significance'
cannot be attained.

15

10

.5

5 10

.Figure 1

+
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We thus know more precisely now how we have to define the
general triangle: an acute~angledtriangle is general if its
angles all differ by at least 15° from a right-angle and if
also each pair of its .angles differ by at least ~5°.

At this point the author experienced a (he cannot conceal
it, pleasant) surprise. For if we cons.ider the possible forms
of the general triangle in more detail, we get:

The largest angle in the general triangle is at
least 15° smaller than a right angle, and so let its
value be

a = 75 ° - 0 for some 0 ~ 0 •

The second-largest angle, S say, is at least 15 0 smaller
still and thus we obtain

(3 60° - 6 - l; for some s ~ 0 .

Finally, by the same argument, the smallest angle has
the value

y = 45° - <5 - C; - ; for some ; ~ 0 .

Calculating the sum of the angles, we find

180 0 a +' (3 + Y 75° - 0 + 60° - {) - 1;; + 45° - 6 - C; - ~

180°· - 30 2l; - S ,

from which it follows immediately that t {)

We can thus state the

MAIN THEOREM: There exists (up to similarity) one and only one
general triangle (Figure 2),
whose angles are 45°, 60°,
75° .

Indeed a beautiful and a happy result!
Now it is clear what we must do when we
want to draw a general triangle on the
board. Furthermore the- general triangle
has severai· very nice properties. The
reader may try to find some for himself.
One is that the altitude 'measured from the
Jongest side of the general triangle cuts
it into a ~ight-angled isosceles triangle
and a triangle with the convenient angles
30°, 60° and 90°. We use this property
below.

Figure 2

The reader· may well now ask how he should actually go about
drawing the general triangle on the board. Of course the general
triangle is, after all, special in its own way,. but according to
the Lockhead Proinoc.ip.loe..the. .s.tuden.t mus.to n.e.v.er take. the general

tWhich is why no greater level of aiscrimination is possible. Eds.



triangle for a special triangle. A mechanical construction of
. the general triangle, for example with a protractor, must there
fore be avoided, as it-would turn. the intended effect into its
exact opposite . We can state as a simple rule: .

SIMPLE RULE: The general triangle is general only if it is drawn
surreptitiously.

The distinguished staff of Study Group IV in Wandin Valley
were kind enough to trial the classroom use of the general tri
angle. Only this much of their results (to be published in the
near future) can be revealed here:

(1) Freehand drawing of the general triangle is hazardous,
even after practice (only a few staff members were
able to draw the general triangle without practice).

(2) Surreptitious marking of the vertices on the board
leads to good results. In the case of wooden boards
it is enough to hammer in, and then remove, a thin
.nail . With glass boards, the same .e-ffect can be
achieved with a good electric drill (due to the risk
of- breakage, it is best to get the janitor to do this).
This method has several disadvantages: first, there is
the. time and trouble involved; and secondly, in some
cases the marks were noticed by the students, which
led them to respond by inserting 'further marks.

It has even been suggested that blackboards be
equipped by the manufacturer with surreptitious
traces of the general triangle.

.In most cases
however, if a
In this case,
approximation

the fact that

82 • So it is
to the general
Figure 3.

(3 ) such preparations are superfluous,
board with a square grid is available.
it is easy to draw a sufficiently good
to the general triangle. We utilise

4 2 + 7 2 =65, which is approximately

easily seen that a good approximation
triangle can be obtained as shown in

10

7

I
I
I
17
I
I
I
I

Figure 3

4

8

Begin by drawing a ba~eline 11
units long and then erect a
perpendicular from a point
dividing the baseline in the
ratio 4:7. The perpendicular
is reqUired to be 7 unit~

long, so that the triangle
has the vertices (0,0),
(11,0) and (4,7). We can
see immediately (and quickly
calculate) that this tri
angle is almost identical
with the general triangle.
Experiments have shown that it is possible without much
practice to draw the general triangle by following
this recipe, and without attracting the ~ttention of
the students. This approximation to the' general tri
angle has the further advantages that the remaining

1
J
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sides have lengths which are very near~y integral. Be
sides 11, we have the values of io, and 8 uni-ts. The
area of about 38 0 5 squa're units, however-, gives the
student a credibly, general impression.

The author believes that the general triangle should find a
place in the repertoire of all geometers. He would appreciate
feedback from classroom trial ling and also $~ggestions on further
properties of this mathematical object.

Envoi:
I am grateful to Professor Profitt for his remark that in

this paper the general triangle has merely been rediscovered.
Previously that great teacher G. P6lya had pointed out the G.T.
and its educational significance. The author feels honoured to
have rethought Polya's thoughts. The importance of this topic
has alrea~y been revealed in the very lively discussion which
evolved from the first rumors of this present paper. Rarely
have I received so many ,responses to a publication as I have to
this; some were complementary and some were complimen-.tary, others
were nugatory and superficial. Indeed, since the first publica
tion, the topic has been addressed in several sequels and has
been considerably developed.

Notes

1. The author is the director -of the.Wandin Valley Institute
,of Educational Innovation (a branch of the Brammer Institut
fUr padagogischi..lnnovation, af;filiated wi th the Technische
Hochschule, Darmstadt) and is the author of The EternaZ
Triangle: A Primer of Modern School Mathematics.

2. B. Lockhead: Education Education; Mills & Boon, 1970.

3. E. Charlton: FouZ Stpoke~ Four Away - a PracticaZ'Intro
duation to P/"ane Geometpy.

4. Pythagoras: On harmonic triangles and triangular harmonies
when two sides are perpendicular) 'In Ancient Contributions
to Mathematics ed. Julius Wintner Mi~ler. Parrot Books,
Melbourne.

5. Euclid: On the sum of the angles .in a triangle. Ibid.

6. Our special thanks to Professor Uncertanian of the Statis
tics cadre of the Mathematics co-operative, Erivan, for his
friendly assistance in statistical matters.

00 .00

By and by comes Mr Cooper ... of whom I entend to learn
Mathematiques; and' so begin with him today ... , After an hour's
being with 'hi.m at Arithmetique> my first attempt being to learn
the Multiplicacion table, then we parted till tomorrow.

- Samuel Pepys, Diary entry for 4 July 1662.

Remark: Pepys was at that time something like a modern Secretary
of the Navy.. From American MathematicaZ MonthZy, January, 1984.
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SELF NUMBERS AND JUNCTION
NUMBERS t

D.R. Kaprekar, 311 Devlali Camp, India

If a number N has the· sum of all its digits equaltod then
N + 4 = K will be called a generated number from N. K is the
generated Dumber and N is the generator. Thus take the number 75.
It has 7 + 5 = 12. 75 + 12 = 87. 87 is the ge~erated number' and
75 is the generator. Now after.87 we can go further in the same
way. 87 has 8 + 7 = 15. 87 + 15 = 102. 102 is the generated
number from 87; further, 102 has 1 + 0 + 2 and 102 + 3 = 105.
105 is generated number; its generator is 102. Now 75, 87, 102,

105 and so on form a serie~tt and it is called a digitadition
series. The series will go on increasing for ever. After 105,
the next is 105 + 6 = 111. Then 111 + 3 = 114, 114 + 6 = 120,
and so on. 75, 87, 102, 105, 111, 114, 120 ... is a digitadition
series. Now go in reverse order. What is the generator of 105?
It is 102, and for 102 the generator is 87, and for 87 the
generator is 75, but what is the generator of 75? Can it be 71?
No, because 71 + 1 + 7 =79. Canit.be 69? No, because
69 + 6 ~ 9 = 84. Can it be 65? ~o, because 65 + 5 + 6 = 76.
Thus, you will find that 75 is such~that it has no generator.
75 is called a self number or self born number, similarly you
will find that 53 'is also a self number. From 53 we can go
further, 53 + 5 + 3 = 61 and so on, then, similarly 42 is also
a self number; it· has no generator.

1, 3, 5, 7, 9, 20, 31, 42, 53, 64, 75, 86 and 97 are the
self numbers between 1 and 100.

Every number either has a generator or, if it. has no genera
tor, it is a self number.

tAn edited excerpt from the author~s "Meaning of Self Number"
supplied by him to Function. For more on this topic see Martin
Gardner's column in Scientific American, March 1975.

tt
We would call this a sequence.
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E.g. What is the generator of 35? It is 31, but 31 has no
generator; it is a self number. 1. 000 000 is a self number.

See further: Some numbers have two generators. From ~OO we
get 100 + 0 + 1 101. 10i is the generated number but also
from 91, we get 91 + 9 + 1 = 101. 101 is the generated number.
Thus 101 has two generators. So 101 is called a junction number
and is represented as

/91
101

"-100 .

Similarly 713 is a junction number; the two generators are 694
and 703 and this is represented as

/694

71.3 "
703 .

10~5 is also a junction number; the two generators are 989 and
1007, represented as

989

10.15/

"1007

The first few junction numbers are 101, 103, 105 t 107, 109,
111, I have found many more junction number~.

AN ELEGANT ARGUMENT

Problem:

Solution:

Can it be that there are two irra.tionaZ numbers a, b t

such that ab is ra~ional?

Consider {212. Either

(a) this is rational
or (b) it is irrational.

(a) If it is rational, the answer is yes. (b) If not,

choose a -- ~212 th· bOll b ° to 1 InYZ as 1S num er Wl e lrra lona .
this case, put b = 12. Then

ab = (/212)12 =.1212x 12 = 122 = 2 ,

which is rational and again the answer is yes.

Either way we have our answer, but we did not need to

know whether 1212 was irrational.
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A PROPERTY OF CONIC SECTIONS
. .

Garnet J. Greenbury,
Taringa, Queensland

Besides the usual tlfocus
directrix" definition of the
conic sections ($ee John Mack's
articles in Function, VoZ.7,
Papts 3 and 4), many others are
possible. I give one here as
an example.

We may define a conic
section as the locus of a
point which remains equidis
tant from a fixed point and a
fixed circle.

(a) If the fixed point Sl

is within the circle centre

'S2 '
SlP PQ

S2P + PQ constant radius,

PS 1 + PS 2 = constant.

Therefore the locus of P is
an ellipse.

(b) If the fixed ~oi~t 8 1
is outside "the circle centre
8 2 '

SiP = PQ = PS 2 - S2Q ,

so that PS 2 - PSi = S2Q =
constant radius.

Therefore the locus of P is
a hyperbola.
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(c) ~If the circle is of in~
finite radius it becomes a
straight line QX .

. 81 the fixed point is
on one side of this line,and
SlP = PQ (perpendicular to QX).

Therefore the locus of P is a
parabola.·

You may care to explore
for yourself the ~ffect on
the shape of the conic of the
distance between the point
Sl and the circle.

00 00 co 00 co co

p

~----,."..---...... Q

x

00 co 00 00 00

THE REASON FOR FUNCTION

Go to a mall. Go to a bookstore --- aWaldenbooks, say.
Go to the sc~ence section. What Will you find? Four three-foot
shelves: "astronomy gets one shelf; weather, physics, and general

. science gets one shelf; biology gets one shelf; miscellaneous
science gets one shelf. John McPhee is there, with The Cupve of
Binding Enepgy. Lewis-Thomas is there. Isaac Asimov is there.
The Soul of a New Maahine is there. Is there any mathematics?
One book and one only: Hofstadter's G8deZ~ Eschep~ Bach ...

Go to a pUblic library. Gato the science sectio;n and see
that the books on mathematics take up about one-twentieth of the
total space for science. And what books they are! Three ~orks

on the slide rule, Apithmetio fop the Ppactical Man~ Intpoduction
to Plane Tpigonometpy. Old books, undisturbed for years, the dust
thick on them. I suspect that most of them were gifts to the
library from people discarding'books no longer of any use. Why
would anyone want to keep a mathematics book? .

Go to Books in ppint, the 1982-83 edition. How many of the
tens of thousands of books listed are classified under "Mathe
matics - Popular Works"? One hundred" would you think? Fifty?
The number is eight. Eight only, and 37.5% of those were published
in the Union of Soviet Socialist Republics. One of the remaining
five is Technical Shop Meahanias, popular only in a restricted
group. You can maintain, probably rightly, that the classifiers
of the J.J. Bowker Company' are not expert in classifying mathe
matics, but the fact that there are so few titles classified under
Popular Mathematics shows that such works are rare and strange.

From a recent review in American Mathe
matical Monthly.
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LETTERS-TO THE EDITOR

A NUMBER'S FAMILY TREE

The suggestion of a i-shift in the meaning of the word
sethera (Funation, Vol.S, Part 1, p.1S) is intriguing but in
conclusive. Generally speaking, such shifts do not occur.
Consider the following case.

The primitive Indo-European root for foup is believed --to
have been *kwetw~res. (The asterisk denotes a reconstructed
form.) This appears in Sanskrit as catvaras, in Old Slav as
eetyre and in Latin as quattuor (whence the Spanish auatro, the
French quatre, the Italian quattro, etc.). In· Irish the word is
ceathair, and (as noted in the article), the initial sound turns
to a P in the Welsh, to give pedwar.

Similar Q - P shifts took place elsewhere. In Boeotian, the
word is pettar8s and in Gothic fidwor (the P being softened to an
F). This last has given rise to the German vier and the English
four (Via, in the latter case, "the Old ~nglish jeoUJer).

In Greek, the initial sound was modified, not to P, but to
T, to give the Ancient Greek tettar8s (from which we -get our words
fttetrahedron tt

, "tetralogy" and Iftetrarch ft ) and Modern Greek
tessereis (from which we get the word "tesseract", meaning the
four-dimensional "analogue of the cube).

This might lead us to think of the West Cumbrian tethera as
meaning "four") whereas it means "three" and is quite likely
linguistically related to the word "three", so that no i-shift
need be invoked.

Finally, it should he noted that whereas -all the Welsh,
Cornish and Breton words given in the article relate to other
Indo:-European number terms, .the West Cumbrian words 'lethera and
dovera are difffcult to relate to any other words for "seven"
and "ninett

•

[The above "'letter" was put together from vari.ous sources - most
of them notes from "Dr H. Lausah of Monash University. Eds.]

SQUARE ROOTS AND RIGHT TRIANGLES

Take a guess at the square root of n. Let the guess be In - e,

and let (In - e)
2

= n - D, where D, the discrepancy, can be
obtained by "squaring the guess and subtracting the square of
the guess from n.

Now (In - e)2 = n - 2eln + e 2

~ n - 2eln
~ n - D.
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2eln == D and
D ",. Din

e == 21n = 2n . Let
n = 2. From the diagram

"4312 > 4 so 12 > "3 .
Let 12 - = 1·4. Then
D = 0·04 being (2 - 1·96).

e = 0·04 x" 1·4 = 0.01
2 x 2

x 1 0 4 = 0.014 .
. .. 12 == 1·414 .

3

-J7

28880729

19102600

21660729

In the above right-angled triangle every side is a whole
number, and the quotient obtained by d~viding three times the
shortest side (the base) by the second shortest side (the perpen
dicular height) after being rounded off to six decimal places
gives a result of 2·645751.

In case any readers think that this triangle was obtained by
trial and error, the next triangle in this remarkable series has
sides

2919
2189
1930

2746
4559
9186

1461 1441
6109 1441
5959 ·0800

Quotient 2·645751311 t accurate to nine decimal places.
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The problem. is this. Can you find. another right-angled
triangle in which every side is a whole number, but such that
this time the quotient obtained by dividing three times the
shortest side by the second shortest side after being rounded
off to just four decimal places gives a result of 2· 645.7 (and
not 2·6458)?

THE SOLUTION

The solution uses Newton t s First Theorem·~·

When it if:? realised that 2-645751 and 2°645751311 are 17
accurate to six decimal places and nine decimal places respec
tively, then it becomes obvious th~t these triangles are
approximations to the (17,3,4) triangle. That is so obvious it
hardly needs saying. The real problem is that 7:f n 2 ± 1, and
so Newton's first theorem cannot strictly apply.

G.K. Chesterton would have said that 17 is the exception
that proves the rule, and in this spirit let us proceed boldly.

Let x = 17, then x 2 = 7 and subtracting 4. from both

sides yields x 2 - 4 = 3.

is the difference of two squares.
3,

3 3
4 + (x + 2 - 4) 4 '+ (x - 2)

2) in the R.H.S. from (x - 2) on L.H.S.,

ad infinitum.

3
4 + 3

'-!'"4-+~3-

4+3
'-!'"4-+-.-.-.

4

3
4 + -:'4-+---"'(-x----::::'2~)

x - 2 =

Now x 2

(x - 2)(x + 2)

3
x - 2 = x + 2 =

Substituting for (x

3

(4 x 19) + 12

is 3 3 3

4 + !: 4d + !1. 4d + n
d d

n 2 12 12 n 3
d 2 16 + 3 = 19 ; d

3

Then the (r + 1)th rational approx.

But the first approximation is i .
Let .the rth rational be n

Cl·

(3 x 19) 57 n4 ( 3.x 88)
88 d 4 (4 x 88) + 57

264
= 409 ·

We thus obtain an infinite sequence which tends to the limit
of (17 - 2) .

3 12 57 264 1227 5700 26481 123024
'4' 19' 88' 409' 1900' 8827: 41008 7 190513'

t Also known as Cohen' s First Theorem.' See Fun.etion, Vo l.S,
Part 2.
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The quotient gives

17 = 2·645751 to

6 decimal places.

290 361 605669

217 771 199 331

192 056 155 300

Thus the eighth approximation to 17 is, 2 + i~gg~; which
o 504050 U thO to 1 b th t·glves 190513' se lS ra lona num er as e parame er palr

(m,p) = (504050, 190513) where m2 + p2 m2 -. p2· 'and 2mp is
a Pythagorean triad.

m2 + p2

2
P

2mp

The eleventh parameter pair (50540729, 19102600) generates
the next triangle in the series in which the quotient gives
17 = 2·645751311 t9 9 decimal places. '

to 4

decfmal places.

The quotient gives

17 = 2·6457

28 880 729

21 660 729

19 102 600

Obviously the preceding triangle in the series will be

generated by the fifth parameter pair 2 + (i~~~), t~at is
(m,p) = (5027, 1900).

m2 + p2 50272 + 19002

m2 _ p2 50272 19002

2mp 2 x 5027 x 1900

Observe that· 21660729 = 7220243 and 4 x 7220243 = 28880892 .
3

The hypotenuse. = 28880729 .

The error, the difference between these, is sixty three. If

7 = n 2 ± 1, then the difference would be only one. But

7 :f= n 2 ± 1, where n is an integer. That is why finding the
Pythagorean triads generated by 17 is so much more difficult
than fin.ding those generated by ,In where n -is of the form

2 0 0 3 x 19102600 ~
r ± 1, r belng an lnteger. 21660729 = 2·6457 accurate to

4 decimal places giving 17 = 2·646 accurate to 3 decimal places.

Just as a matter of, interest r you might like to know that
the fourteenth parameter pair

(m,p) (5067682250, 1915603851) generates

m2 + p 2 2935 0175 2993 9069 2701
2 2 2201 2631 4745 3943 2299m - p

2mp 1941 3316 1945 8868 9500

This gives 17 = 2 0 6457513i11 accurate to 10 decimal places.

8.J. Newton,
348A Bourke Street,
Darlinghurst, N.S.W.

00 00 00 00 00 00 00 00 '00 00 00 00
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PERDIXt

This column will be a regular feature of Function and will
bring news of mathematical competitions of all kinds that occur
in Australia and, when it seems of interest, of international
competitions ..

Competitive mathematics has in recent years become very
popular. The Australian Mathematics Competition for the Westpac
awards (formerly the Wales awards) has now involved over one
million competitors. In 1983 over quarter of a million competi
tors, from Australia, New Zealand, French Polynesia, Papua New
Guinea, Fiji, Solomon Islands, Western Samoa, Tonga, Kiribati,
Christmas Island, and Tokelau, took part in the competition. The
International Mathematical Olympiad has been held each year since
1959 and an increasing number of countries has been sending teams
to vie for Olympic honours. A team of six can be sent by any
participating c~untry. Six problems are given to the contestants,
three on each of the two competition days.

Australia has formed its own Australian Mathematical Olympiad
Committee which each year selects a team to represent Australia. Mem
bership of the 1984 team has just been announced. The members are:

tperdix, the author of this column, was the nephew of Daedalus.
Daedalus was a Greek sculptor, architect, inventor, creator and
~olver of puzzles, whose name was associated with so many achieve
ments in ancient Gr~ece, that the word Daedalus took the meaning
of "cunningly wrought". Indeed as time passed an increasing number
o~f sculptures and inventions were attributed to him: he personi
fied cleverness, inventiveness, ingenuity. Daedalus' sculptures
were said to be able to walk. Daedalus constructed the famous
maze for Minos of Crete that was used to entrap Athenian maid~ns.

He fell out of favour with Minos and escaped from Crete by con
structing wings, made from large feathers sewn together and
finished with small feathers attached by wax, which enabled him
and his son Icarus to fly. Icarus ignored his father's advice
and~ exalting in his power o~ flight, flew too close to the sun:
the wax on his wings melted and he plunged into the sea and
perished. Hang-gliders and astronauts of the Ancient World!
Daedalus was so proud of his achievements that'he could not bear
the thought of a rival. His sister placed her son Perdix under
his charge to be taught the mechanical arts. Perdix was a quick
learner and gave striking evidences of his ingenuity. Walking
on th~ sea shore he picked up the spine of a fish. Imitating
it,h~ took a piece of iron and notched it on the edge, and thus
invented the saw. He made the first pair of compasses. Daedalus
saw a potential rival in Perdix and-killed him by pushing him
off a high tower. Other versions of this legend say that the
goddess Minerva· caught Perdix as he fell and ~hanged him into a
partridge. (Perdix is the latin for partridge.)
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Alan Blair, Year 12, Sydney Grammar School
Jonathan Enn¢s, Y~ar 12, Melbourne Grammar School
Matthew ,Hardman, Year 11, Knox Grammar 'School, Sydney
Andrew Jenkins; Year 12, North Sydney Boys High School
John Kramer, Year 12, Sydney Grammar. School
Michael Peake, Year 12, Prince Alfred College, Kent Town,

South Austra;lia

Reserve

Boudewijn Roukama, Year 12, Mount Lawley Senior High
School, Mount Lawley, Perth

In May a ten-day training school for members of the team is
being held in Sydney. Also selected to attend the training school
are:

Adrian Chen, Year 10, Prince Alfred College, Kent Town,
South Australia

John Graham, Year 11, -St Ignatius College, Riverview,
Sydney

Andrew Hassell, Year 11, Christ Church Grammar School,
Claremont, W.A.

Major support for the training camp is'being provided by
IBM Australia Ltd.

The Australian Olympiad team will travel abroad under the
leadership'of Mr J.L. Will~ams, and with deputy leader .
Mr G.R. Ball, both of the department of Pure Mathematics, at
Sydney University. They will be running the training camp with
the help of several other mathematicians, including Professor
J.e. Burns, Professor G. Szekeres, and Mrs E. Szekeres.

Training and choosing.possible Olympiad team members for
1985 is now under way. Arrangements are made to do this in each
State. The Victorian State organiser for 1984 is "Mrs JUDITH
DOWNES, 46 Hill Road, North Balwyn, 3104 (Telephone: 859 4837)
who will be happy to provide advice to those interested. It is
hoped that separate training arr~ngements can be made at each
of Monash, Melbourne, La Trobe, and Deakin universities. This
column will bring you more information when it comes to hand.

Competitions in solving'mathematical problems are not an
innovation of this century. In the Middle Ages, kings, princes
and emperors used to hold competitions open to all comers and
mathematicians used to come from allover the world to try to
win prizes. Most mathematicians respond to the (competitive)
challenge of trying to s~lve a problem before others do. A
lot of scientific research is similarly very competitive.

Apart from bringing news about competitions this column will
also from time to time discuss problem solving, and try to give
some hints about how to go about dealing with difficult (and not
so difficult) problems.
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PROBLEM- SECTION
We have had some solutions sent in -to us but we wi·ll holdthese over till next time. Meanwhile t here are some more.problems.

PROBLEM 3.2.1.
A number of tubes are bundled together into a hexagonal form:

Thus bundle con-
'0 0 0 0tains 37 tUbes. In

fact the number of
tubes in the bundle 0 0 0 0 0can be- 1, 7, 19, 37
(as shown), 61, 91,

0 0 0 0 0 0If this se-
quence ~s contin-
ued it will be

0 0 0 0 0 0 0noticed that the
total number of
tubes-- is often a

0 0 0 0 0 0number ending' in 69.

What is the 0 0 0 0 069th number in -the
sequence which ends 0 0 0 0in 69?

The above puzzle is meant to be solved t by readers of TheAusi;raZj.an, by constructing a-computer programme. We invite readersof Function to find a mathematical solution. In particular, find aformula for the number of tubes in a hexagon with n tubes along eachedge. Then- determine all n for which the number of tubes ends in 69.

PROBLEM 8.2.2. (Submitted by J.L. Bairstow.)

There are five regular solids: the tetrahedron, the cube,the octahedron, the dodecahedron and the icosahedron. Each maybe inscribed in a sphere so that all its verticec lie on thesphere. Calculate the radius of the sphere in each case.

PROBLE~1 8;2.3.
(a) Show that in any party of six or more people, there is atleast one set of three people all acquainted with each other orat least one set of three people no two of whom are acquainted.
(b) In a party of six people must there be either four mutualacquaintances or four mutual strangers?



PROFESSOR CHERYL PRAEGER

Late in 1983, the University of Western Australia appointedDr Cheryl Praeger to a Chair'in the Department of Mathematics.She is the only woman professor of Mathematics in Australia atthe moment and only th~ second in the history of this country.(The other was Hanna Neumann - see Function, Vol-.3, Par.,t 1.)

Professor Praeger was born and educated in Queensland,gaining her B.Sc. (First Class Honours) and her M.Sc. from thatuniversity, and winning their unive'rsi ty medal in 1969. This wasfollowed by a University of Queensland Research 'Award and aCommonwealth Scholarship to S~ Annefs College, Oxford, where shewas awarded her doctorate.

Between 1973 and 1975, she was a Research Fellow at' theAustralian National University in their Institute of AdvancedStudies. ~he joined the University of Western Australia in 1976,initially as a lecturer, but was later promoted to SeniorLecturer. She has al~o spent brief periods~t the universitiesof Virginia and Tel Aviv, at New Hall, Cambridge, and at thePrince of Sqngkla University (Haadyai, Thailand).

Her research interests lie in various aspects of the theoryof fini te groups, which ha's recently (1981) been the sUbject ofa major result - the full classification of all "finite simplegroupsff. She writes that this task involved the combined effortsof hundreds of mathematicians around the world over 30 years, andhas been described as "one of the most remarkable achievements inthe history of mathematics".

"The mathematical concept of a gro'up developed last centuryin connectioDwith thep:rpblem of solving polynomial equations.Groups are used to describe the symmetry of a system and as suchare central to mathematics. One can think of·a group as beingmade up of 'building blocks', called simple groups, 'glued to~gether' in some way. In the case of finite groups, the set ofsimple groups is uniquely determined. One of the basic steps tounderstanding the structure of finite groups was therefore theclassification of finite simple groups."

Her own use of group theory has included the study of permutation groups, groups arising from graph theory and other combinatorial questions, the use of group theory in experimental design with applications in· agriculture and enumeration problems inweaving and textile manufacture.

In private life she is married to a statistician wo~king inprivate. enterprise and has two children, aged 5 and 2. She alsoholds the A.Mus.A. in piano and performance and plays the organat her local church.

She writes that two early influences encouraged her. First,her success in Mathematics competitions and at Mathematics camps.Second, her years at Brisbane Girls Grammar School gave her role



models in the very supportive and competent women Mathematicsand Science teachers there. She was also greatly influenced byHanna Neumann whom she met after winning a vacation scholarshipto A.N.U. in 1968. Such encouragement she sees as most important for girls taking up mathematics.

Mathematics, she says,
is actually a very conven- .
ient job for a woman, for
it does not depend as .
heavily as other careers
do on environment. It
can be done in many
different times and
places, although it is
important to have access
to good library facili
ties and it is necessary
to keep up contacts with
other mathematicians.

Asked if she had a
message for today's
schoolgirls, she replied
that they should have
confidence in their own
abilities and should not
allow themselves ~o be
intimidated out of it.

MATHEMATICS TALENT QUEST~ 1984
The Mathematical Association of Victoria with the help of18 sponsors (including Monash University) organises an annualMathematics Talent Quest. First held in 1982, it grew in 1983to 1800 entr~es representing involvement of almost 3000 studentsfrom 20 schools.

Section 3, involving students in Years 10, 11, 12, andSection 4 (for computer entries) are those most likely to interest readers of Function. Entries can be from individuals,groups of 2, 3 or 4 students, or classes (at least 50% of theclass participating).

You should ask your teacher for information on how to enterand for his help in processing your entry, as all entries mustbe sent through the school the entrant attends.
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