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We thank, in particular, several people for their contri
butions to this issue of Function. Anne-Marie Vandenberg has
sent us more translations from our Netherlands counterpart,
Pythagoras. These all appeared originally in Volume 22, Part 3
(January 1983). The cartoon on p.22 was the front cover of
that issue. The remaining cartoons, all but one, were sent us by
Brian Morearty, Year 12, Mt Tamalpais H.S., California.

The news story on p.24 deserves mention also. Function
has long encouraged girls to take up the study of Mathematics.
It is pleasing indeed to be able to tell of three who have done
this so successfully. The photograph is by Rick Crompton and
it first appeared in Monash Reporter 3-83. We thank the Monash
information office for making it available to us.
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THE FRONT COVER

We show an instrument, devised in 1886, for drawing an
ellipse. There are more practical ones available now, but this
one has certain features of interest 0 It was invented by George
B. Grant of Maplewood, Massachu~etts, and first described in the
Franklin Journal of August 29 of that year. The brief description
(which does not include a proof of the claimed result) was re
printed in Scientific American Supplement, October 23, 1886.

The lengths AD, BC are equal, as also are the lengths AB,
CD. A and B are held fixed while, D, C rotate about them. The
point E then traces out an ellipseo The original article does
not describe how to fix a pencil to the point E, which slides
along the bars AD, B~ and this 'may wel~:have led to practical
difficulties in actually constructing the instrument.

c.

A B
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To prove that it works, consider the figure below, in which
the instrument has been reduced to an outline and DB has been in
serted. In the trianglesABD, CDB,

and
AB
ED

CD, AD = CB
DB

(by the nature of the instrument)
(obviously) .

Thus these triangles are congruent, and 4BAD

Now consider the triangles ABE, CDE.

4DCB.

and

AB
"4BAD
4AEB

CD
4DCB
4CED

(as before)
(just proved)
(by symmetry at E).

Thus these triangles are congruent, and BE = DE.

It follows that AE + BE = AE + DE, which is constant. But
this now gives a relation for E equivalent to the more familiar
"pin and string" method, so that E traces out an ellipse whose
major axis has length AD.

c

A 8
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CONES AND CONIC SECTIONS II
John Mack, University of Sydney

[In our previous issue we printed the first half of a talk
addressed to talented students by Dr Mack in 1982. That article
concentrated on properties of the ellipse. For the conclusion of
the talk~ read on.]

The hyperbola

The two spheres which touch the cone and the plane of the
hyperbola lie one in each nappe, on the side of the plane con
'taining the vertex. An analogous discussion to that carried
out for the ellipse results in

IPA - PBI = constant.

Directrices are obtain~d as before and each point P on the
hyperbola satisfies

distance of P frbm a focus
distance of P from the corresponding directrix = a constant e,

where e > 1 (because now CPD < BPD). The x-axis and origin
can be chosen so that the equation of the hyperbola is

The parabola

2
Y 1.

Because the plane of the curve is parallel to a generator,
there is only one touching sphere. The focus and its corres
ponding directrix now satisfy

Distance of P from focus
distance of P from directrix = 1

(because CPD = BPD). With appropriate choice of x-axis and
origin, the equation of the parabola becomes

2
x -.4ay = O.

Some applications

Rather than discuss the Latin meaning of 'focus', the use
of hyperbolas in radio navigation or parabolas as collectors or



transmitters of parallel light, I shall mention two applications
of conics which arise in connection with famous geometrical pro
blems of ancient Greece.

Duplicatibn of ~he cube: The problem is to construct the edge
of a cube of volume 2, using straight-edge and compasses in the
"approved" fashion. It is known that this cannot be done. We
can do it if we cheat and allow ourselves to draw parabolas.
In fact; suppose we construct the .parabolas x 2 = y and y2 =
The two curves meet in two points, 0(0,0) and P(X,Y), say.

x4
y

2
= 2X and X ~ ° so that X3

= 2.

2x.
At P,

p

Thus the abscissa of P is the desired edge length. Can you
d~sign an instrument that will draw these parabolas?

Descartes (after whom cartesian coordinates are named)
showed that only one parabola will do. For if the parabola

x 2
y and the circle x 2 + y2 = y + 2x (which can be drawn

with ruler and compasses) intersect at Q(S,T) with S ~ 0, then

8 2 + 84
= 8 2 + 28 and so 8 3 = 2 again.

Trisection o~ an angle: the problem is to trisect any given
acute angle using ruler and compasses in approved fashion. Again
it is known that this cannot be done. We again cheat, this time
by using one hyperbola. As a preliminary, we derive a result
about triangles.

6PP I G is isosceles and P2 is any point on FIG produced.

By the properties of isosceles triangles, if PM ~ FIG then

MF I = MG. Apply Pythagoras' theorem to 6S PMP 1 and PMF 2 :

pp2 PM2 + Mp 2
I I

PF2 PM2
+ MF 2

2 2
222PF I MF 2 MF I (MF 2 - MF I )(MF2 + MF I )

(MF 2 - MG)(MF 2 + MF 1 )

GF2·FI~2 ·

We now solve the following problem: Given two points FI
and B, what is the locus of a pcir-t P which moves so that
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2PBF1 ?

p

B

PG

Then

GF2 ·F1F2

(GB + BF2 )F1 F2

(PF
1

+ BF2 )F1F2

so that F1F2 =,4BF2 .

2PF
i (PF i + BF 2 )4BF2

PF~ (PF1 + 2BF2 )2

Let P be such that the condition is satisfied. Draw PG as
shown so that BPG = PBG. Then PGF 1 = 2PBFi = PF1G, so

6PF 1G is isosceles. Hence the result proved above holds for any

point ,F2 on F 1 G produced:

PF2 PF 2
2 1

Take the positive square root and obtain'

PF2 - PF1 = 2BF2 , a fixed distance.

Hence the required locus is one branch of a hyperbola with
foci at F1 and F 2 • Assume that this hyperbola has been

drawn. The following is a construction to trisect a given acute
angle e.

Step 1. Construct an isosceles triangle F1BO on base F1B,

with OF1B = OBF1 == 90° - e, such that 0 lies below FlB.

Step 2. With centre 0, draw the arc F1B above FiB

intersecting the given hyperbola at P.

'" 1
Claim. F1BP = 3 6

Exe~ci8e. Verify the 'claimed result.

Finally, here is a problem taken from a recent British
Mathematical Olympiad. Take an ellipse on a cone with horizontal
base. Let L be the lowest point of the ellipse and H the highest
point. One half of the ellipse provides a path p' joining L
to H on the surface of the cone. Another path (on the same "half"
of the cone as this path) is the 8ho~test path p joining L to H on
the cone. Recall that the surface of a cone is 'developable' - we
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may cut the cone along a generator and spread the surface out
flat on a planeo The shortest path is clearly the line segment
joining L to H on the flat surface 0

Question: Under what conditions will the paths p and p' meet·
one another somewhere between Land H? (ioe.; as the plane of
the ellipse is tilted and the angle of the cone is varied, p
will sometimes meet pI and sometimes nato Find a simple con
dition that will determine exactly when they meet.)

Solutions to this problem may be sent to the Editor.

Noteo The first complete description of the use of focal
spheres to establish the focus-directrix properties of the
conic sections was apparently given by Pierce Morton, a.n
English mathematician, in 1829. Dandelin, a Belgian mathema
tician, had used them to determine the fo~i of the sections in
1822-.

00 00 00 00 00 00 00 00 00 00 00 00

llUE ONlY L.lkES NATURAL LOGtARl11-\!V\S.J)
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LEWIS CARROLL

IN HIS PROFESSIONAL LIFE

M.A.B. Deakin, Monash University

Lewis Carroll is best remembered as the creator of Alioe in
Wonderland and other works of fantasy. The name "Lewis Carroll"
is a pseudonym derived from the first two names of the actual
author, an Oxford/cleric and academic, Charles Lutwidge Dodgson.

Dodgson was born in 1832, the third child of Charles Dodgson,
a clergyman, and his wife and cousin (n~e Francis Jane Lutwidge).
The -young Charles first attended Richmond School, in Yorkshire,
and came to the attention of his headmaster for the mathematical
ability he displayed. From-Richmond he went to Rugby, of Tom
Brown's Sohooldays fame, which he found less congenial. After
three years, aged 19, he "escaped" (his own word) to Christ Church,
Oxford, where he remained till his death in 1898.

He seems to have been extremely shy, stuttering, it is said,
except in the presence of the various nymphets he befriended. Of
these the best known was Alice Liddell, the original Alice; she
was the daughter of a colleague, Dean Liddell~ with whom Dodgson
fell out when he requested permission to photograph the pre
adolescent Alice in the nude (albeit from behind).

Dean Liddell and almost an entire post-Freudian generation
took rather a dim view of this request, although we now know
that Dodgson was puritanical to a fault. (He nurtured thoughts
of expurgating further the already expurgated Shakespeare of
Dr BawdIer, and expressed the hope that the illustrators of his
books would not ply their trade on a Sunday.) His interest in
photography was genuine and deep. The quality of his work in
this area is high.

It is paradoxical that Dodgson, who by profession was a
mathematician (he never practised as a parson, although he took
holy orders in 1861), is deservedly better remembered for h~s

creative writing and,' indeed, his photography. The aim of this
article, however, is to discuss his mathematical achievemen~s.

His mathematical work lies in five main areas, only two or
three of which he recognised as respectably mathematical. Most
of his' writing in mathematics was to do with Euclidean geometry,
and the best-known of his strictly mathematical books, Euclid
and His Modern Rivals, the only one still quoted to any extent,
lies in. this area. However, he did in his 30's also occupy him
self with determinants, numbers arising in the study of matrix
algebra. Hi~ other mathematical ~nterest was the theory of
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tournaments and elections, of which more later. Beyond these
three interests, he wrote mathematical recreations and works on
Symbolic Logic under his pseudonym.

This distinction 1.s important. Dodgsoti and his alter ego,
Carroll, shared many concerns and their writing styles are simi
lar. It has been said that Dodgson had two personalities, his
own and Carroll's. This seems not to be so. Rather, he used
the pseudonym for his works of fantasy, thus distinguishing them
from his serious writing. The pseudonym gave him, shy as he was,
some protection from the fame that Alice brought him.

Of his mathematical achievements! Carroll himself was wont
to say that they lie "chiefly in the iower branches of mathe
matics". No "Dodgson's Theorem" exists, and few would try to
.point to any lasting mathematical advance due to his insight.
He was a pedantic (i.e. tediously finicky) teacher, obsessed
with his own idiosyncratic notations, such as m for sine and
Jl for cosine. He attracted very few students to his lectures,

which were, surprisingly perhaps to us, regarded as very dull. He
published numerous, now forgotten, pamphlets, most of them
divorced from the mainstream mathematics of his day, and even
less relevant to us.

He probably approached that mainstream most closely in his
work on determinants, which arise in the theory of matrix algebra.
This was a relatively new branch of mathematics in 1866, when
Dodgson published a brief note in the Proceedings of the Royal
Society. A determinant associates a single number with a square
array of numbers. Determinants arise particularly in the
solution of simultaneous equations, and their evaluation is an
import~nt problem. in this area. Efficient methods for this
evaluation needed to be developed, and it was to this question
that Dodgson's paper addressed itself.

Unfortunately, it is almost incomprehensible, and to see
what is meant, one does best to turn to his subsequent book:
Elementary Treatise on Determinants.

(It was, inciden~ally, this book that followed most
immediately on the heels of Alice in Wonderland. The story has
it that Queen Victoria, enchanted by Alice, asked the publishers 
Macmillan - for a copy of the author's next work, and was un
amused to receive a copy of Elementary Treatise on Determinants.
The story is probably apocryphal (i.e. of doubtful authenticity),
but it makes a good yarn, and I· follow convention in repeating
it here ~ )

Elementary Treatise on Determinants is a reasonable intro
ductory textbook, rather less original than its author supposed,
but extremely systematic. Its eccentric notation is such that
one would not recommend it to a modern reader. (For example,
he refuses to use the word "Matrix", preferring "Block".) Some
of the problems he set himself, but could not solve, now seem
trivially easy as more advanced matrix algebra has become
Widely known. Appendix II of that work gives an expanded version
of the Royal Society paper. It appears. that what Dodgson had in
vented was a minor variant on what we now call Gaussian elimi
nation, but its full details eluded him.
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Dodgson t S most ex·tensive rnathematical work lay in the field
'of euclidean geometry. It is in this field that his only
mathematical work still available - EucZid and His Modern'Rivals
is to be found.

One might imagine that this refers to the rise, in the years
preceding the book's publication, of the non-euclidean geome-

tries t , but this is not so.' Apart from knowing that they stem
from a denial of Euclid.s parallel postulate, Dodgson shows little
acquaintance with these. What the book, a dialogue in five acts,
attempts to do is to show the ,superiority of Euclid, as an ex
positor of eucZidean geometry, over modern rivals such as, in
particular"J.M. Wilson, a text-book writer of the time.

The following excerpt on the pons asinorum (i.e. the theorem
that the angles at the base of an isosceles triangle are of equal

magnitude)tt gives the flavour of Dodgson's writing. He is dis
cussing Pappus'proof, which, in essence, proceeds by turning the
triangle over and superposing it on its previous position.

Minos: It is proposed to prove 1.5 [i.e. the pons asinorum] by
taking up the isosceles Triangle, turning it over, and
then laying it down again upon itself.

Euclid: Surely that has too much of the Irish Bull about it, and
reminds one a little too vividly of the man who walked
down his own throat, to deserve a place in a strictly
philosophical treatise?

Minos: I suppose its rlefenders would say that it is conceived
to leave a trace of itself behind, and that the reversed
Triangle is laid down upon the trace so left~

Nowadays we dismiss such metaphysical questions from mathe
matics, omitting the actual motion from the argument. Dodgson's

criticism does not apply to modern accounts at all tt .

Dodgson did recognise that, when it came to the parallel
postulaie, Euclid's account
might not be the best. Re- 1
fer to the diagram. 1
Euclid's version of the
postulate is that ~1'~2

are parallel if and only
if a + S = TI; if
a + S < TI they meet when
extended to the right,
otherwise to the left.

See Function, Vol.3, Part 2.

tt See Function, Vol.3, Part 3.
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By Dodgson's day, this rather cumbrous form had been re
placed by th~ more illuminating PlaYfai~'s Axiom:

If P is a point not on a line t" then
exactly one line may be drawn through P
pa~a l l e l to Q, •

Dodgson resisted this new approach, though later, after he had
retired on the proceeds of Alice (to devote his life to mathe
matical writing), he produced a convoluted alternative best
passed over in silence.

In the field of symbolic logic, Dodgson wrote for publi
cation under his pseudonym, which probably implies that he saw
the subject as essentially recreational. His two books in the
area are Symbo lic Logic and The Game of Logic, both in print to
day. Opinions differ on their significance.

On the one hand, W.W. Bartley III (Scientific American,
July 1972) can write "his work on logic was highly original",
but N.T. Gridgeman (Dictionary of Scientific Biography) finds
that "althou'gh he was not ignorant of the new trends lin mathe
matical logic], their importance either escaped him or was dis
countenanced".

Both books (and I includ~ the second part of SymboZic Logic,
reconstructed by Bartley) are original, qUir~y, and~ to my mind,
ultimately sterile. They both post-date Boole's Laws of Thought,
which Dodgson is known to have possessed, but neither shows the
slightest acquaintance with that work.

The predominant concern of these books is not really modern
symbolic logic, but a rather baroque outgrowth from the puzzle
world - the so~ites (pronounced sore-eye-teas).

I quote but one very simple example. Three premisses are
given:

(1) No potatoes of mine, that are pew, have been boiled;

(2) All my potatoes in this dish are fit to eat;

(3) No unboiled potatoes of mine are fit to eat.

These all concern "my potatoes", which may be: a (boiled),
b (eatable), c (in this dish), d (new). The object is to con
struct a valid 6onclusion from the premisses. The method is
perfectly mechanical and one of several equivalent techniques
employed by Carroll proceeds as follows.

Write -+ for "implies" and
now translate as:

(1) d -+ a'

(2) c -+ b

(3) a' -+ b'.

for, "not". The premisses

Four letters are involved, of which two (a,b) occur twice
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and the others (c,d) only onc~. (More
o
generally, if n pre

misses are involved, and some of Carroll's soriteses involve
over 50, there are (n + 1) letters; (n - 1) of them occurring
twice and two occurring once.) The problem is to find a logi
cal connection between the two which are listed only once.

In the above example, write (1) and (3) in the alternative
(and equivalent) forms:

(1) a -+ d'

(3) b -+ ao

We thus find

c -+ b -+ a -+ d' whence c -+ d f

which translates as "My potatoes in this dish are not new".

For more on these topics, see Function, Vol.l, Part 5.

There are some nice things in Symbolic Logic and The Game
of Logic. Venn diagrams are used in an elegant way with
coloured counters and some subjects are raised which still
occupy some (usually less mathematically inclined) logicians
today.

Of Carroll's other mathematical recreations, the best
known is his proof that all triangles are equilateral. This
featured in the April Fools' Day column of our previous issue.
Although Carroll did not realise ~t, this is a significant
result, for the proof is not technically incorrect. Where it
goes wrong is in its translation into reality. Of the points
G, H there constructed, one necessarily lies inside and the
other outside the triangle and the proof fails (in almost its
last line). Euclid's axioms do not, however, refer to the
"inside" or " outside fl of a triangle, and thus what Carroll had
done was to prove the inadequacy of Euclid's system of axioms,
a conclusion he wouldOnot have liked at all!

This example is found in a collection called Curiosa Mathe
matica, as is this next (the relevant part has also been pub
lished as PiZlow Problems). The kindest thing that can be said
about Carroll's error here is that it may serve to show how
easy it is to make mistakes in elementary probability theory.

Problem "A bag contains 2 counters as to which nothing is
known except that each is either white or black.
Ascertain their colours without taking them out
of the bag.~ -

Now this is nonsense, but Carroll confidently gives the
answer "one white, one black" and moreover argues for it by
means of a specious probability argument. We leave it to the
reader to find the error, noting merely with one commentator
(Eperson,Mathematical Gazette, Vol.17 (1933), p.99), that a
similar argument, applied to the case of 3 counters, shows that
there were not 3 after all. Here is Carroll's "solution".
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"We know that if a bag contains 3 counters I 2 being black

and one white l the chance of drawing a black one is ~, and that

any other state of things would not give this chance.

Now the chances that the given bag contains, (1) BB, (2) BW,
111

(3) WW, are respectively 4'2 '4'

Add a black counter.

Then the chances that it contains (1) BBB, (2) -BBW, (3) BWW,
111

are as before, 4' 2" '4.

Hence the chance of now drawing a black one

1 1 1 2 + 1 1 2
="4. +2'3 4·3=3"

Hence the bag nriw contains BBW (since any other state of
things would not give this chance).

Hence before the black counter was added, it contained BW,
i.e. one black and one white counter .. "

Regrettably, one encounters other such lapses in Dodgson's
writing.. He clearly enjoyed mathematics as a recreation and
kept a journal of mathematical thoughts.

"31st October, 1890. This morning, thinking over the pro
blem of finding two squares whose sum is a square, I chanced on
the theorem (which seems true, though I cannot prove it) that if

x
2 + y2 is even, its half is the sum of two squares. A kindred

theorem that 2(x2 + y2) is always the sum of two squares also
seems true but unproveable."

"True but unproveable" would seem to presage GOdel's
Theorem, but this is not what Dodgson had in mind. He found a
proof five days later. It is one line long and we print it on
p.32, but try first to discover it for yourself. On the 5th of
November, he proved also the related theorem: "Any number whose
square is the sum of two squares is itself the sum of two squares. 11

The resul t, as stated, is, in fact, false 0 E. g. 152
= 122 + 9 2 ,

but 15 is not the sum of two squares. However, it is true that if

2
z

and if z, x, y have no common factor, then there exist integers

u,v, such that z = u2 + v 2
• This result was known to the

Babylonians, and proofs had been available for hundreds of years
before Dodgson. See Problem 7.3 .. 5. See also for more background
Function, Vol.4, Part 1, p .. 27 and the article "Pythagorean Triples"
by F. Schweiger in Vol.6, Part 3.

Gridgeman's assessment of Dodgson's mathematical work takes
the least-known of it (the work on tournaments and eiections) to
be the best. (Although there are those, like Bartley, who rate
his logical works more highly than I have done.)
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This is contained in a number of pamphlets, letters and
broadsheets, all very rare, and one so rare that it survives
merely as a single copy. The best account of this work is to
be found in the book The Theory of Committees and Elections by
Duncan Black and I draw on this.

There is an extensive mathematical theory concerned with
the organisation 'of 'tournaments, elections and fair decision
making procedures. Black"s book is a good introduction to an
area we can only touch on here. Some of this theory predates
Dodgson, but Black shows quite conclusively that Dodgson did
not know of this.

His sources were his organisation of tennis tournaments
and his work on committees at Christ Church. In this latter
capacity he used his work to further his quarrel with Dean
Liddell (Alice's father).

Again, I would hardly consider Dodgson's work in the area
earth-shattering, but he does consider a number of unusual and
imaginative voting schemes, methods for m~ltiple decision-making
and allowance for the expression of degrees of preference in a
ballot. There are many numerical examples, which at least serve
to 'show the limitations of methods in vogue.

(To those new to this field - consider the differences be-
tween (a) a "first-past-the-post" system as used in Britain,

(b) the Australian Federal lower house system,
(c) the Australian Senate system,
(d) Tasmania's Hare-Clark system,
(e) the system used to decide the Age footballer of the

year 0 )

Gridgeman, rather generously, remarks that Dodgson was the
first to use matrices in multiple decision-making, and, if the
tabulation of results in a rectangular array is to be called a
use of matrices, so be it. No use is made of matrix algebra,
of which, apart from the relatively elementary theory of deter
minants, Dodgson seems to have been ignorant.

The picture that emerges of Dodgson the mathematician is
one of a pedant (his Notes on Euclid includes definitions of
"problem" and "theorem", and Symbo lic Logic has a defini tion of
"definition Tl

), original enough, but out of touch with the mathe
matics of his day. He was a mediocre mathematician in other
words. '

Of course, his talents in both literature and photography
were much greater and for these he is justly famous. He is
deserve~ly best remembered for the things he did best.

INCITEMENT TO CRIME?

[The judgel told her the penalty for armed robbery can
range from 6 to 30 years in prison. 'And if you can't assure
me that you won't behave properly,' he added, 'you won't be in
the courtroo~ for your trial. r

Chicago Sun-Times, 30.4.80.
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BOOK REVIEW
INSIDE RUBIK;S CUBE AND BEYOND

Christoph Bandelow, Birkh~user, 1982

Available from D.A. Book Depot, Station Street, Mitcham

Price $10

Reviewed by E.A. Sonenberg

Many "cube books" have been published in the last couple of
years - see Function, Vol.6~ Part 1 for a review of some.
Bandelow's recent book is a worthy addition to the library of
anyone keenly interested in the cube.

The book, of course, includes a systematic procedure for
"solving" the cube. But more importantly there is a presenta
tion of a number of concepts and theorems from a branch of mathe
matics known as group theory through which one can deveiop an
understanding of the cube. By such theoretical considerations one
can answer questions like: Which positions can be reached from
the start position by turning the layers? How are we restricted
if only a part of all the moves is permitted? Is there any non
trivial operation for which it makes no difference whether we per
form it before of after another operatiop?

The theoretical part of the book (2 chapters of 6) is not·
easy reading, but for those curious about the mathematics of the
cube it provides a thorough, clearly written treatment of material
not found in any other book.

00, 00 00 00 00 00 00 00 00 00 00 00

l\ tJ a oN 1.-~V'2L-S

~l6(~T' AND
A'BDV'C} THE

c.oM?<JTf3R
c-~A-rs 0 J}
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Figure 2: The double para
bolic framework.

A conical Lapp hut
in northern Sweden.

It is not surprising that parabolas are chosen as framework
for the hut. If a cone is intersected by a plane which is
parallel to a generator of the cone, the intersecting curve is
a parabola. (See Figure 3 opposite.)

t
PARABOLAS IN LAPLAND

tTranslated from the Dutch by Ms A.-M. Vandenberg. The original
is from pythagoras, a Netherlands counterpart of Function, and
we publish the article under an exchange agreement between
Pythagoras and Function. This article relates very closely to
John Mack T s articles in Func tion (see pp. 4 - 7 and our previous
issue) .

There is also another door and a hole close to the ground
to draw in the necessary air.

How are they constructed?

In the village of Fatmomakke in northern Sweden they were
just building a new hut (Figure 2). Four bent pieces of wood
had been put up in the clearing, connected in pairs to make
parabolas. They form the,~ramework ~f the hut. Logs or
tapering beams are then nalled to thlS.

Figure 1:

Laplanders build conical huts of logs or beams (Figure 1).
These in fact resemble a large open fireplace or hearth around
which you can sit with an entire family. A fire is lit on the
ground in the centre and the smoke disappears through the vent
at the top.



Figure 3: A par~bola shown as a section of a cone .

. :' 00 00 00 00 00 00 00 00 00 00 00 00 00
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ANON-RIGID lq-HEDRON t

Here is a plan from which 'to construct a remarkable object.
As you can see from Figure 1, it has to become a multi-sided
structure with 9 vertices, 14 triangular faces, and 21 edges
(lines around the perimeter count as half!). The triangles occur
as 4 different types, the edges in 5 lengths.

~--
/"

,/
/

I

---

8.5

5

/

------- --_.--~""

Figure 1

"'-
"-

\
\

--

In plan, the figure exhibits nice left-right symmetry, but
as soon as 'you start folding this no longer applies. Note the
two types of folding lines in the drawing. Construction may well
cause some headaches, for the result is a rather weird monster
with two deep indentations. You will only perceive some symmetry
again by looking for the longest edge and its opposite corner
point (the "top") and marking it in colour.

What is so remarkable about it?

Of course you can think of an endless number of other weird
many-sided 'structures. But the case described here has the
following very distinctive feature: If you hold the ends of the
longest edge with one hand~ you can'move the top a little J back
and forth. (See Figure 2.) The many-sided construction is
not fixed, not rigid. It can "wobble" a bit, without forcing.

tTranslat~d from the Dutch by Ms A.-M. Vandenberg. The original
occurs in Pythagoras and appears here under an exchange agree
ment between Pythagoras and Function.
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Figure 2

"So what", you may say, "is that so remarkable?" Probably
not if you have the thing in your hand and see it happen. But
it is if you consider that, until very recently (a few years
ago), such a structure had never been made. And therefore
everybody thought such a construction, consisting of rigid faces
and hinged edges, should always he "rigid". Moreover, quite
some time ago it had been proved beyond doubt that convex many-
sided structures are definitely always rigid. (Convex means:
"without dents or indentati~ns".)

Thus this is indeed a quite remarkable many-sided sturctureo
It demonstrates again how dangerous it is in mathematics to say
something does not exist as long as such a statement has not been
conclusively proved.

Construction guidelines.

- Use good stiff drawing paper or thin cardboard for the model.
- In copying the figure, choose at least 1 cm as the unit of

measure for the measurements indicated (in the drawing).
- Pinch along the solid lines from the front, and the pecked

lines from the back; make the folds in the corresponding
direction.

- Join the free edges together with sellotape as indicated by
the arrows. Or work out before cutting out where pieces of
tape should go.

- Leave the free edges of the uppermost triangle in the model
loose at first in order to see what happens inside.
Do your work with the utmost precision~ Good luck.
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LETTERS TO THE EDITOR
We have had three separate letters all on Peter Higgins'

proof that 1 + 2 + 3 + ... + n = in(n + 1). This is i record
for Function, and speaks well for the interest that the article
generated.

A~l ALTERNATI VE GEOMETR I C PROOF

The formula 1 + 2 + 3 + ... 0+ n = i en + 1). may be proved
geometrically without reference to the trapezia used by Higgins
(Function, Vol.7, Part 2). See Figure 1. The total area of the
entire rectangle is clearly n(n + 1) and the shaded portion,
representing the required sum is clearly' half of this.

J.M. Mack,
University of Sydn~y.

heights respectively 1, 2, .... , n

total height n +1

Figure 1

THE SAME ALTERNATIVE PROOF

The formula for the sum of an arithmetic progression is
proved algebraically by writing

Sn = a + (a + d) + (a + 2d) + ... + (t - 2d) + (t - d) + t,

where a is the first term, t is the nth (or last) and d is the
common difference. Writing this series backwards so that the
last term comes under the first, etc.,we have

Sn = t + (t.- d) + (t - 2d) + ... + (a + 2d) + (a + d) + a.
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Add the corresponding terms to find

2Sn = (a + 1) + (a + 1) + (a + 1) + . + Ca + 1) + (a +. Q,) + (a + Q,)

where there are n terms in the sum. Thus

and
n(a + Q,)

!nCa + 1).

In Higgins' example, a = d 1, Q, n.

I have long made a practice of demonstrating this case by
means of Cuisenaire rods and this gives a simple geometric proof
(see Figure 1 opposite).

K. McR. Evans,
Scotch College, Melbourne.

A RELATED RESULT

y

Higgins' proof that 1 + 2 + 2 + + n = ~n(n + 1) and his
remark that it is related to concepts used in integral calculus
prompted me to prove similarly that

1
2 + 2 2 + 3 2 + ... + n

2
= ~ n (n + 1) (2n + 1).

Replace Higgins' straight line by a parabola y = x 2 as shown in
Figure 2. Then the trapezium of Higgins' proof is replaced by a
figure whose top is a parabolic arc and whose area is

f' x
2

dx.

r-1

x

Now add all these

2 3 n-1 n
F;igure 2

3} 2 1(r - 1) = ~ - r + '3 .But r
r

x
2

dx
J
r-1

contributions for r = 1,2,3, . .. ,n, knowing that the total area is
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In x 2 ax

o
This gives the result claimed, after some algebra.

T.e. Brown,
Monash University.

Reprinted, under an exchange agreement, from Pythagoras (January,
1983) .
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PROBLEM SECTION
The only outstanding problems are those posed in our last

issue, to which we have already received some solutions, but
our experience of the previous issue has decided us not to pub
lish any of these as yet, in order to allow more time for other
solvers to send us material.

We acknowledge a solution to Problem 7.1.1 submitted by
George Karaolis, 66 Cruikshank Street, Port Melbour~e, that
arrived too late for inclusion in our previous issue.

For those who wished to read, rather than themselves pro
duce, solutions to the problems posed in April, a further two
months' wait will thus be necessary. Here are even more problems
to work on. The first three were submitted by J. Ennis, Year 11,
M.C.E.G.S.

PROBLEM 7.3.1a
There are n! possible permutations of the symbols

1,2,3, ... ,n. Of these fCn) are such that no symbol remains in
its original position, and g(n) are such that exactly one symbol
is undisturbed. Prove that

fen) = g(n) + C-1)n .

Express each of the integers from 1 to 20 in terms of the
symbols n, +, -, x, / (or ~), ~ (, )~ t ], where the square
brackets indicate the largest integer less than a given number
(e. g. [n] = 3). A tirul e of the game" is to strive to be as
economical as possible.

3 = en + n + n)/n ,

but [n] expresses this intege! more economically.

PROBLEM 7.3.3.
A deck of 52 playing cards is shuffled and placed face down

on a table. Cards are removed from the top of the pile until a
black ace is encountered. In whidh position is this ace most
likely to be found?

PROBLEM 7a3.4. (See the article on Lewis Carroll.)

Let x, y, z be relatively prime, and satisfy

Prove that there exist integers u, v such that z =
x, y in terms of u, V.

PROBLEM 7.305.
Solve for x: ;x-=--r - 1~/3x = i/;::,

2z .

Find
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A MATHEMATICAL TRIAD

The three graduates pictured opposite all graduated with
first class honours from Monash University in April, 1983 0

They are (from left) Helen Pongracic (Applied Mathematics),
Caroline Finch (Mathematical Statistics), and Julie Ann Noonan
(Applied Mathematics) 0 Julie topped her class at the end of
1982 and was awarded the L.J. Gleeson Memorial Pr~ze, awarded
annually by Monash to the best student in Applied Mathematics.

The three have been associated for some time. Caroline and
Julie were at ,school together, and Caroline and Helen have
known each other since childhood.

All three are continuing their studies as research students.
Helen is at Monash and is investigating the effects of asteroid
impact on the earth. It is now widely thought that a catastrophe
of this kind exterminated the dinosaurs (and thus led, indirectly,
to our emergence).

Caroline has gone to La Trobe University and is investigating
medical uses of statistics - with particular reference, she hopes,
to the evaluation of various cancer treatments.

Julie is also continuing at Monash, working on medium scale
meteorological phenomena - notably a strange, but regula~ occur
rence in Queensland's Gul~ Country. This is known as the Morning
Glory and consists of regular lines of cloud that appear over
Burketown and its environs.

We wish all three success in their future, and hope that
other young women will follow them.

DO YoU THINK
IN UNiONS OF
SETS WHEN
DOING ADDITION?

1 PRETEND I DO

BUT IN FACT 1

WINK OF APPLE~

AND 0 RAN.GE$ GO

Andrejs Dunkels,' Department of Mathematics, University of LUlei, Sweden.
Reprinted under an exchange agreement from Mathematical Digest
(RSA), No.50, (January, 1983). .
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A THREE-DIMENSIONAL HEPTAGON

In our last issue, we
included (p.11) a problem
as to whether a heptagon
(a seven-sided polygon)
can be constructed in
three dimensions in such
a way that:

(a) all its sides are
equal,

and (b) all its angles
are right angles e

The answer is "yes",
and the picture at the
right (from Pythagoras,
Volume 22, Part 3) shows
how this is done.

The principle of
construction used here
allows us to demonstrate
the existence of such
regular n-gons for all
n > 6.

A STILL UNSOLVED PROBLEM

In Volume 5, Part 3 we introduced readers to a "Viennese
Puzzle" and speculated that it was unsolved.

(*)
b n

Let a O be "an odd number (say 3). Mul tiply it by 3 and add

1 (to get 10): Now divide out by bO' the maximum power of two

that will divide this new answer (here bO = 2). Call the result

a 1 (here 5): Repeat the process to get a
2

(3 x 5 + 1 = 16, b 1 = 16,

a
2

= 1), and so on. The general formula is

3a + 1n

The question is: Does the process always result (ultimately) in
a string of ones? . Clearly the number "1 generates itself by the
formula (*) (b O = b1 = ... = 4), and also (fairly clearly) no

other number can be self-generating. We might envisage, however,
some sequence of an increasing without limit, or locking into a
cycle.
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We explored the behaviour of the sequences for various aO'
and these ultimately all yielded. the string of l's, although
the case a O = 27 takes a long time to settle down.

The problem is, as we suspected, unsolved. It (or rather
a problem equivalent to it) was one of a number of related un
solved problems discuss'ed by professor Richard R. Guy in the
January, 1983 number of Ameriean Mathematieal Monthly. It
seems to be extremely difficult to resolve problems of this type.

THE BEST PROOF OF PYTHAGORAS' TH~OREM

We have had several requests for a (we thought) well-known
proof of Pythagoras' Theorem - essentially that given by
Bronowski some years ago in the television series The Ascent of
Man - so here it is.

c

b
a

In the figure,a, h,' c are the sides of a right-angled tri
angle, whose oth~r two angles thus add up to ~ right angle. It
follows that if the figure drawn is made up as shown the outer
perimeter is a square of side c, as the marked angle and the
other angle at top left must add to a right angle. We thus have

c 2 = 4(!ab) + (a _ b)2 ,

which simplifies to

that is to say, Pythagoras' Theorem.

00 00 00 00 00 00 00 00 00 00
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THE SPARSENESS OF PRIMES

Is there a number N such that N + 1, N + 2, ... , N + k-l are
all composite (i.e. not primes) for a fixed k no matter how large
k is?

The answer to this question is, incredibly, YES., The number
N is in fact 'given by N = k! + 1.

Then N + 1
N + 2
N + q

k! + 2 which is a multiple of 2.
k! + 3 which is a multiple of 3.
k! + q + I! which is a multiple of q + ~ (q<k).

Thus we can form a set of k- 1 consecutive numbers, all of which
are composite.

This demonstrates how "thin" the primes become as their size
grows. Since lOa! has 157 digits, there is a 157-digit number
such that the next 99 numbers contain no primes.
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BECOME A MATHEMATICS TEACHER?

The Mathematical Associati"on of America, which is normally
concerned with mathematics at the tertiary level, has begun a
campaign to attract good graduates into mathematics teaching at
the secondary level. There is, they say, a critical nationwide
shortage of high sch.ool mathematics teachers in the United States.

This has led to that decline in standards in mathematics at
entry to college level that has been in the news so' much lately-.
This in turn has led to the vast increase in college level
remedial mathematics courses (196% in five years), reported in
Function, Vol.6, Part 3.

One problem, however, as the Guest Editorial in Focus, the
Association's newsletter makes clear, is pay. The author, Peter
Hilton, writes " ... the material rewards are so paltry compared
with what a talented student could earn in industry that it is
not easy, in all conscience, to justify [influencing] a student
to choose a teaching career".

In Australia, the situation is somewhat different. What we
do share with the U.S. is a shortage of mathematics teachers.
Two trends are likely to exacerbate this. First, stUdents, due
to the depressed economy, are staying in school longer, and
second, there is a tendency evident now to return to the "harder"
subjects like Mathematics and Physics in the b~lief (largely
justified) that these offer better employment prospects.

However, Hilton's doubts do not apply· here. Lionel Parrott,
head of Monash' Careers and Appointments Service, states that the
starting salaries, opportunities for further study, and promo
tional prospects in the teaching profession all compare favour
ably with those offered by industry in this country.

Of course, such a career will not suit everyone. Student
readers of Function are well placed to realise that not everyone
is cut out to be a teacher and also to note the fact that, al
though there are some fringe benefits like short hours and long
holidays, there are other~aspects, such as correction and prep
aration, that make these less Rdvantageous than at first appears.
Students' might also reflect that the classroom aspect of teach
ing can be difficult and stressful.

Nonetheless the jobs are there and are unlikely to disappear
in the foreseeable future.

Function has been informed that the prospects for mathematics
teachers, at least- in Victoria" are further'improved if the teacher,
at the start of his/her career is willing to work in country areas.
This can be rewarding in itself. The country teacher may miss
many of the attractions of the "big smoke'!, but this can be com
pensated by the. warmth and friendliness of rural communities and
the enhanced status that a teacher may .enjoy as a part of such a
community.
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WHAT APPLIED MATHEMATICIANS DO

[We reprint an extract from an artiale by Hirsch Cohen 3
President of SIAM {Society for Industrial and Applied Mathema
ticsJ 3 and published in full in the SIAM Newsletter (MaY3 1983).
Eds. ]

One of the things applied mathematicians find themselves
qoing often is explaining what they do. Sometimes to general
audiences, like wives or husbands, kids, and neighbours but,
often as not, to other scientists. I'd like to have a try at
it because I believe here is a change coming about in what we
do, or really, an important addition. I've observed that
[recently] it has been extremely important to explain what mathe
maticsdoes for the world. What applied mathematicians do
counts a great deal in these public explanations because it's
relatively easy to understand the applications we work on and
their benefits to society.

I believe there are th~ee major things that applied mathe
maticians do. The first is to create a better understanding of
phenomena by describing them mathematiGally; the second is to
create and to teach the techniques and methods for solving the
mathematical problems that result from those descriptions. These
two are familiar to all of us. We have studied laminar and tur
bulent flows in" fluid mechanics. We've described nerve i~pulse
propagation and blood flow in physiology. "The understanding of
galaxy formation and the motion of planetary bodies has been im
portantly aided by mathematical analysis. The list goes on and
on and includes the physical, biological, and the social sciences.
In almost all areas of nature and society, mathematical rep
resentations have been of use. ObViously it's a scholarly activi
ty that we share with other scientists in these fields who are
also intent on mathematical understanding of phenomena.

This attention to description, formulation, and then problem
solving has often led to the development of new techniques and
methods. The techniques that have been developed for solving
application problems have played a stimulating role within mathe
matics itself. Obviously one major preoccupation of applied
mathematicians is to improve on these methods and to pass them on
as teachers. This is not so much a shared activity with others,
but is more central to our own discipline. The interest and
knowledge that applied mathematicians have in .the formulation of
problems and the utility of their solutions often provides them
with special insights into approximations that make hard or large
problems tractable and resolvable.

So, understanding how things work, unraveling this under
standing in mathematical terms and communicating the understand
ing and the technology are two things we do. '

But there's a third function. Mathematics has also always
been used to design and to operate. For many years ship hulls,
bridges, airfoils, and other .engineering products have been
designed for strength, size, weight, durability, cost and other
values using mathematics. Mathematics has also been an "essential
ingredient in the handling of manufacturing lines, agricultural
projects, electrical networks, controlling chemical processes,
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and many other operational activities. However, with the in
crease in computational power we have seen a swift rise in the.
amount and the complexity of the mathematics used in design and
operations. New fields of applied mathematics have been created
to make use of the computational facilities available. Mathe
matical programming is one example, used both··in product develop
ment and operations design, for manufacturing, chemical process
ing, traffic flow and many scheduling and routing problems. Oil
recovery procedures are another example of operational calcula
tions. Nuclear reactors, magnetic disk heads, transonic air
foils, semiconductor chips are but a few· of the many examples
from a growing number of industrial and military products in
which numerically based design procedures have become one of the
essential steps. For these, new methods of numerical analysis
are being developed.

\OEAS---
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A BASIC ASPECT OF NUMERACY

Statisticians are often appalled at the many misuses of
statistical methods,. from elementary data arialysis, which might
be found in newspapers or magazines, to statistics presented in
journal articles summarizing experimental research~ Frequently,
correct statistical summaries do not require a great deal of
mathematical training, but rather some good common sense associa
ted with some basic instruction in statistical thinking, namely
"making sense out of numbers". Accordingly, many of us in the
statist~cal profession believe that not enough has been done to
introduce students (not only those in college, but those in
elementary and secondary schools also) to good statistical
reasoning.

Rob~rt V. Hogg, Studies in Statistics, 1978.

COINCIDENCE?

In Tampa, Florida, so the New York Herald Tribune reported,
A Mr Earl M. Lofton sank an "ace" on the 119-yard first hole of
the Palma Ceia golf course. The next two players of the foursome
were so excited that they fluffed their shots. But the fourth
player, Gilbert Turner, said that "a little thing like a hole-in
ane" wouldn't bother him. It didn't. He got one too.

Warren Weaver, Lady Luck, 1963.

THE ONE-LINE PROOF

The challenge on p.13 was to show that 2(x 2 + y2) was the
sum of two squares. Here is the proof.

2(x 2 + y2) = (x + y)2 + (x _ y)2.

The other statement ("if x 2 + y2 is even ... ") is a corollary.

REMARKABLE!

Not only does Holding have a long run-up; he also walks an
equal distance back.

Trevor Bailey, BBC TV Cricket Commentary, 12.7.1980.

The Canadian score of 7 was scored on six ends, and, what's
more, five of those were singles.

ABC TV Lawn Bowls Commeritary, Commonwealth
Games, 1.10.1982.
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