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The Rubik's cube craze has given an interest in mathe-
matics to many not normally so inclined. We thank Mr Leo
Brewin for permission to print an excerpt from his forthcoming
book. Because of the commercial implications, we draw atten-
tion to the fact that Mr Brewin, like all Function authors,
holds copyright on his material.

Dr Carl Moppert writes on his eye-catching sundial,
Dr L.M. Goldschlager on space-filling curves and their computer
generation, and Mal Park, a mathematics graduate now studying
law, looks at some wild stories in probability.

We thank Mike Morearty for the cartoon on p.14, and con-

gratulate Richard Wilson on his bronze medal in the Inter-
national Mathematical Olympiad (p.27).

THE FRONT COVER

Our front cover shows, superimposed, curves known as
Sierpinski curves of orders 1-5. The background article is
on pp.10-14.
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THE MONASH SUNDIAL

C.F. Moppert, Monash University

The Monash sundial is situated on the North wall of the
Union building and allows us to read, on a sunny day, both the
time and the date. The construction of such a sundial requires
knowledge of aspects of astronomy and spherical trigonometry
which are more fully explained in a longer (unpublished) paper
of which this is a summary.

The Celestial Sphere

In the most favourable conditions (cloudless sky and at
sea or on extensive level ground) the sky presents the appearance
of a large hemisphere centred on the observer. The point of this
hemisphere directly overhead is termed the zentzth; the "rim" is
the horizon. We adopt a geocentric viewpoint here, for simpli-
city, in which the observer is at rest and the sun and stars move
relative to the earth and hence to thé observer.

If we point a camera at night toward the sky and use an ex-
posure of several minutes, the photograph will show that the
stars move on circles across this hemisphere and all about a
common centre. The point on the hemisphere corresponding to
this centre is the south celestial pole (from the Latin caelum,
the sky). The elevation of this point above the horizon is the
latitude of the observer. (This angle is, by convention,
counted as negative in the southern hemisphere.)

The fixed stars (as opposed to the sun, the moon and the
planets) always follow the same circles (from east to west) -
this is the origin of the. term "fixed'"; moreover they do so
with constant angular velocity. Every fixed star performs a
full circle in 23 hours 56 minutes and 4-091 seconds.

The apparent sphere on which these motions take place is
called the celestial sphere. It is bisected by the celestial
equator, a semicircle drawn on it by a star that rises due
east of the observer and sets due west. Alternatively, point
your outstretched left arm directly toward the south celestial
pole and form a right angle between this and your right arm.
Notice that you can do this in many ways - in fact, you can
rotate your right arm about the left one. The right arm then
lies always in a fixed plane, which is always that of the
celestial equator.



Declination and Hour Angle

The sun's path through the sky is a complicated spiral,
but, to an excellent approximation, we may regard its path on
any one day as being a circle centred on the south celestial
pole. Let the sun's position be denoted by P, and that of
the south celestial pole by Sc. Then if 0, the observer,

points his left arm towards Sc and his right arm towards the

sun (P) the angle so formed remains constant on any given
day. It is 90° minus the constant angle between the sun and
the celestial equator. (See Figure 1.) Its opposite, i.e.
the negative angle LSCOP - 90° is called the declination of

the point P in the sky. The declination is denoted by 6.
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Figure 1 E

The declination of the sun varies over the course of a
year between -23%°and +23%°. Figure 2 shows the change of
the declination of the sun during any one year. The sun's
declination thus determines the date.
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In order to fix the position of a point P in the sky, it
is not enough to know the declination of its circle. We must
also say where it lies on that circle.

To do this, imagine two planes. First, there is a plane
determined by 0 (the observer), Z (his zenith), and Sc (the

south celestial pole). The second plane contains 0, Sc and P.

These two planes form an angle T (say), which may, however, be
arrived at in another way. The first plane meets (see Figure
3) the plane of the celestial equator along a line 0Z', while
the second meets it along a line OP'. 1t 1is the angle Z'OP'

because the lines concerned are perpendicular to OSc’ the line

along which the planes intersect. &, the declination, is the
angle POP', taken with a negative sign.

z
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We shall call <t the hour angle of the point P. (Tradi-
tionally, not T but 180° - Tt is the hour angle, but our

definition is more appropriate to the southern hemisphere.)
The hour angle, as its name implies, gives a measure of the
time of day.. The sun takes, on average, 24 hours to complete
a full circle, but this varies slightly (up to 30 seconds
between days).

The sundial aims to measure declination and hour angle and
to translate these into readings of date and time.

Spherical Trigonometry

There is, of course, no such thing as the celestial sphere.
It is merely a convenient fiction. Nor need we, when we imagine
it, place ourselves inside it. We can perfectly well imagine
instead a scale model (such as is to be found in some museums)
which we view from the outside. This has the advantage of
placing us in a more familiar context, for we live on the out-
side of a sphere (the earth) and are all familiar with the
globes used as scale models for this.
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Now let A4 and B be two points on the sphere which are not
diametrically opposite. The shortest distance between them on
the- sphere is the great cirele arc joining them. On a globe
this may be determined by stretching a string between 4 and B.
The great circle arc always lies in a plane passing through the
centre of the sphere. Planes and ships navigate along great

circle arcs to economise on fuel*.

. Let us now fix three points 4,B,C on the sphere and con-
nect each pair by-a great circle arc. The result is a spheri-
cal -triangle (Figure 4). Spherical trigonometry studies
spherical triangles much’ as ordinary (plane) trigonometry
studies the more familiar plane triangles. One major difference
lies in the units by which length is measured. Naturally dis-
tances along great circle arcs can be measured in linear units
such as centimeters or kilometers, but it turns out to be more
convenient to measure them in angular units. .

C

Figure 4

¢

Let 4,B be two points on the sphere, and let O be its
centre. Then [AOB determines exactly the distance from 4 to
B and we take the length AB to mean precisely this angle,i.e.
the radius of the hemisphere is used as the unit of measurement.
Thus in Figure 4, a,b,c are measured as angles at the centre O
(not shown) of the sphere.

In what follows, we will use (without proof) some of the
known formulae from spherical trigonometry.

The Conventional Horizontal Sundial

We begin by analysing the conventional horizontal sundial
as found in parks and such places. Figure 5 shows the configu-
ration. O0C is the pointer or gnomon and it is directed toward
the south celestial pole (i.e. it is parallel to the earth's
axis). P is the shadow of the point ¢ at the end of the
gnomon and T is a point due south of 0. Let the distance 0G be
taken as one (in some suitable units). Then make 0T = 1 also
and OH = 1 where H lies on the line OP. Then GTH is a spheri-
cal triangle (see Figure 6).

+See the article "Great Circle Navigation" in Function, Volume
4, Part 1.



Fiaure 5 Figure 6

We readily see that [/GTH = 90°, the angle between the
planes GT0 and HTO0, and that GT = X, the latitude. A little
thought also shows that /#Gr = T, the hour angle of the sun.
Then two formulae from spherical trigonometry give the orien-
tation of the shadow OP. We have

tan HG = tan A/cos T

tan HT = sin A tan T.
The length of the shadow is determined by plane trigonometry
(see Figure 7). In the plane triangle OGP, JOGP = 90° + §,
by the definition of §, the declination, and by the sine rule

and a few minor manipulations

OP = cos §/cos(6 - HG)-
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Figure 7

These three equations are, in principle, sufficient to
give the position of the point P. In practice, more work is
required: the declination & must be related to the date
(via Figure 2)and the hour angle to the standard time (via
astronomical tables). (This latter correction is complicated
and involves a term referred to as the "equation of time"
which is responsible for the looped shape of the.more '"verti-
cal" parts of the scale.) The calculations are not really
difficult, however, and a programmable calculator makes them
relatively easy.

Figure 8 gives a scale model for such a sundial at
Monash. The tip 6 of the gnomon is vertically above the point
G' at a height of 0-6146 units. The plot of positions of the
shadow allows us to read off time and date. Date is read by
interpolating between the month curves. The shadow lies on
the month curve on dates between the 20th or 23rd of the
month (compare Figure 2). Time is read off by interpolating
between the loops, whose fully drawn parts are used between
June 22 and December 22 in any year, and whose partly-drawn
parts are used the rest of the year.

The Monash Sundial

In a sundial such as we have been considering, it is the
shadow of ¢ that is important. The gnomon itself may be
omitted, if ¢ is in its correct place. Such a sundial works
well; an article on this type of sundial appeared in Scien-
tific American, December, 1980.

The Monash sundial, however, not only omits the gnomon
but has an added complexity. It is mounted on a vertical
wall, whose orientation must be accounted for.

To adjust for this, we may either take the pattern of
Figure 8 and modify it by calculating the intersections of a
plane fepresenting the wall and the lines drawn between G, the
tip of the gnomon, and the points making up the curves and
loops, or we may calculate from different spherical and plane
triangles directly for this more complicated case. The
second course of action is actually the better one - the resul-
ting pattern is that shown on the Monash sundial.
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The Monash Sundial. This was designed by the author, Carl
Moppert, with the help of Ben Laycock and Hugh Tranter. The
shadow falls as shown twice -a year:

at 11.55 a.m. on November
23rd and at 12.25 p.m. on January 20th.

The photograph is by
R.L. Bryant, Physics Department, Monash University.
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COMPUTER GENERATION
OF SPACE FILLING CURVES

Leslie M. Goldschlager,

University of Queensland

A space-filling curve is a continuous curve, say in the
unit square, which passes through every point in the squareT.
Examples have been given by Peano, Hilbert and Sierpinski

among others.

The main interest in these curves to Computer Scientists
has been recreational, as they produce pretty pictures on a
- plotter. Examples of some computer drawn curves appear in
Figure 1 and on the cover. These figures show, respectively,
Hilbert and Sierpinski curves of orders 1 to 5, superimposed.
For higher orders these curves approach space-filling curves.
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fFor more on these, see Funetion, Vol.2, Part 3.
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The first algorithms presented for drawing space-filling
curves were two or more pages long, and they provided excellent
examples of unstructured programs. More recently, Niklaus Wirth,
the originator of the programming language PASCAL, has given
more elegant solutions, about one page long using recursion (the
ability of a procedure or subroutine to call itself). We will
give algorithms of about a quarter the length and explain how
these short algorithms can be used to draw these curves on a
graphics screen. The algorithms will be presented in the PASCAL
programming language, but a familiarity with PASCAL is not
essential for generating these curves.

In order to draw the curves you can pretend that your
graphics screen is a plotter whose pen can move in four
directions (N,S,E,W). All that you need to do to generate the
curves is to write a procedure MOVE which leaves a line on the
screen as if the pen had moved. For example a call on proce-
dure MOVE(S,W,h) causes the pen to move south-west, ending h
units south and h units west of its initial position. MOVE
(N,N,h) moves north a distance h. The language in which pro-
cedure MOVE is written will depend on your graphics equipment
and computer. The main programs below will then generate the
Hilbert and Sierpinski curves of order i.

HILBERT CURVES

program Hilbert Curves (input, output);
type direction = (N,S,E,W);
var 1i: integer; h: real;
procedure Hilbert (R,D,L,U: direction; i: integer);
begin 1f i > 0 then
begin Hilbert (D,R,U,L,i-1);
MOVE (R,R,h);
Hilbert (R,D,L,U,i-1);
MOVE (D,D,h);
Hilbert (R,D,L,U,i-1);
MOVE (L,L,h);
Hilbert (U,L,D,R,i-1);
end
) end; (*Hilbert¥*)
begin (*main program¥*)

(*initialize 1 and h *)

Hilbert (E,S,W,N,i)

end.
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SIERPINSKI CURVES

program Sierpinski Curves (input, output);
type direction = (N,S,E,W);
var. 1: integer; h: real;
procedure Sierpinski (R,D,L,U: direction; i: integer);
begin 1f i > O then
begin Sierpinski (R,D,L,U,i-1);
MOVE (D,R,h);
Sierpinski (D,L,U,R,i-1);
MOVE (R,R,2*h);
Sierpinski (U,R,D,L,i-1);
MOVE (U,R,h);
Sierpinski (R,D,L,U,i-1)

end
end; (*Sierpinski¥*)
begin (*main program*)
(*initialize i and h *)

Sierpinski (E,S,W,N,i); MOVE (S,E,h);
Sierpinski (S,W,N,E,i); MOVE (S,W,h);
Sierpinski (W,N,E,S,i); MOVE (N,W,h);
Sierpinski (N,E,S,W,i); MOVE (N,E,h)

end.

These programs assume that the curve will be drawn starting
from the top left-hand corner of the screen.

How do the algorithms work?

In order to illustrate how these algorithms work, let us
consider the generation of the Sierpinski curves. Observe that
if procedure Sierpinski is called with the parameter 1 = 0O then
nothing happens. What happens when Sierpinski (R,D,L,U,i) is
called with i = 1? The only statements within the body of pro-
cedure Sierpinski that are executed are the MOVE instructions
because the recursive calls to procedure Sierpinski are made
with 1 - 1 = 0. Execution of the MOVE instructions will
generate Figure 2.

Figure 2
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Let us consider the case 1 = 2, Now the recursive calls
to Sierpinski will be made with i - 1 = 1 so that lines will
be generated on the screen. -The MOVE instructions will gene-
rate the dotted lines of Figure 3 and the recursive calls to
Sierpinski will generate curves in the circled areas.

Figure 3

The first statement executed is Sierpinski (R,D,L,U,1i-1)
with 1 - I =1, This is just the case described above and
Figure 2 will be generated. The next statement executed is
MOVE (D,R,h) and the dotted line of Figure 4 is drawn. The
next call is to Sierpinski (D,L,U,R,i-1) with i - 1 = 1. The
curve in Figure 2 will be generated but with a different
orientation. After execution of this statement the curve of
Figure 4 will be drawn and the curve after execution of the
whole procedure is given in Figure 5.

N
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The main program of Sierpinski Curves with i = 2 will
generate 4 copies of Figure 5 at different orientations and
joined by the lines drawn by the 4 MOVE instructions. The
cases 1 > 2 can be investigated in a similar fashion.

A challenge to BASIC programmers

If you prefer programming in the BASIC programming language,
you might like to write code in BASIC for generating these space-
filling curves. However, because BASIC lacks parameters and re-
cursion an elegant solution such as the one given in this article
will not be possible. In fact you might find that your BASIC
program is long and unwieldy and this should cause you to reflect
on the desirable properties of a high level programming language,

© 00 0 0O 0 W W W 0 W © ©

STHIS MODEL DOES BVERITWING FOR YOO :
FINANCING, BODGETING |, FISCAL REVCETS - -
EVEN GETS HEAYCHES !

Submitted by Mike Morearty, Year 11, Mt Tamalpais H.S., California.
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AN ALGORITHM FOR RUBIK’S CUBE’

Leo Brewin
Monash University

Introduction and Notation

In this article I give an approach to solving the Rubik
cube. To those readers who have already solved the cube this
article will have little to offer, except perhaps in a compari-
son of different techniques. For all other readers the follow-
ing algorithm will return your cube to its original glory,
possibly for the first time since you purchased it!

The algorithm, as given here, is not as quick as it could
be. There are some parts of the algorithm which could be re-
placed by more efficient techniques. However for the purposes
of clarity and simplicity of presentation the number of diffe-
rent operations has been kept to a workable minimum.

Once you have mastered this solution you may like to modi-
fy it to include extra operations so as to streamline the
solution. The fun you can have with the cube does not stop when
you have the solution!

As we progress through the solution the operations will
generally increase in complexity. There will come a point
when it becomes quite unpractical to describe these operations
in ordinary words. We w 11 need to use a shorthand notation
to convey the meaning of each operation.

A simple notation can be obtained by writing down the se-
quence of rotations of each individual face. For example:
left + right would mean a quarter-rotation of the left face
followed by a quarter-rotation of the right face. But in
which direction should you rotate each face? By convention
the rotation is in the clockwise sense to a person looking onto
that face. Thus to indicate a clockwise quarter-rotation of
the left face write: +left. While for a counter-clockwise
quarter-rotation write: -~left. We can simplify the notation
even further: merely use the first letter of the name of the
face. Thus for the faces UP, DOWN, LEFT, RIGHT, FRONT and
BACK the shorthand notation for the rotations is U, D, L, R, F
and B. On some occasions we may encounter the move U + U; this
can simply be abbreviated as 2U. (Notice also that -U-U is
equivalent to 2U.)

TThis is an extract from a forthcoming book. @ Leo Brewin, 1981.
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Typically then an operation on the cube will be represented
by a string of letters, for example L-R+2F+R-L+2U (try this move
now, and take note of what it does to each piece). These
strings of letters are often referred to as 'words'.

It is most important to remember to read the string of
operations from left to right and to also hold the cube in a
fixed orientation throughout a move. If either of these con-
ditions is violated then you will probably make a mess of the
cube.

So we now have a technique for describing groups of rota-
tions. Equally important is the description of the state of the
cube, that is, where each piece is.

In any disordered state of the cube it is quite easy .to
see where each piece should go. This is because the centre
pieces never move. So if we are prepared to hold the cube in a
fixed orientation then we may describe the position of each piece
relative to these unmoving centre pieces. For example if the
piece at the top right-hand corner is adjacent to the UP, RIGHT
and FRONT centre pieces, then this piece is said to be at URF.
Now the three colours on this piece tell you where this piece
should actually be, say UFL.

So we know that the piece presently at URF should really be
at UFL. Using this notation we can describe the state of the
cube. It is important to notice that URF is not the same as RFU.
Even though the piece is still in the same location of the cube
it does not have the same orientation. It has been twisted in
its place.

We can apply a similar notation to the edge pieces - those
pieces which have only two adjacent centre pieces. Thus an edge
piece may be located at UR but should be positioned at UF, and
so on.

When a piece is in its correct location of the cube, we
will refer to the piece as being correctly located, if it is
also correctly oriented then we shall say that it is correctly
positioned. Thus the word 'location' will refer to a physical
place in the cube whereas 'position' will also imply that the
orientation is significant.

On occasion you will encounter the phrase 'the top face of
the piece lies in the X face'. This is meant to imply that the
side of the piece that would normally appear in the top face
does in fact (presently) appear in the X face.

Throughout the solution we will treat the edge and corner
pieces separately. Typically we will correctly position each
edge piece by first locating and then orienting it. Once
this is complete we will then position the corner pieces. The
positioning of the edge and corner pieces will proceed in a
layer by layer process.
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1. The First Layer.
We start by reconstructing the top layer.
1.1. The edge pieces.

Choose any one of the (incorrectly positioned) edge pieces.
This piece will be in either of the bottom or middlée layers (if
this i1s not the case then rotate the face that contains it).

First orient the whole cube such that the chosen piece is
in the front face.

1.1.1. The piece is in the bottom layer.

(a) If the top face of the piece is on the bottom
rotate the bottom layer so that a face of the piece matches
one of the centre spots. Now turn this layer upside down.
This should correctly position this piece.

(b) If however the top face is in the front rotate the
bottom layer until the piece is directly below its correct
position. By rotating this vertical layer the piece can be
placed into the middle layer.

1.1.2. The piece is in the middle layer.

Rotate the whole cube so that the top face of the
piece is not in the front face. Now ensure that the top face
of the piece is on the side of the front layer. Now locate the
correct position for this piece and rotate the top layer so as
to bring this position to the front. You should now be able to
rotate the front layer so as to place the piece into its correct
place in the top layer. Finally return the top layer to its
original position. This ensures that no other edge pieces will
be displaced.

1.2. The corner pieces.

Choose any of the incorrectly located corner pieces. This
piece will be in either of the top or bottom layers. Should
the piece be in the top layer then we will first shift it to
the bottom layer.

1.2.1. The piece is in the top layer.

Rotate the whole cube so as to place the chosen piece
into the top right-hand position of the front layer. By rota-
ting the right-hand layer place the piece into the bottom right
position (i.e. directly below its original position). Now ro-
tate the bottom layer one quarter of a turn in either direction.
Finally rotate the right-hand layer back into its original
position.

The chosen piece should now be in the bottom layer.
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1.2.2. The piece is in the bottom layer.

Rotate the whole cube so as to place the correct posi-
tion for the piece at the top right position of the front layer.
Now by rotating the bottom layer you should be able to place
the piece directly below this correct position.

If you are unlucky the top face of the piece will lie
on the bottom. Should this occur you will need to shift this
top face to one of the sides (i.e. twist the piece).

(a) If the top face of the piece is on the bottom then,
by rotating the right-hand layer, place the piece into the back
right-hand corner of the bottom layer. Now make one half turn
of the bottom layer (i.e. turn it upside down). You can now re-
turn the right-hand layer to its original position. Finally ro-
tate the bottom layer so as to place the cube directly below its
correct position (i.e. its starting position).

The top face of the piece should now be on one of
the sides.

(b) Take a look at the piece and determine in which of’
the layers the top face lies (the front or right layers). Ro-
tate this vertical layer one quarter turn, keeping the piece in
the bottom layer. Now rotate the bottom layer so as to place
the piece back in its starting position; the piece should now
match with one of its edge pieces. Now return the vertical
layer to its correct position.

The chosen corner piece should now be correctly
positioned. This procedure can now be applied to all the re-
maining corner pieces to complete the first layer.

2, The Second Layer.

Throughout this section we will always leave the first layer
in the left-hand position. Although some of our moves may
appear to destroy the regularity of this layer do not get
worried. As each second layer piece is correctly positioned
the first layer will return to its correct structure.

The-construction of the second layer is the simplest part of
the whole process, there being only four edge pieces to position.

Choose a piece which you wish to correctly position in the
second layer. We will assume that this piece is in the right-
hand layer. Unfortunately in some cases this will not be possi-
ble, the pieces will already be in the second layer (but in-
correctly located). When this occurs you can flush out one of
these pieces by shifting a third layer piece in its place as if
it were a true second layer piece. Thus we may safely assume
that the piece to be inserted is in the third layer.

Rotate the right-hand layer so that one face of the piece
matches with one of the centre spots. Now rotate the whole cube
so as to make +this face the top face of the cube. The chosen
piece, now at UR, needs to be shifted to either UF or UB.
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2.1. The UR to UF transition.

(a) To displace the piece at UB use: 2U+2R+U+2R+2U.
(b) To preserve the piece at UB use: B+2U+R+U~R+2U-B.
2.2, The UR to UB transition.

(a) To displace the piece at UF use: 2U+2R-U+2R+2U.
(b) To preserve the piece at UF use: ~F+2U~R-U+R+2U+F.

In each of the above transitions you could choose to use the
type (b) move, however there are two advantages in using the
(a) move. First, it requires only five primitive operations as
opposed to seven and,secondwe can use this move to flush out
some of the second layer pieces which are incorrectly positioned.
This may save some time in the completion of this layer.

3. The Third Layer.

This layer is certainly the most laborious to reconstruct
since each group of operations must not affect the previous two
layers.

The technique which we are about to employ is similar to
that used for the first layer. We will firstly orient and lo-
cate the edge pieces, this will then be followed by locating
and orienting the corner pieces.

To start, hold the cube so that the third layer is pointing
upwards.

3.1. Flipping the edge pieces.

At this point there should be zero, two or four edge-
pieces with their top faces pointing upward (i.e. in the top
face). If this is not the case then you have either made a mis-
take or your cube has been tampered with!

If all four edge pieces need flipping then first apply:
F-R~F+R+U+R-U-R. This should flip two pieces. We are now in a
position where only two pieces need flipping. There are two
possibilities as indicated in Figure 3.1a and 3.2b. Now apply
the operation associated with the figure that matches your
situation.

All four edge pieces should now have their upper face
pointing upwards.

flip
flip
flip flip
F-R-F+R+U+R-U-R R+U-R-U~R+F+R-F

Fig. 3.1la Fig. 3.1b
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3.2. Shunting the edge pileces.

In this section we will cycle the edge pieces into their
correct locations. By rotating the top layer you should be
able to correctly position two of the four edge pieces. For
the remaining two pieces refer to figures 3.2a and 3.2b to ob-
tain the required operations.

The cross on the third layer should now be complete.

F+U-F+U+F+2U-F+U F+U-F+U+F+2U-F-U+F+U-F+U+F
. +2U-F
Fig. 3.2a

Fig. 3.2b
3.3. Locating the corner pieces. ‘

In all that follows we will only need to use two distinct
operators together with their inverses. These operations and
their effect on the cube is indicated in the figures 3.3a and
3.3b. Since we will be making constant use of these moves let
us introduce two new symbols: X and Y to represent them.
With these two operators (and their inverses) we can cycle the
corner cubes as in figure 3.3a and 3.3b. However this may not
cover all possibilities.

The two remaining cases are shown in figure 3.3c and 3.3d.
The new symbol Q represents a quarter rotation of the whole
cube, which looks as if the top face was rotated clockwise one
quarter of a turn. This must be one of the simplest moves
possible since all you need do is hold the cube differently!

With this collection of operators you should be able to
locate correctly all of the corner pieces.

L |
X=1+F-R-F-L+F+R-F ' Y=-R-F+L+F+R-F-L+F
Fig. 3.3a Fig. 3.3b

AN
X-Q+X X+Q+X

Fig. 3.3c Fig. 3.34d
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3.4. Twisting the corner pieces.

In this part of the solution we need only one basic opera-
tion: X+Q+Y-Q. 1Its effect on the cube is to twist the two
rear pieces in opposite directions. The result is to shift what
was the back face of each piece onto the top face of the cube.
When making this move we will be attempting to orient correctly
one or both of the corner pieces. However on occasions this
will not succeed; we will need to follow this with exactly the
same move on the same pair of pieces. In fact this double move
can be accomplished in one move when applied to the same pair
of pieces but from the other layer in which the pair lie. If
you like you may try this move on the bottom layer, for there it
is easy to see the effect the move has on the cube.

To return the bottom layer to its original state simply apply
the move a total of three times.

The decisions we must make invulve the choice of the pair of
pieces to twist. We will need to distinguish three different
cases depending on the number of correctly oriented pieces,this
being zero, one or two.

In the instance when two pieces need twisting and they are
diagonally opposite it will simplify the discussion if we dis-
regard the fact that one of the other pieces is correctly lo-
cated. This places this situation in the same case as when one
piece is correctly positioned.

3.4.1. Zero pieces correctly oriented.

By inspecting the four corner pieces you should be
able to locate a pair of pieces for which the operation
X+Q+Y-Q (or twice X+Q+Y-Q) will twist them into their correct
orientations. This will leave only two pieces which require
twisting, so apply X+Q+Y-Q once again (or perhaps twice).

If you were careful in your choice for the first pair
of pieces you should only need to apply X+Q+Y-Q once for each
pair of corner pieces. You can make this choice by finding a
pair of pieces which require their face at the back of the
piece to be shifted to the top face.

3.4.2. One pilece correctly oriented.

Our strategy here is to twist a pair of pieces so as
to orient correctly one of the pieces adjacent to that piece
already correctly oriented.

Select a pair of pieces not containing the correct
piece. Twist these pieces by applying X+Q+Y-Q. If this does
not correctly orient the adjacent piece, then apply X+Q+Y-Q
once more. This should result in two pieces being correctly
oriented. Then finally apply X+Q+Y-Q (once or twice) to the
two remaining pieces.
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3.4.3. Two adjacent pieces require twisting.

In this case you should only need to apply the basic
move (X+Q+Y-Q) once to orient the two pieces. To do so you
may need to redefine the top layer of the cube (i.e. rotate the
whole cube in your hand so that the top faces of the two pieces
are not visible from the top layer).

If all has gone well then you should now have a completely
re-assembled cube. Now all you need to do is mess it up and
start all over again! :

@ o 0 W W 0 W 0 0 0 W ™ ©®

RARE EVENTS
AND SUBJECTIVE PROBABILITY

Mal Park, Monash University

People can assess probabilities in strange ways, often, but
not always, at some loss to themselves.

Exzample 1. In June, 1950, an unidentified man walked up to a
dice table at Las Vegas and won an amazing twenty-eight consecu-
tive times at the game of craps. As the probability of winning
once at this dice game is T%%% = -492@, the probability of
winning 28 times consecutively is (°49§é)28 = 25 x 10—9. The
probability of winning 28 times consecutively and then losing

is 205 x 1079 x (1 - -4923) = 1-3 x 10™? as in the "geometric"
distribution. Unfortunately for the man, he did not believe
his luck, winning only $750 with modest bets. 'Other gamblers,
packed four deep around the board, were less conservative.
Witnesses said Zeppo Marx raked in $25,000. Gus Greenbaum,
owner of a rival club, walked out $48,000 to the good."

[From the New York Herald Tribune report, discussed in the
book "Lady Luck, The Theory of Probability" by Warren Weaver. ]

Example 2. -In law, it has been suggested that some characteris-
tic known to be possessed by a criminal should not be used as
strong evidence against an accused person who also has that
characteristic, unless it is "much more rare than a frequency

of one in a thousand". Given this desired rarity, consider the
following report from the Melbourne Sun (16 December, 1980) con-
cerning a coroner's inquest at Alice Springs:

"According to the alleged statement, Mrs Chamberlain said:
'So there is blood on the rock with the same blood grouping as
me. '

Sergeant Charlewood: 'A little more than just the same
group as you.'
' Mrs Chamberlain: 'Identical group.'

Sergeant Charlewood: 'Not identical, but coming from 14 per

cent of the population.'"
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Example 3. For another example consider a lottery recently
conducted in Victoria designed to provide a total of $1.5 m. in
prize money including a $1 m. first prize. Before the lottery
can be drawn 100 000 tickets at $25 each must be sold. Thus a
total of $2.5 m. was paid in by purchasers in return for a
total payout of $1.5 m. It would be more expedient, with less
administrative overheads, to simply pay out a prize of $15 to
each purchaser of a $25 ticket. In this way each purchaser
would receive exactly the same amount as his "expectation"
would be, "in the randomly drawn lottery.

As far as the organizers of the lottery are concerned the
result would be no different from that following from the
lottery as it is presently conducted. The ticket purchasers,
however, are hoping to gain more than their expectation. The
first prize winner of $1 m. has certainly done just that, but
the great majority will be luckless participants whose tickets
fail to secure a prize of any size. There is a one in 100 000
chance of being the lucky first prize winner,

Example 4. An experiment was reported by the psychologists
Kahneman and Tversky in the Journal Science in 1974. Given a
population made up of 70 engineers and 30 lawyers, Kahneman and
Tversky's subjects were required to estimate the probability
that a person drawn from the population of 100 was an engineer
rather than a lawyer. Where there was no further information
provided the subjects assigned a 0:70 probability value to the
proposition. The authors found nothing remarkable in this
assessment which was nothing more than an application of the
Principle of Indifference: there being no apparent reason why
any one of the 100 persons should be more likely to be drawn
than another, the subjects assigned a probability of 0-:01 to
each person with the conclusion that there was a 07 probabi-
lity that the drawn person was an engineer.

Kahneman and Tversky went further. They provided a persc-
nality profile of each member of the group of 100 and, un-
expectedly, the subjects tested returned probability assess-
ments of the drawn member's vocation of about 0:5 for each,
that is, approximate equal probabilities that the member was
an engineer or that the member was a lawyer. That this was un-
expected is explained by the fact that the personality profile
was deliberately drawn so as to be uninformative and thus the
subjects tested should be no more able to assess the probability
values than they were in the initial tests when they returned
assessments of 0-7 favouring engineering as the member's
vocation.

Example 5. TFighter pilots in the Pacific during World War Two
encountered situations requiring incendiary shells about 1/3

of the time and armour-piercing shells about 2/3 of the time.
There was no general procedure for predicting on every mission
which type of shell would be required. It was observed,
however, that when left to their own devices, pilots armed
themselves with incendiary and armour-piercing shells in the
proportion of 1 to 2. Thus, the experienced fighter pilots
acted much like the naive subjects in the psychological labora-
tory, even though their own lives were at stake.
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Unfortunately further information is missing, but on a
purely probabilistic analysis the pilots appear to be wrong.
If a pilot was always armed with armour-piercing shells, he
would be well prepared for 2/3 = 6/9 of the missions he flew,
while a pilot who randomly chose his ammunition, subject only
to the constraint that he arm himself with armour-piercing
shells twice as often as incendiary shells, would be well
prepared for only %»x % + % X % = % of his missions. Another
way of evaluating these figures would be to suggest that, given
that it was fatal for a pilot to find himself in a situation re-
quiring ammunition different from that with which he was armed,
sensible pilots who always took armour-piercing shells would
average a 'life expectancy' of 3 missions, that is they would
expect to fail to return from their third mission. The pilots
who randomly decided on their ammunition would average a 'life
expectancy' of only two and one-quarter missions.

Example 6. In Function, Volume 5, Part 3, there is an article
by Doug Campbell on the reliability of a witness.

In that situation, a witness can be 80% reliable in general,
but when he claims to have seen a rare event occurring, then
with a proper use of Bayes' Theorem from Probability Theory his
reliability turns out to be only 41% on that occasion.

We can formulate the problem in a different setting. Con-
sider five urns, four of which contain 85 blue marbles and 15
green marbles while the fifth urn contains 85 green marbles
and 15 blue marbles. Choosing an urn at random and from that
urn, again at random, choosing a marble the probability of
ultimately drawing a blue marble is higher than that of drawing
a green marble: 0-71 as opposed to 0-29. :

_4 8 1. 15 _ .
PT(B)—'S—Xm+5Xm 0-71.

The problem can now be reversed. Given that we have chosen an
urn at random and from that urn we have drawn, at random, a
marble and found it to be green, what is the probability that

the green marble so drawn came from one of the four urns con-
taining only 15 green marbles as opposed to the probability that
it was drawn from the fifth urn which contained 85 green marbles?
Using probability theory it can be shown that there is a higher
probability that the drawn green marble came from the fifth urn
(0-586) and not from any of the first four urns (0-414).

If a witness said that the marble came from one of the
first four urns, we might believe him with probability 0-414.
However, in this context we could use hindsight. That is,
after drawing a green marble we can tip out the remaining con-
tends of the particular urn and count them. We would expect
to count 14 green and 85 blue if the urn was one of the first
four while if the urn was the fifth, we would count out 84
green and 15 blue marbles. Valuable as it is, hindsight is not
available to the jury in the taxi accident case discussed by
Doug Campbell, it not being possible to tip out the contents
of the witness and, by counting his marbles, determine the
reliability of his testimony!
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ST. MARTIN '

St Martin was a bishop of Tours in France, who lived in
the fourth century. According to legend, his charitable nature
led him to divide his cloak with a beggar, while he was a young
soldier of the Roman Empire.

Can we proceed from this to deduce the effect of sharing
all one has? St Martin will pardon us this sick joke - but
let us imagine for a moment that, moved by St Martin's example,
the beggar had decided in his turn to share his goods with his
benefactor. St Martin would then have divided his goods in
half, the beggar then divided his, St Martin further divided
his .

Let us mathematicise the situation: Ilet SO be St Martin's

initial wealth and BO the beggar's initial wealth. We examine

the state of their fortunes after each transaction.

Initial Situation:
St Martin: So
Beggar: BO.

Situation after St Martin has divided his goods:
St Martin: %SO
Beggar: By + %SO.

Situation after the beggar has divided his goods:

v St Martin: %SO + %(BO

Beggar: (B, + 354)

+ %SO)

Call these last amounts S1 and Bl, to find:
_ 3 1 _ 1 1
51 = 3% * 2Por By = 750 * 3o

This step may be written (and calculated) in matrix notation:

+This article is a translation from the French. It first
appeared in a Belgian counterpart of Function, the magazine
Math-Jeunes Vol.3 (Part 10), May-June 1981, pp.78-80. The
article is based on a suggestion of Claude Delmez and is re-
produced hexre under an exchange agreement between Function and
Math-Jeunes.
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50

By

[ONEEUS [4V]
(SIS T

The sum of the elements in either column of this matrix (a
transition matrix) equals one, because the first gives the
split-up between the two parties of St Martin's goods in the
previous swaps, the second the split-up of the beggar's.

One can easily see that the same matrix also represents
the change in the state of affairs at the next stage.

3 1 3 1 3 1 11 5

) 52 i 72| |51 1 z(|7 z||% 16 3|
11 1 =11 1]y 1 “ls 3

By 7 3| |51 7 3||7 2||%o 16 3 ||Po

If we assume that the process leads to a stable limiting dis-
tribution of possessions, we may find it by solving the

equation
3 1
Sn+1 Sn I 3
B - B R I S '
ntl n 4 2
where we hope that Sn+1 Sn’ Bn+1 = Bn’
Sn “n
i.e =M s
B B
n n
or, following the rules of matrix algebra,
Sn Sn S
M - =0, i.e. (M-1) "1 =o0.
B B B
n n n

Notice that we are now faced with a system of two homo-
geneous equations in two unknowns. But the equations are not
independent because the columns of the matrix M-I sum to zero.
We write the system as

3 1
-1 5 5, 0

1 1
I i"l B 0
The system is equivalent to
1 -
—ZIS +§B—0.

" That is to say

After n steps (n being large), St Martin will have twice
as much as the beggar has. At the start, between them they
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- 2 =1
owned SO + Bo. At the end, 5, = §(SO + BO) and Bn = 3(SO + BO).
We can sum up this problem by remarking that whatever the
original distribution, if the exchanges are stopped (for large
n) when the first giver has Jjust received, he will receive two

thirds of the total.

The beggar didn't know the subtleties of mathematics, and
St Martin was truly a saint ... and the moral remains: in all
your dealings, be the first to give

[We may remark that if the problem finishes after
(n+%)-steps, n being large, i.e. after the beggar has just
received, the beggar receives approximately 2/3 of the total
and St Martin 1/3. DPerhaps the more realistic advice is not
so much to be the first to give, as to be the last to recetve!
Eds. ]
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BRONZED AUSSIE

Function, Vol.5, Part 3 contained an account of the first
team ever from Australia to enter the International Mathemati-
cal Olympiad.

Now comes the news that one of the team, Richard Wilson,
has won a bronze medal. Students from 27 countries took part
in two 4%-hour sessions held on the 13th and 14th of July.

Richard Wilson is 17 years old and studies at The Kings
School, Parramatta. Congratulations!
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MATCH TRICK NO.5

MATCH TRICK No. 5

At right, we show match trick
no.5 from the series supplied to
us by the Wilkinson Match Co. The
solution is discussed on the Itis easy enough to

inside back cover. make four triangles
. out of seven matches

as you see illustrated.
But can you produce
the same resultin a
different way?

™ 0 © © W o ©w B © w
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PROBLEM SECTION

SOLUTION TO PROBLEM 5.2.2.
This problem read:

A farmer has 10 sheep, all of which are identical in their
feeding characteristics, and 3 paddocks which are all equally
good pasture in all respects. He puts 6 sheep in the first
paddock, 3 in the second and one in the third. After 3 days,
the 6 sheep in paddock 1 have eaten it out and he sells the 6
sheep; after 4 more days, the 3 sheep in paddock 2 have eaten
it out and he sells them. When will the last sheep exhaust
the pasture of paddock 37

To solve it, let G be the amount of grass present in a
paddock initially. (We measure amounts of grass in sheep-days;
the amount one sheep eats in one day.) Suppose the rate of grass-
growth per day is R. Then

G + 3R =6 x 3 =18
G+ 7R = 3 x 7 =21
G +nR=1x%xmn=mn,

where n is the number of days the solitary sheep remains in the
third paddock. Solving these equations gives n = 63.

This problem is based on one in Newton's Arithmetica
Universalis first published in Latin in 1707. The English
translation first appeared in 1720. The book is much more than
a text of arithmetic. It contains a great deal of algebra,
with the emphasis on the use of algebra in solving problems.
The second half is concerned with the solution of geometrical
problems by reducing them to equations.

This problem is based on Problem XI - pages 79, 80 of the
1728 English edition. Newton speaks of 'Oxen' and 'a piece of
pasture' and expresses the area of the pasture in acres.

SOLUTION TO PROBLEM 5.2.3.

One circuit of a running track is 1300 metres. The track
is to be marked at the least number of points which can be used
as starting and/or finishing lines for races of any multiple
of 100m. Where should the points be chosen?
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- D

The diagram at right shows how
this is dome. The distances are
AB = 200m, BC = 100m, CD = 400m,
DA = 600m., Then AC = 300m, BD = 500m,
AD = 700m, DB = 800m, DC = 900m,
CA = 1000m, B4 = 1100m, ¢B = 1200m, C
the sense being anticlockwise in all
cases. For distances .greater than B
1300m, incorporate first a sufficient A

number of complete laps.

SOLUTION TO PROBLEM 5.,2.4,

Arrange the 52 cards of a pack into 13 tricks of 4 cards
each so that:

(1) 1in each trick all cards belong to different suits;
(2) 1in each trick all cards are of different ranks;
(3) each pair of tricks has just one rank in common ;

(4) given any two. ranks, they occur together in just one
trick;

(5) no trick contains more than one pair of cards with
adjacent ranks,

This problem uses the above. ILay each of the 13 hearts.
(say) sequentially in the 100m intervals beginning with an ace
in BC. ©Next lay the spades around, beginning with the 2 in BC
(and ending king, ace in 4B). Next take the diamonds and lay
them out beginning with a 6 in B(C and finally do the same with
the clubs, stating with a queen in BC. It is readily seen
that conditions (1), (2) and (5) are now met. That conditions
(3), (4) are satisfied may be verified with work.

SOLUTION TO PROBLEM 5,3.1.
This problem concerned the so-called Armstrong Numbers.
An Armstrong number of order m is an m-digit number the

mth powers of whose digits add up to the number itself. _Thus
153 is an Armstrong number of order 3 as

3 3 3 _

1° + 5% + 3 153,

and each of the digits 1, 2, ..., 9 is an Armstrong number of
order 1.

The problem was to prove:
(a) There are no Armstrong numbers of order 2;
(b) There are only finitely many Armstrong numbers,

(a) Let the digits be a,b. Then for an Armstrong number of
order 2, we require
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a® + b = 10a + b
i.e. all0 - a) = b(b - 1).
Examination of the cases a = 1,2,...,9 in turn shows that

there is no solution, as the solution for b involves 1+4a(10-a
which is non-integral for a = 1,2,3,4,5. The remaining four
cases duplicate the cases a = 4,3,2,1 1in order.
(b) The powers of the digits sum to give a left-hand side Lm'
Clearly L < m.9". Let the number itself be R . As R hasm
digits, then Rm = 1Om—1. Thus no Armstrong numbers will exist
if 10m’—1 > m.9m, i.e., taking logs to base 10 of both sides and
rearranging, 1if

1+ log m < m(1 - log m).

- This inequality may readily be seen to hold for all m
greater than 60. Thus all Armstrong numbers have orders less
than 61 and, in consequence, only finitely many exist.

SOLUTION TO PROBLEM 5.3.2,
5555 2222

We asked if 2222 + 5555 was divisible by 7. It
isn't. .Jo prove this, note first that 2222 = 7 x 317 + 3.
Thus in the expansion of (2222)5555, all terms will be divisi-

. 1111
ble by 7 except (possibly) 3°°°°, i.e. (243) 11 put
243 = 7 x 34 + 5. So all terms in this expansion are divisible
1111 11,101

by 7, except possibly 5 i.e. (577) But
511 = 5 x 255 = 5 x (21 + 4)°.  This is divisible by 7 if and
only if 5 x 45 is divisible by 7, i.e. if 20 x 162 is. But
20 x 162 is divisibie by 7 if and only if 20 x 22 is. This,
after a little calculation, shows that we need only examine 3101.
But 3301 = 3 x 950 = 3 x 290 4 4 multiple of 7 = 12 x 8% + a
multiple of 7 = 12 + a multiple of 7. Hence

2222°%%°% = 5 + a multiple of 7.

Similarly

55552222 = 4 + a multiple of 7.

Thus, when 2222999 + 55552222 i5 divided by 7, the remainder

is 2.

SOLUTION TO PROBLEM 5.3.3.
The problem was to prove that

Vo + o+ Voo no< 27V
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The case n = 2 is readily solved by squaring. The proof for
general n is graphical. The graph

of y = "z has the general concave
downwards shape shown in the dia-
gram. The values of x given by YA

~Yn, n+ ¥n

are respectively to the left and
right of the valuez = n. Thus the
average of their nth roots lies at
the mid-point of the chord 4B
Jjoining them. As this chord lies
below the graph,

5 - o Yo+ ey < Va,

and the result follows.

SOLUTION TO PROBLEM 5,3.4,

Let S(n) = 1 + % + % + % + ...+ %. The problem was to

show that S(n) cannot be integral if »n > 1.

The problem is a difficult one in that the key to it is so
simple that it is easily overlooked. Walter Vannini of the
University of Melbourne produced this startlingly elementary
proof.

To add up fractions, we express them all in terms of a
common denominator, Wthh is the lowest common multiple of all
the separate denomlnators If n > 1, this number is even and

is 2" .B, where 2™ is the highest power of 2 less than or equal
ton., (E.g. ifn =11, m = 3; if n = 32, m = 5, ete.) B is
clearly odd. ’

Now each of the numbers % (k < n) will be expressed as
bk/sz, and bk is even unless k contains a factor 27. There
is only one such case,given by k = 2m, since all other multiples

of 2™ (by the definition of m) exceed n. Thus the numerators
with one exception are all even, and hence their sum is odd.
Thus S§(n) has an odd numerator and an even denominator and
cannot be integral.

SOLUTION TO PROBLEM 5.3.5,

We asked for all integer pairs (z,y) whose sum and product
are equal.

The problem may be tackled by the methods used to solve
Ray Bence' football problem (Problem 3.5.1) - indeed it is
rather simpler. We print, however, an alternative approach
due to Ravi Sidhu of Ignatius Park College, Townsville, who
attacked the problem graphically. He noted that we require

X
y = T -7
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and that this, when graphed,

gives the shape at right. The YA
left-hand branch lies almost
entirely within a "corridor"
between the axes and the asymp- 2
totes, and so cannot pass

through integral values of

both x,y except at (0,0),

where it touches the edge o
of the corridor. By 1 2 ’;

symmetry, the right-hand branch
lies in a similar corridor,

but passes through the point (2,2).
These then give the required

|

|

|

|

|

T

|

- — .___1_...__+_______..

i

|

|

|

|

solutions. 1

We end, as usual, this section with a new batch of
problems.

prOBLEM 5.5.1.

ABCD is a quadrilateral, Circles are drawn on each of 4B,
BC, CD, DA as diameter, Let P be any point in the interior of
the quadrilateral. Show that P lies on or within at least one
of the four circles.

PROBLEM 5 .;2’.2.

To settle a point of honour, three men, 4, B and C engage
to fight a three-cornered pistol duel. 4, a poor shot, has
only a 30% chance of hitting his target; ¢ is somewhat better,
his chance of a hit being 50%; B never misses. 4 however has
first shot. B, if he survives, fires next; then C; then 4
again, etc. However, if a man is shot, he takes no further
part in the contest either as a marksman or a target. What
should 4's strategy be?

[Note: It is incorrect to speak of a "three-wheeled
bicycle™ as this is a contradiction in terms. It is, however,
correct English to speak of a three-cornered duel, as the word
tduel" is not derived from the Latin duo (two) but from duellum
a variant of the Latin bellum (war). Eds. ]

PROBLEM 5.5.3.,

Police Witness: Your worship, the defendant had to brake
suddenly while travelling up 2 30° slope. His
skid marks measured 30m. I later tested the
defendant's car on the level road outside the
police station. Both roads are paved with the
same material, I slammed on the brakes at
60 km/h and skidded to a halt in exactly 30m.
Obviously he was travelling faster to require
30m to stop on the steep grade.

Magistrate (after consulting a pocket calculator): Case
dismissed.

Explain the magistrate's reasons for his decision.
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