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Our authors in this issue include two mathematicians from
overseas. Both have visited Monash University for several
months this year. Hans Kaiser is a Professor of Mathematics in
Vienna. He specializes in algebra, but has recently developed
a strong. interest in the history of mathematics. His article
is in the latter area. S~mon Tavare is from the University of
Utah, where he teaches mathematical statistics. His research
interests include devising and analysing probability models to
explain genetic evolution. With the current controversy in the
newspapers about evolution, we believe his article will be of
especial interest.

THE FRONT COVER
The illustration depicts a computer plotted contour map of

estimated daily petrol consumption for Melbourne in 1976. The
peak represents a consumption of 30 000 litres of petrol per
square kilometre per day in the city, with lesser consumption
in the suburbs (and bay!).

The data for the plot was generated by an urban planning
computer model called TOPAZ which can evaluate alternative
urban forms in terms of economic, energy, pollution, transport
and other infrastructure impacts. TOPAZ was developed at
CSIRO Division of Building Research, Highett.

We thank Dr Ron Sharpe for permission to use the photo.
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HISTORY OF
AND

TOPICS IN THE
STATISTICAL THOUGHT

PRACTICE

Vo THE INTRODUCTION OF THE
NUMERICAL METHOD INTO

CLINICAL MEDICINE t

P .D. Finch, Monash University

When we are ill and go to our doctor we expect to be cured.
We assume he knows his treatment is likely to be successful and to
lack harmful side-effects. That our confidence is not misplaced
is largely due, ~n the first instance, to one man, Pierre-Charles
Alexandre Louis (1787-1872). It was Louis who introduced into
clinical medicine a systematic procedure of investigation, viz.
the so-called 'numerical method'. These days we would call it
'statistical analysis'.

But it would be misleading to suggest that Louis' importance
rests on what he did with data. His actual analyses are crude
and primitive and, not surprisingly, seldom meet current stan
dards of statistical enquiry. It was his insistence on' the need
to collect data which singled him out from his predecessors and
contemporaries. Instead of merely theorizing about disease and
the therapeutic effects of proposed treatments, he went out and
collected evidence. It seems obvious to us nowadays that one
needs to study actual cases to determine whether a treatment is,
on the whole, effective. But in Louis' day, this was a novel
idea. His greatness, like that of most great men of science, is
that he was one of those who sees the obvious the rest of us
miss. In a talk to the French Academy of Medicine he expressed
his viewpoint in the following words:

"The object of medical statistics is the most rigorous
determination which is possible of ge~eral facts, which, in
my opinion, cannot be arrived at without their assistance.
Thus a therapeutic agent cannot be employed with any discrimi
nation or probability of success in a given case unless its
general efficacy, in analogous cases, has been.previously as
certained; therefore I conceive that without the aid of statis
tics nothi.ng..like. real. me.dl-cal .sc1.ence .1.s .possible ~I'

t Text of a schools' lecture delivered on 21st March 1980 at
Monash University.



3

The usefulness of Louis' viewpoint can be illustrated by
his work on the efficacy of bloodletting, the then standard
treatment in inflammatory diseases. This work appeared in
journal articles in 1828 and was published in book form in
1835. It was translated into English in 1836. The follow
ing quotation from the preface to that translation, by James
Jackson MD, makes it clear that in medicine, at least,
Louis' approach was seen as something of a novelty.

"M. Louis has not brought forward a new system of medi
c~ne; he has only proposed and pursued a new method in prose
cuting the study of medicine. This is nothing else than the
method of induction, the method of Bacon, so much vaunted and
yet so little regarded. But if so where is the novelty? If
anyone, after patiently studying and practising the method
proposed by M. Louis, denies the novelty of it, I will not dis
pute with him a moment. Perhaps he will then agree with me
that it is a novelty to pursue the method of Bacon thoroughly
and truly in the study of medicine; though it is not new to
talk of it and laud it."

TABLE 1. DURATION (IN DAYS) OF PNEUMONITIS
(50 NON-FATAL CASES")

Day of first bleeding

1 2 3 4 5 6 7 8 9

10 7 16 12 13 13 12 12 11

12 10 17 12 13 16 15 13 17

14 12 19 12 17 17 18 18 30

20 15 21 23 19 19 35

20 16 28 35 24 20

29 19 40 27 21

21

22

25

28

40

Mean du- 12 10 20 20 22 21 19 17 23ration
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TABLE 2. DAYS TILL DEATH FROM PNEl~10NITIS

(27 FATAL CASES) AND AGE' (IN BRACKETS)

Day of first bleeding

1 2 3 4 5 6 7 8 9

6(18) 8(65) 4(57) 12(85) 8(63) 10(40) 20(68) 25(40) 22(50)

12(55) 6(30) 15(37) 9(24) 29(24)

12(69) 6(47) 17(67) 16(58) 62(20)

17(75) 11(45) 20(22)

53(65) 16(54) 29(19)

47(75) 29(46)

Mean duration
6 20 15 20 11 33 20 25 22

Blood-letting fell into disuse largely because Louis was
able to show that its benefits were not so great as was common
ly supposed. Some extracts from his data are given in Tables
1 and 2. These refer to 77 cases of pneumonitis all of whom
were in perfect health when symptoms first developed. Of
these cases, 50 recovered after blood-letting and 27 died. The
data portrays the relationship between length of disease and
day of first bleeding. For the fatal cases, age is also recor
ded. If blood-letting were effective, then one might antici
pate that early treatment woul&~shorten the duration of disease.
Louis noted that in Table 1 this did seem to be the case for
blood-letting in the first two days, whereas after that it
seemed to make "but little difference whether it was commenced
a little sooner or a little laterlt. Nevertheless there is al
most as much variability in duration of disease within the
later columns as there is between them and the first two
columns and, as Louis said, "differences no less considerable ...
would have unquestionably have existed among the cases bled
within the first twenty-four or forty-eight hours, if their
number had been greater. 0.". He noted too that there was no
appreciable age difference between those bled early and those
bled late, the average ages of those bled for the first time
before and after the fourth day being 33 and 36 years respec
tively. Louis also insisted that, in all these cases, the
"violence of the disease" was the same and the treatment
"equally energetic". He concluded: llthe utility of bleeding
has been very limited in the cases thus far analysed"o He
found further limitations when he considered the 27 fatal cases.
Of these, he noted, 18 were bled within the first four days and
there seemed some slight association between early bleeding and
early death although, as Louis pointed out, this may be partly
an age effect because those bled early tended, on th~ whOle, to
be the older patients.

Extracts from Louis f book are given in the Penguin History
of Medicine edited by King (1971). As we said before, the im
portance of his contribution to medicine was the method he in
troduced rather than the specific results he obtained. He
argued that no two cases are exactly the same and that it is
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precisely on this account that enumeration is. necessary to
compens.ate for the differences between them when a number of
treatments are being comparedo "By 'doing so", h.e said, "the
errors (which are inevitable), being the sarnein two groups
of patients subjected to different treatment, mutually com
pensate each other, and they may be disregarded without sen
sibly affecting the exactness of the results. tI

Louis influenced many students who went to study medicine
in Paris. They came from the UoSoA., England and other parts
of Europe 0 One of his students was Oliver Wendell Holmes
(1809-1894), the eminent American man of letters who had gra
duated from the Harvard Medical School in 18360 In 1843
Holmes published a literature survey suggesting that puerperal
or child-bed fever was communicated to the obstetrical patient
by the physician. This was an unpopular view among medical
men at that time. But his study did not measure up to the
'numerical method' and though sounder work was done independent~

ly by Ignaz Semmelweiss (1813-1865), a pupil of Josef Skoda
(1800-1881) who was himself ~ pupil of Louis, it was' not until
more was known about bacteria that the medical profession was
finally convinced.

Among Louis' English students was William Guy (1810-1885)0
He returned from Paris and became a professor, first of Forensic
Medicine and then of Hygiene. He was an early member of the
London (now Royal) Statistical Society which was founded in 1834,
and he eventually became its president. He was an influential
exponent of Louis' ideas; for example, in 1839 he emphasized
that "where identity ceases, there certainty ends, and probabi
lity begins; and there too the numerical method finds its first
application". (This quotation comes from Guy's article iisted
in the references at the end.) In England, however, the most
important disciple of Louis was William Farr (1807-1883) who
was appointed the Compiler of Abstracts to the General Register
Office in 1839, a position he held for over 40 years. It was
Farr who supplied much of the data Snow used in his study of
the communication of cholera (Function Volume 3, Part 1, pp.
22-27). Among the people he influenced were Florence Nightin
gale (1820-1910) who was one of the founders of the Royal
Statistical Society, and Francis Galton (1822~1911), a cousin
of Charles Darwin and o~e of the founders of genetics.

As Louis' ideas became more widely known it became appa
rent that many issues in public health could be clarified by
the examination of appropriate data. Causes of disease and the
death rate were matters of concern at that time, as Farr said:
"The death rate is a fact; anything beyond this is an inference."
Gradually the quantitative patterns of disease and death were
painstakingly uncovered. For example, the death rate was clear
ly exposed as related to social class. Table 3 illustrates this
in an unmistakable manner: about two-thirds of the working
class died before age 20 whereas about three-quarters of the
'gentry' survived to that age. The clear statement of such
facts by means of the numerical method played a key role in the
movement for social reform.
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TABLE 3. LIFE TABLE FOR BOROUGH OF PRESTON, ENGLAND,
BY SOCIAL CLASS', 184'3'

P'ercen'tage stl11 al'ive

End of Year Gentry Trade'smen Wo"rk'e'rs

1 91 80 68

5 82 62 45

10 .81, ,5,7 .39

20 76 52 32

30 72 46 25

40 ,6,3. 3.8. .20.

50 56 28 16

60 45 21 11

70 25 1,3 6

80 S 5 2

90 .1 0...8 .0 •.2.

For every 100 males born, the table shows
the number who would still be alive at
various later years.

Again, the collection of appropriate data put beyond doubt
the efficacy of smallpox vaccination. This is illustrated in
Table 4.

TABLE 4. SURVEY OF CHILDREN IN SMALLPOX EPIDEMIC
LONDON, 1863'

Vacc inat'ed

Yes

No

Number

49 570

2837

Smallpox

88

1010

Rate per '1000

1.78

356

Moreover, once such issues had been decided, the medical pro
fession could then turn to more sophisticated questions. For
instance, did the degree of protection depend on the degree of
vaccination? Table 5 is an example of the results of such an
enquiry. Again the thrust of the answer is unmistakeable. The
more treatments a patient had with the vaccine, the lower his
chance of catching smallpox.

TABLE 5. SMALLPOX INCIDENCE BY DEGREE OF VACCINATION,
LONDON, 1863

Number of Vaccine
T'reatments

1
2
3
4+

Rate per 1000
at small'pox

6.80
2.49
1.42
0.67
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Increasingly through.out th.e 19th. century, various diseases
were studied by the numerical method. A new subject gradually
arose from these modest beginnings,; today we call it epidemio
logy. Substantia-lly the same methods are still in use today.
To illustrate this)Table 6 gives some data collected by the
Center for Disease Control (CDC) in the U.S.A. to see if laws
requiring immunization for measles were effective.

TABLE 6. MEASLES INCIDENCE IN U.S.A. 1973/74.
CHILDREN LESS THAN -18 YEARS

1973 1974

States, Rate per 100 000 Rate per '100 000

With laws 26.5 33.1

Without laws 53.9 55.4

The similarity to Table 4 is obvious. As Lilienfeld and
Lilienfeld (1977) remark: "The efforts of the CDC to immunize
the population, including their collective reasoning and methods,
do not differ from those used 125 to 150 years ago to justify
smallpox' vaccination programs. One need only substitute the
word measles for smallpox in the reports of the iast century
and they read like modern documents."
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THE TWO FACES OF CODING
THEORY-

John Stillwell, Monash University

The word "coding", which we· could define as any process for
converting a message into a sequence of symbols, probably calls
to mind examples such as Morse code and the secret codes used by
spies. A more modern example, actually more typical of what
mathematicians call "coding theory" is the transmission of pic
tures from spacecraft. To convert a picture into a sequence of
symbols, a television camera slices it into rows, then each row
into tiny squares, each of which is represented by a symbol
which encodes colour and shade. Rows are sent one after another,
and a receiver on Earth recovers the picture by reversing the
coding process.

These examples raise various objectives one-might have in
coding a message:

(1) Convenience of transmission.
(2) Protection from random errors (either human, or as a

result of "noise" on the transmission line).
(3) Secrecy.
(4) Authenticity (i.e. protection from forgery).

The first objective is fairly easily met, e.g. by Morse
code, since Morse is eas~ to learn and can be sent by almost
any means (by telegraph, flashing a torch, smoke signals, etc.).
The objectives of secrecy and protection from forgery are cer
tainly not met by Morse, since anyone can use it, nor does Morse
give much protection from random errors. For example, if one 0

is erroneously sent as -, the letter H = ~ooo can be taken as
B = _0 .... , F = 00_0, L = O_00 or V = 000_.

Protection from random errors turns out to be a major
mathematical problem, and since World War II a large theory has
developed to deal with it. This is what is now called coding
theory. The problems of secrecy and authenticity are of course
much older. Secret codes have existed for thousands of years,
and messages have been "signed" and "sealed" in various ways to
try and guarantee their authenticity. The traditional term
cryptography covers the secrecy aspects of coding, but until
recently it has remained more of an art than a science. Devel
opments in the 1970's seem likely to change this, and in a
later section I shall discuss some fascinating new codes which
seem to provide both secrecy and authenticity.

This may lead to cryptography being recognized as the
"second face'! of coding theory. In coding theory one is try
ing to protect a message from nature, i.e. Irom random errors;
in cryptography one tries to protect a message from an in-
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telligent opponent. In coding theory we can define precisely
what degree of protection is achieved, in cryptography we
seem on the verge of doing so.

COOING THEORY

If one wants a code which can be easily memorized and sent
by hand, then one has to live with a certain percentage of
errors. But in an age when large amounts of information are
sent electronically and can be processed by computers, it be
comes possible to use more complicated coding to detect and
correct errors automatically.

This seemingly magical process can be explained by an ex
ample. Suppose we use two code symbols a and 1 to code messages
in the English alphabet. The letters can then be coded by the

following 26 out of the total of 32 (= 25 ) blocks of 5 code
symbo.ls:

A 00000
B 00001
C 00010
D 00011

Z = 11001 (= 25, written in binary).

As it stands this code is no more reliable than Morse: for ex
ample, if the last 0 in A is wrongly sent we shall receive
B = 00001, and perhaps not realize that anything is wrong.

However, suppose we attach a sixth code digit, called a
parity check digit to each code block. This last digit checks
the parity (evenness or oddness) of the first five by being a
if their sum is even, 1 if their sum is odd. 'The new code is
then

A 000000
B 000011
C 000101
D 000110

Z = 110011.

Now if a single error is made in a code block, the result will
be a block with an odd number of l's which is therefore not in
the code. Such a code is called singZe-error-detecting, because
a single error in a block can always be detected.

For example, if the fifth digit of A is sent wrongly we
will know something is wrong, because 000010 is not in the code.
But even assuming there is only one error, we will not be able
to correct it, because other code blocks also yield 000010 when
one of their digits is sent wrongly.

To be able to correct errors we have to increase the dis
similarity between code blocks. The dissimilarity dCa,S) be
tween code blocks a,B is the number of places where a,S differ.
For example
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d(OOOOO,OOOOl) = l
d(OOOOOO,OOOOll) = 2.

The technical term for di.ssimilarity is Hamming distance (named
after R.W. Hamming, one of the pioneers of coding theory), and
it has the usual geometric properties of distance. In particu
lar, if any d~stinct a,S in the code have distance ~3, then a
single error in a yields an at which is distance 1 from a but
distance ~2 from every other block in the code. Now we can not
only detect the error by observing that at is not in the code,
we can also correct it by changing at to the nearest block in
the code, namely a. For this reason, a code in which all
blocks are at Hamming distance ~3 from each other is called
single-error-correcting. Similarly, if the distances are ~5

it is double-error-correcting, if distances ~7, triple-error-
correcting and so on. .

Of course, when errors are random there may sometimes be
more errors in a block than the code is designed to correct.
Then choosing the code block nearest to the transmi-tted block
only gives the most likely decoding, not necessarily the correct
one. However, probability theory shows that the expected number
of decoding errors can be made as small as we please by choos
ing a code with a sufficiently large Hamming distance.

THE MAIN PROBLEM OF CODING THEORY

The real problem of coding theory is not merely to ffilnlmlze
errors, but to do so without reducing the transmission rate un
necessarily. We have seen that errors can be corrected by
lengthening the code blocks, but this reduces the number of
message symbols that can be sent per second. To maximize the
transmission rate we want code blocks which are numerous
enough to encode a given message alphabet, but at the same time
no longer than is necessary to achieve a given Hamming distance.
To put the problem the other way round:

Given block length n and Hamming distance d~ find the
maximum number, A(n,dJ, of binary blocks of length n which
are at distances ~d from each other.

The following table gives the first few values of A(n,d)
for d = 3, i.e. the maximum sizes of single-error-correcting
codes:

~1.5~8i9
A(n,3) I 2I 2--r4-~O-t Not known, but >38, ~40

The most interesting of these is the code with 16 blocks of
length 7, which is one of a family of codes discovered by
Hamming. The first four digits zl,z2,z3,z4 of a block are

arbitrary (giving 24 = 16 different blocks), while the last
three are determined by the first four, as follows
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2
5 parity check digit for 2 1 ,z2,z4

2 6 parity check digit for z1,z3,z4

z7 parity check digit for z2,z3,z4°

Thus in a code block z1z2z3z4zSz6z7 the three sets of digits
{zl,z2,z4,z5}' {zl,z3,z4,z6} and {z2,z3,z4,z7} must all contain
an even number of l's. It follows that distinct code blocks cannot differ in just 2 places, because for any digits Zi,Zj we can
find a set which contains only one of Zi,Zj' and then this set
would contain an odd number of l's for one of the blocks. Thusany two of the 16 blocks in the Hamming code are distance ~3apart.

To show that no code of length. 7 and distance ~3 can havemore than 16 blocks we use a geometrical argument. Each codeblock a has a "neighbourhood N(a) of radius 1", of 8 blocks,namely the 7 blocks a' which differ from a in one place, together with a itself. Since distinct blocks a,S in the codeare distance ~3 apart, their neighbourhoods N(a), NCB) do notmeet. Then the neighbourhoods of the 16 blocks in the codeaccount for 16 x 8 = 128 distinct blocks. But there are only
128 = 2 7 binary blocks of length 7, so no more than 16 codeblocks at distances ~3 can exist.

A code for which the neighbourhoods (of some fixed radius)around code blocks use up all possible blocks is called perfect.If the length of blocks is n, a neighbourhood of radius 1 con-
tains n + 1 blocks, and there are 2n blocks al togeth.er. Thus aperfect single-error-correcting code cannot exist except when
n + 1 divides 2n , i.e. when n + 1 is a power of 2, orn = 3,7,15,31,.... Hamming discovered perfect codes for allthese values in 1948. There is onZy one perfect code whichcorrects more than single errors, a triple-error-correctingcode (thus neighbourhoods are of radius 3) with 4096 blocks oflength 23, known as the Golay code.

I. hope this gives some idea of the mysterious and unexpected phenomena which arise in coding theory. The subjecthas deep connections with many parts of algebra, geometry andnumber theory.

CRYPTOGRAPHY
Like coding theory, cryptography deals with the conversionof messages into symbolic form, but the main objective issecrecy. This leads to very different techniques, and adifferent language is used - "enciphering" instead of "encoding","deciphering" instead of "decoding". To appreciate the progress made by cryptography in recent years, we shall first lookat some of the classical ciphers.
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(1) The Caesar cipher

According to Suetonius in "The Twelve Caesars", Julius
Caesar used a cipher in which each letter of the message was
replaced by the letter 3 places later in the alphabet (X,Y,Z
being replaced by A,B,C respectively, of course). In general,
a "Caesar cipher" is one in which each letter is replaced by
the letter n places later in the alphabet, where n is some
fixed number, called the shift.

This kind of cipher is very easy for an opponent to break,
since only one cipher letter has to be identified, and all
others follow. Identification is possible because letters
occur with different frequencies in any natural ianguage. In
English the most common letter is E, fullowed by T, A, 0, N, R
and these between them make up more than 50% of the average
message, E alone making up 13%. In a Caesar ciphered message
of only a few dozen symbols one can be fairly sure that the
most common letter represents E, and deciphering is then im
mediate.

(2) Vigenere

Invented in 1586 by a Frenchman, Blaise de Vigenere, this
cipher was considered unbreakable in its day. As in the Caesar
cipher, a shift is applied to the alphabet, but the length of
shift varies, usually in a periodic way. For example, our
opponent might decide to use shifts of lengths 1, 7; 4, 13, 5
over and over again. He then writes the sequence

1, 7, 4, 13, 5, 1, 7, 4, 13, 5, 1, 7, 4, 13, 5, ...

(call this the key sequence) for as long as necessary and "adds"
it to the message, say

::;s:::uence ~ ~ =lD3t ~ ~ t1
M

3: : ~ =11
D
3: ~ ~ ~I lNA3 w~ MN1 ~

Ciphered message T L RfQ ~ P y I~ Z J 0 H RIQ RP f Fr F
The changing shifts even out the overall letter frequencies, de
feating the kind of analysis used to break Caesar ciphers, but
the characteristic frequences are retained in subsequences of
the ciphered message corresponding to repetitions in the key
sequence (every 5 places in the above example). If we can find
the length of the key's period, letters can be identified by fre
quency analysis as above.

The period can indeed be discovered, by looking for repeated
blocks in the ciphered message. Some of these will be acciden
ta1, but a large proportion will result from matches between re
peated words or subwords of the message and repeated blocks in
the key sequence. When this happens, the distance between repe
titions will be a multiple of the period. In our example, the
block RQRPYI is undoubtedly a true repeat; the distance between
its two occurrences is 10, indicating that the period length is
10 or 5. Examining all the ~epeats in a longer ciphered message,
we will find a majority at distances which ~re multiples of 5,
at which time we will know that the period is 5.
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(3) One time pad~

The ultimate generalization of ~he Vigen~re was proposed' by
the American engineer G.. S. Ve~vam in 1926, namely, let the key
sequence be arbitrarily long and random, and use successive
bloCks of it for successive messages. This is a cumbersome
method, because both sender and receiver need to keep a copy of
the long key sequence, but it is clearly unbreakable - the
randomness of the key means that any two message sequences.of
the same length are equally likely to have produced the cipher
ed message.

A one time pad is used for the hot line between Washington
and Moscow.

The increase in security from Caesar cipher to one time pad
depends on increasing the length of the key. For a Caesar cipher
the key is a single number between 1 and 26 (the length of shift),
for a periodic Vigenere a finite sequence of numbers, for the one
time pad a potentially infinite sequence. The longer the key,
the harder the cipher is to break, but for all the classical ci
phers it is possible for an opponent to reconstruct the key by an
amount of work which does not grow too exhorbitantly relative to
key size.

This situation was seen in a new light with the rise of com
putational complexity theory in the 1970's (see my article "Why
mathematics is difficult" in Function, Volume 4, Part"3). Mathe
maticians became aware of many "one-sided" problems, whose short
and easily checked answers were nevertheless very difficult to
find. Diffie and Hellman, of Stanford University, suggested in
1977 that such problems might provide ciphers whose keys cannot
be feasibly reconstructed by an opponent, even though they are
relatively short and convenient for an authorized decipherer to
use.

Using a "one-sided" (or "trapdoor", as Diffie and Hellman
call it) problem as basis for a cipher means that the key for
enciphering can be made public without giving away the key for
deciphering, since an opponent who does not know the answer to
the problem cannot find it except by an infeasibly long com
putation.

The most famous such cipher, invented by Rivest, Shamir and
Adleman at the Massachusetts Institute of Technology, is based
on the factorization problem. One takes two large prime numbers
q1,q2 of about 100 digits each, and uses their product P = q1q 2

for "enciphering, the factors Q1,q2 for deciphering (for details,

see Rod Worley's article "Primes" in Function, volume 3, part 5
or Martin Gardner's column in Scientific American, August 1977).
Since no feasible method is known for factorizing large numbers,
it is possible to make P public without giving away Ql and Q2.

It has been proved that any method of breaking the Rivest-Shamir
Adleman cipher is equivalent to finding Ql and Q2' so the fac-

torization problem has suddenly become very important applied
mathematics. If it can be proved that factorization "is in
herently difficult, we will finally have ciphers to put pro-
fessional codebreakers out of business. =
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PUBLIC KEY CRYPTOSYSTEMS

Diffie and Rellman describe the desirable features of a
cipher in terms of an enciphering procedure E and a decipher
ing procedure D, as follows:

(a) Deciphering an enciphered message M yields M, i.e.

D(E(M» = M.

(b) E and D are easy to compute.

(c) E can be made public without revealing D; more pre
cisely, D cannot be constructed from E without solving a com
putationally infeasible problem.

(d) It makes sense to decipher any message M, and en
ciphering the result yields M, i.e.

E(D(M» = M.

Considerable number theory is needed to establish (a), (b), (d)
for the Rivest-Shamir-Adleman cipher and, as we have said, it
is not yet established that (c) is true (i.e. that factoriza
tion is infeasible) for that particular cipher~ Nevertheless,
in the reasonable expectation that such ciphers exist, Diffie
and Hellman call them public key cryptosystems, and point out
some interesting applications.

To begin with, any person B (Bob, say) who wants to receive
messages can place his enciphering method, E

B
, in ~ public di-

rectory (like a telephone directory), enabling anyone else to
communicate with him in guaranteed privacy, since only B has the
deciphering method, DB.

B can also "sign ll messages he sends to another person A
(Alice, say), so that A is assured of their authenticity. To
sign a message M, B first computes the "digital signature"

S = DB(M)

then, if he is communicating with A, looks up EA in the direc

tory and sends EA(S). He also sends the uncoded message that

he, B, is the author of the message. A will be able to check

the truth of that, as we shall see. Since A has the decipher
ing procedure D

A
, she, can first compute

obtaining the signature S, then use EB from the directory to
obtain the message M:

Since only B can have created an S which deciphers to M by EB ,

A knows that M can only have come from B.
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(Here we are assuming that only a tiny fraction of symbol
sequences actually are meaningful messages M, as is the case
for sequences of letters in the English. alphabet. Then any
forgery S' is likely to be detected, because of the miniscule
probability that EB(S') will be a meaningful message M'. This

protection against forgery is analogous to the way error
correcting-codes give protection against random errors, namely,
by having only a small fraction of possible binary blocks ac
tually in the code.)

Here are two uses for digital signatures.

(1) EZectronic banking.

B can send and sign a cheque M to A, electronically, so
that A not only knows that the cheque is genuine, she can also
convince the bank of it. In fact, A can show that bank the cal
culation EB(S) = M which proves the authenticity of the cheque,

while keeping to herself the procedure D
A

by which she ob~ained

S from the EA(S) sent by B!

(2) Monitoring nucZear tests.

A test ban treaty between the U.S. and Soviet Union propo
ses that each nation place seismic instruments in each other's
territory, to record any disturbances and hence detect under
ground tests. It is possible to protect the instruments (in
the sense that they can be made to self-destruct if anyone
tampers with them) but not the channel which sends their in
formation (the host nation could cut the wires and send false
information). Furthermore, .if information is sent in ciphered
form, the host nation may suspect that unauthorized information
is also being sent, in addition to the agreed-on seismic data.

A digital signature system is the ideal solution to this
problem. Nation B's seismic station contains a computer which
coverts the message M to

Nation A cannot substitute anything S' for S, because of the
overwhelming probability that EB(8') = M' will not be meaning-

ful, and hence nation B will detect the forgery. However,
nation B can supply A with the procedure E

B
, which A cari then

use to recover·

and thus be reassured that only an authorized message M is
being sent.

Decipher:

J LRWTZLH WTIUtW NWUPGYZ.
(Vigenere)
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WHERE DID CONIC SECTIONS
COME FROM?

HoK. Kaiser
Technische Universitat, Vienna

Most of the elementary concepts of mathematics have their
origins in the world around us. Several attempts have been made
to trace back the roots of the concept of number and the basic
objects occurring in geometry. In this context one may ask why
people started to investigate conic sections. It may be argued
that conic sections appear ~n the worM around us since they can
be used in describing the movement of the planets. But this was
discovered by Kepler only 2000 years after the first discussion
of this concept. Or one might say that some of the architects
of antiquity must have been familiar with ellipses as oblique
sections of cylindric columns, but -as we shall see - 'it was the
parabola and the hyperbola which were first treated from a
math8matical point of view. Are conic sections perhaps just an
invention. of some ingenious mathematician as some form of
"general abstract nonsense" who was acting like a "spider who is.
spinning its web from its own substance"? This metaphor is due
to Roger Bacon (ca. 1219-1292). Or do we have to believe one
of the Greek philosophers who claimed that all of geometry was
created by some Egyptian god, Thoth?

In order to find out why the ancient Greeks considered
conic sections at all we first take a closer look at Greek
geometry. Quite a lot of higher Greek geometry has its origins
in attempts to solve the three "classical" problems of Greek
mathematics:

1. The duplidation of a cube (to construct
the edge of a cube having twice the
volume of a given cube).

2. The trisection of an angle (to find a
oonstruction for dividing any given
angle into three equal parts).

30 The quadrature of the circle (for any
circle to construot a square of equal
area) 0

The real scientific stimulus of these pr9blems was the re
striction on the constructions which were permitted in solving
the problems. One was. only allowed to use the (unmarked) ruler
and the compass -the so-called Euclidean tools - for the various
constructions. Euclid/states some postulates at the beginning
of his "Elements" which describe the constructions one is
allowed to perform when doing "precise" geometrical investigations:

Plo It is possible to draw a straight line
from any point to any other point.

P20 It is possible to produce a finite
straight line indefinitely in that
straight line.
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P 3. It is possible to de$o~ibe a oi~(JZe

with any point as centre and with a
radius equal to any finite straight
line drawn from the centre.

Perhaps it is worthwhile mentioning that Euclid never uses
the words ruler or compass in his work. It would not have fitted in
with his attitude towards mathem~tics because with theSe tools one
would only be able to give an approximation of the actual
geometric truth.

So this leaves us with another question. Why did the Greek
mathematicians want to find solutions of the three problems with
Euclidean tools alone? (For all three problems such a solution
is impossible as we now know by the brilliant work of E. Galois
and C. Lindemann, two mathematicians of the nineteenth century).
To answer this question we have to go right back to the beginning
of Greek mathematics.

One of the great achievements of ancient Greece was the
creation of mathematics or, to be more precise, of geometry, as

_a science. They erected a system which was based on simple
statements which were generally accepted to be true. In this
system other, more complicated, statements were proved to be
true by reasoning. This development of the science of geometry
started around 600-500 B.C. and is connected with the first Greek
mathematicians we know by name: Thales and Pythagoras. It
took more than 200 years to complete this system, which was ach
ieved in the work of Euclid around 300 B.C. The main source
about the early stages of Greek mathematics (up to Euclid) is
the "History of Geometry" in four books by Eudemus (ca. 335B.C.).
Unfortunately 'his original work is lost and we only know of it
by the "Eudemian summary" of Proclus (410-485 A. D. ), which is found
at the beginning of his "Commentary on Euclid, Book I".

Pythagoras founded a school of mathematics in Magna Graecia
(southern Italy). The Pythagoreans tried to express everything
by means of numbers or ratios of numbers. Here "number" just
means "positive integer". Their philosophy rested on the assump
tion that whole numbers are the cause of the various qualities
of man and matter. The program of studies was based on arith
metic, geometry, music and astronomy:/ the four "mathematical"
liberal arts. But their philosophy that numbers are the essence
of the world was soon shattered by the discovery of irrationals.
The Pythagoreans were not able to express such a familiar thing
as the length of the diagonal of a square of unit length in
terms of natural numbers and they ,even found out that this was
impossible to achieve. In essence they probably used the same
'reasoning as we do today to show that 12 is not a rational
number:

Suppose that 12 = ~~ m and n relatively prime, positive inte
gers (hence at least one is odd), then we have m2 = 2n 2 . Hence m is
even, say of the form 2r. But then 2r 2 = n2~ so n is even. Since
"something even cannot be equal to something odd", the assumption
that 12 could be represented as a ratio of numbers was wrQng.

So the Pythagoreans said that "12 has no ratio", or is
irrational. From this they concluded that precise mathematics
could not be based on numbers alone and tried to give mathematics
a new precise foundation. The obvious starting point for them
was geometry since there one could easily represent 12 as the
length of a line segment, and this was even possibl~ for any
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arbitrary (finite) magn1tude~ One could easily perform add-
i tion and subtractt.on of magnj,tudes' in the geometrical setting.
The operation of mUltipltcation was just ~ep~esented by forming
rectangles and division (e 0 g. x = a + e) required the construction
of a rectangle ex, with c given, which was equal to a given ree...;
tangle with sides a and 1. Thus the Pythagoreans achieved
a general framework for their mathematical investigations. But
still they used their theory of proportions, based on numbers,
which of course was not able to cope with irrationalities
properly. They seem to have justified the application by divid
ing the magnitudes into infinitely small parts. But this
aroused the criticism of philosophers like Zeno of Elea (around
450 B.C~),who showed in a very striking way the logical difficult
ies the Pythagoreans had run into. Should one assume that a
magnitude is infinitely divisible or that it is made up 9f a
very large number of small indivisible atomic parts? Let us
look at two pa~adoxes which assert that motion is not possible if
we adopt either one of the two assumptions:

The dichotomy: If a straight line segment is infinitely
divisible then motion is impossible~ for in order to traverse the
line segment it is necessary first to reach the midpoint, and to
do this bne must first reach the one-quarter point, and to do
this one has to first reach the one-eighth point, and so on to
infinity. It follows that motion can never begin.

The arrow: If time is made up of indivisible atomic instants~

then a moving arrow is always at rest, for at any instant the
arrow is in a fixed position. Since this is true of every
instant, it follows that the arrow never moves.

As a consequence, Greek mathematicians excluded infinitesi
mals fro~ their discussions. So in the time of Plato (427-347 B.C.)
mathematicians needed new concepts to give their science a logi
cally correct foundation. This was mainly done by Theaetetus
(ca.375 B.C.) and Eudoxus of K·nidos (ca. 370 B.C.). The latter
gave the following definition of proportion or equality of
ratios .:

Magnitudes are said to be in the same
ratio, the first to the second and the
third t6 the fourth, when, if any equi
multiples whatever be taken of the first
and third, and any equimultiples whatever
of the second and fourth, the former equi
multiples alike exceed, are alike equal to,
or are alike less than the latter equimulti
plea taken in corresponding order.

In other words: If A, B, C, D are any magnitudes, A
and B of the same kind (both line segments, or angles, or
areas etc.) and C and D of the same kind, then the ratio of
A to B is equal to that of C to D when for arbitrary
positive integers m and n, m A ~ n B according as me; n D.

< <

So here was a tool adequate for tackling irrationalities.
The problem of infinity Was dealt with by making use of the
famous exhaustion principle, in which the infinite divisibility
of magnitudes is assumed.:
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If from any magnitude the~e be subtracted
a part not Zes$ than its half3 from the
remainde~ another part not less than its
haZf~ and so on~ there wiZZ at Zength
remain a magnitude less than any preassigned
magnitude of the same kind.

The whole system of Greek geometry, based on these new
foundations was written up by Euclid in his "Elements". His
treatment remained the model of rigorous mathematical investiga
tion for a long time. The principle was to state all assumpt
ions of the investigation in a precise way at the b~ginning.

Euclid starts his "Elements" with definitions, which introduce
the names of the concepts without stating what these concepts
actually were. This was done by postulates which are a list of
properties characterizing the concepts in question. Then he
states his assumptions (or axioms) which are generally agreed on.
Axioms are for example:

Al. Things which are equal to the same
thing are also equal; or

A2. If equals be added to equaZs 3 the
wholes are equal.

Euclid's axioms, postulates and definitions for plane geom
etry restricted the constructions allowed in a rigorous
mathematical treatment of a problem to the constructions which one
could perform according to these assumptions, in other words to
constructions with unmarked ruler and compass. This explains
the continued attempts to solve the three classical problems
merely by using the Euclidean tools. No solution by other means
would have been accepted, for a quantity was only taken to have
a geometric existence if its construction from the basic postu
lates could be precisely achieved.

Let us now return to the question of the origin of conic
sections. For this we turn our attention to the problem of the
duplication of the cube. Our main source on the history of this
problem is Eutocius (ca. 560 A.D.), one of the commentators on the
works of Archimedes. He reports on a letter from Eratosthenes
to King Ptolemy, which starts as follows:

"It is said t-hat one of the ancient tragic poets brought Minos
on the scene, who had a tomb built for Glaucos. When he heard
that the tomb was a hundred feet long in every direction he said:
"You have made the royal residence too small, it should be twice
as big. Quickly double each side of the tomb without spoiling
the beautiful shape". He seems to have made a mistake. For
when the sides are doubled, the area is enlarged fourfold and
the volume eightfold. The geometers then started to investigate
how to double a given body without changing its shape, and this
problem was called the duplicat~on of the cube, since they
started with a cube and tried to double it. After they had
looked for the solution in vain for a long time, Hippocrates of
Chios observed that, if only one could find two mean proportion
als between two line segments, of which t-he largerone is double
the smaller, then the cube would be duplicated. This transform
ed the difficulty into another one, no less great. It is further
reported that after some time, certain Delians, whom an oracle
had given the task of doubling an altar,met the same difficulty.
They sent emissaries to the geometers in Plato's Academy to ask
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them for a solution. These took hold with great diligence of
the problem of constructing two mean proportionals between two
given lines. It is said that Archytas solved it with half
cylinders, .Eudoxus with so-called curved lines."

So here we are told of Hippocrates' transformation of the
problem of duplicating the cube, which asks for the construction
of two mean proportionals x . and y between given line segments
of length 8 and 28. So one has to solve: .

8 : x = x : y = y : 28, because then y3 = 2x 3

Menaechmus (around 350 B.C.) gave" another solution for finding
the two mean proportionals. Given a and b we want to find
x, y such that a: x = x : y = y : b. We layoff OZ = x
and ZP = y. Our proportion yields x 2 = ay, hence Plies
on a "parabola" with vertex O.

K

o x z

Similarly we get xy ab, hence P is on a "hyperbola" with
asymptotes OZ and OK. Therefore P can be found by inter
secting the two "curves" and conversely, the proportion follows
from the equations of the two "curves".

But of course, the Greek mathematicians did not accept this
solution as an exact one. Plato is said to have complained
about the various attempts to reduce the duplication to mechanical
constructions, because "these were non-theoretical methods which
destroyed the good in geometry". Plato was very interested in
mathematics and some historians assert that he wanted to lead the
mathematicians of his Academy to a more systematic cultivation of
solid geometry. What did Plato mean by "solid geometrylt? In
one of his works, the "Epinomis", we read: plane geometry is
defined as the science which teaches us how to make similar two
(plane) numbers which are not themselves similar. Here two
numbers ab and cd are called similar if a : b = c : d, in
other words, two numbers considered as areas of rectangles are
similar if the sides of the rectangles are proportional. In the
eighth book of the "Elements ll we find a characterization of sim-.
ilarity: two numbers are similar only if a mean proportional
exists between them.
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So plane geometry teaches us how to tAanstorm any rectangle into
a square by means o~ the Qperattons q~ geometric algebra. Now,
Plato thinks- of solid geometry as a generalization of geometric
algebra to space. Two spatial numbers (consisting of three
factors). abc and de! "are called similar if a: d = b : e = c : f
and solid geometry is just defined as the science which tells us
how to make similar two.such numbers which are not themselves
similar. So solid geometry deals with the solution of equations
like x 3 = V~ x 2 ex + a) = V and the like. Now we understand
why the duplication of the cube (more precisely the enlargement
of the cube in a given ratio) was considered to be the problem
of solid geometry.

Numerous solutions of this problem became known in
antiquity. One of them is due to Eratosthenes which he engraved
on a stone, which had on top a model of the mechanical instrument
he devised for his solution. This model consisted of three
rectangular plates which could be moved back and forth between a
fixed and a rotating ruler.

Frame

o
Dr o

Here is the text of the engraving:

To determine two mean proportionals in
continued proportion to two given lines.
Let the lines AA' and DD' be given. Then
move the plates of the instrument towards
each other until the poin~s A~B,C,D all
lie on one line. Since AA' and BB' are
parallel, OA and DB have the same ratio
as OA' and DB'. And since AB' and BC'
are parallel this ratio also equals that
of OB' and OC'. Hence OA' is to DB' as
OB' is to DC'. But AA' and BB' also have
the same ratio, as well as BB' and CC'.
In the same way we prove that BB' is to
CC' as CC' is to DD'. Therefore AA',
BB'~ CC' and DD' form a proportion.
Thus two meanproportionals between two
given lines have been found. If now the
given lines are not equal to AA' and DD',
we shall obtain the mean proportionals by
marking AA' and DD' proportional to them;
we reduce them to these and thus the task
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will have been carried put~ In case
more mean propo~tionals have t9 be
found~ every time we take one more plate
in the instrument than the number of mean
proportionals to be constructed. The
proof remains the same.

Other mechanical devices for the solution of the duplica
tion problem have been found. The interested reader is referred
to e.g. H. Eves: Introduction to the history of mathematics,
chapter IV. Let us return to the solution by Menaechmus. In
order to make his solution acceptable to the mathematical worldof
his time he had to find a way to present his "curves" in a precise
geometric way. So he had to give a description of the construct
ion of his curves without leaving the generally accepted princip
les of the elementary geometry of solids. Menaechmus' main
observation was that each such curve occurs as the intersection of
a right circular cone with a plane perpendicular to its generating
line. If one takes a rectangular right circular cone .one
obtains a parabola, in the case of an acute angled one an ellipse,
and for obtuse angled cones a hyperbola.

How did Menaechmus find the "symptoms" (equations) of his
conic sections? We can only guess. In the case of the
parabola perhaps his thoughts ran along the following lines:

T

c

G
~----------t-----~-----~

K

H

T

Q

G

Let TKC be a plane through the axis and at right angles to
the base of a right circular right-angled cone with vertex T and
generating line TK. Let AP be the line of intersection with a
plane which is perpendicular to TK. We project onto P (which
is a point in our plane of drawing) two points Q~R of the curve
which is determined by the intersection of this plane and the
given cone. Let y be the distance Qp = RP and let AP be x.
We draw AI and CPE parallel to KC. Then we have:

y2· GP.HP (by theorems of Thales and Pythagoras)

12.AP.HP (since AG = AP and ~ GAP is a right
angle)
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12.AP.AI (APHI is a parallelogram)

12.AP./2.AL (ALIT is a square)

2.AL.x~

where L denotes the ~ntersection of the plane and the axis of
the cone. Since 2AL = 2AT~ this is a constant and we set:
2A~ = p. This yields y2 ~ px, the familiar equation of the para
bola. Conversely, every curve which is determined by y2 = px
can be represented as a section of a right-angled right circular
cone by marking off TA = !p on the generating line TK of the cone.

Before the time of·Apollonius, who wrote the most mature
treatise on conic sections of ancient times, the three conic
sections were usually called lItriads of Menaechmus" or just
sections of right-angled, acute-angled or obtuse-angled cones.
This terminology is an indication that Menaechmus was not so
much interested in the study of conic sections for its own sake
as to show that these curves really existed in a mathematical
sense. Otherwise he would probably have represented his curves
as intersections of one cone with planes at an arbitrary angle to
the generating line. This was done later by Apollonius who
also introduced the names for the conic sections with which we
are familiar.

So, this is the story how conic sections became an object
of mathematical investigation - at least ~s it is told by the
ancient Greeks. The Greek mathematicians gave conic sections
considerable attention. If you want to find out more about the
way Archimedes and Apollonius discussed them I recommend you read
B.L. van der Waerden's book "Science Awakening" (P.Noordhoff Ltd.
Groningen 1961). Or, if you like problem solving, try to design
your own instrument for finding mean proportionals between given
line segments and thus invent your personal method for duplicat
ing a cube!

00 00 00 00 00 00 00 00 00 00 00

... Dad could multiply large numbers in his head, without
using pencil and paper .... [For example, to] multiply forty-
six times forty-six, you figure out how much greater forty-six
is than twenty-five. The answer is twenty-one. Then you figure
out how much less forty-six is than fifty. The answer is four.
You can square the four and get sixteen. You put the twenty-one
and th~ sixteen together, and the ansWer is twenty-one sixteen,
or 2116.

F.B. Gilbreth and E.G~ Carey,
Cheaper by ~he Dozen, 1949.

x < y or y < x?

"Just in'case Essendon's Tim Watson wins the Brownlow Medal
on Monday night here's a fact which will save everyone racing
for the record books~

Watson was 19 on 13 July, but he would not be the youngest
Medal winner. That honor would still be with Essendon's great
Dick Reynolds, who was 19 on June 20, 1934, the year he won the
first of three Brownlows."

The Age, 18.9.1980.
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LETTER TO THE EDITORS

I wish to submit a calculator program for publication in
your magazine. This program is for the Texas Instruments
TI58C or TI59 programmable calculators and is a game called
"Splat". Basically, the game simulates a parachutist descend
ing over the surface of a planet; the object of the game being
to open the parachute as close as possible to the ground and
to avoid hitting the ground before the parachute is opened.
The parachutist descends'over different planets, and the calcu
lator randomly selects the acceleration due to gravity, the
height and the velocity at which the parachutist is thrown
downwards.

Programmable calculators are becoming very popular with
high school students and I believe that this particular type
of programmable calculator is the most popular among students
owning programmable calculators. So I be~ieve that this program
would be worth publishing. I would also like other students to
send in their programs or programming ideas. I would like your
magazine to be more computer orientated, since computers playa
great part in mathematics today. I hope that y'ou will publish
my program in one of your forthcoming issues.

Ravi Sidhu,
131 Marabou Drive,
Townsville, Queensland, 4814.

SPLAT
(A game for the Texas Instruments TI58C or 59
pro.grammable calculators.)

Instructions:

You are being dropped from a space-craft over the surface
of a certain planet. By entering a number between 0 and 199017
and pressing A on the calculator, a value for the acceleration
due to gravity for that planet will be displayed. By pressing
B your height above the planet will be displayed and by pressing
C the velocity at which you are thrown downwards will be dis
played. All these numbers are generated randomly by the calcu
lator. You will be free-falling for a certain length of time
and then your parachute will open. You are to enter the time
for which you wish to free-fall by pressing D after entering the
number. Your parachute will open at the end of this time. The
object of the game is to open your parachute as close as possi
ble to the ground. You start your descent by pressing E. Ten
samples of your height will be displayed during the descent.
For each, the time will be shown first, followed by your height
above the ground. When your parachute has opened, the program
will stop and your height above the planet will be displayed.
If you hit the ground before your parachute opens, the calcu-
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lator wi.ll flash "9999999-9 99" on the display, indicating
that you are splattered over the surface of the planet.

(The calculator is not allowed to be used to calculate
your guess for the time.)

acceleration is in m/s 2

height is in metres
starting velocity is in m/s.

(The program is 120 steps long, and uses memory registers
1 to 11 and 19 to 29. )

000 76 Lbl 041 88 D.MS 081 19 19
001 11 A 042 65 x 082 75
002 47 CMs 043 01 1 083 53 (
003 36 Pgm 044 00 0 084 43 RCL
004 15 15 045 00 0 085 25 25
005 15 E 046 95 086 65 x
006 36 Pgm 047 59 Tnt 087 43 RCL
007 15 15 048 42 STO 088 22 22
008 71 SBR 049 22 22 089 85 +
009 88 DoMS 050 91 R/S 090 93
010 65 x 051 76 Lbl 091 05 5
all 02 2 052 14 D 092 65 x
012 00 0 053 42 STO 093 43 RCL
013 95 054 213 23 094 20 20
014 59 rnt 055 $5 095 65 x
015 42 STO 056 01 1 096 43 RCL
016 20 20 057 00 0 097 25 25
017 91 R/S 058 95

098 33 2
018 76 Lbl 059 42 STO x

019 12 B 060 26 26 099 54
020 36 Pgm 061 91 R/S 100 95
021 15 15 062 76 Lbl 101 42 STO
022 71 SBR 063 15 E 102 21 21
023 88 DoMS 064 43 RCL 103 29 CP
024 65 x 065 26 26 104 22 INV
025 03 3 066 44 SUM 105 77 x~t

026 00 0 067 25 25 106 18 C f

027 00 0 068 43 RCL 107 66 Pause
028 00 a 069 23 23 108 66 Pause
029 95 070 32 x ........ t 109 15 E

030 59 rnt 071 43 RCL 110 76 Lbl
031 42 STO 072 25 25 111 18 Cf

032 21 21 073 67 x = t
112 25 CLR

033 42 STO 074 17 Bf 113 35 l/x
034 19 19 075 77 x~ t 114 91 RjS

035 91 RjS 076 19 D f 115 76 Lbl
036 76 Lbl 077 76 Lbl 116 19 Df

037 13 C 078 17 Bf 117 43 RCL
038 36 Pgm 079 66 Pause 118 21 21
039 15 15 080 43 RCL 119 91 R/S
040 71 SBR

00 00 00 00 00 00 00 00 00 00 00 00
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MATHEMATICAL MODELS IN
POPULATION GENETICS

Simon Tavare,· University of Utah

Population genetics is one of many biological fields in
which mathematical models have played a significant role. Al
though such models do not claim to be precise descriptions of
reality, they are nonetheless useful in assessing the roles of
separate parts of the real process under study. In this arti
cle, we describe some of the simpler genetic models. We will
indicate briefly the methods that may be used to analyse them,
and the results that follow.

The study of theoretical population genetics attempts to
quantify how the genetic constitution of a population changes
with time. We will suppose that each individual in the popu
lation under study is one of three possible genetic types, de
noted by AA, Aa and aa. We call the classifications AA, Aa, aa
genotypes. Any individual inherits one gene (either A or a)
from each of his parents. For example, if one parent is AA and
the other Aa, then the offspring are AA or Aa, each with chance
!. If the population is a type of sweet pea, and A is the gene
for red flowers, a the gene for white flowers, then AA flowers
are red, aa white and Aa are pink. Further details of elemen
tary genetics are provided in reference [1] below.

We say that our population exhibits (genetic) variation if
both the genes A anda are present in that population. This
genetic diversity should allow the population to adapt more
readily to its surroundings.

THE HARDY-WEINBERG LAW

The simplest result about the genetic makeup of the popu
lation is provided by the celebrated Hardy-Weinberg Law [3,4].
For simplicity we will assume that generations are discrete:
at each time point all individuals die, and are replaced by new
individuals at the next time point. Now· suppose that the three
genotypes AA, Aa, aa are represented in proportions D, 2H, R
respectively (D + 2H + R = 1). The fraction of A genes is de
noted by p, and is given by p = D + !.(2H) = D + H. To compute
the proportions D~, 2H', R t

, p' in the next generation, we use
the mating table opposite.
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Mating table

proportion fraction of offspring of type
AA Aa .aa

v2
1 0 0

4DH ! ~ 0

4DR 0 1 0

4H2
i t 1..

4

4HR 0 ! 1..
2

R2 0 0 1

of AA genotypes is given by

+ 4DH.! + 4H2 .i = CV + H)2 p2

- p), R' = (1 - p)2. Also note that
Repeating the previous argument in the next

generation shows that D" = p2, 2H" = 2p(1 - p), Rrr = (1 _ p)2,
and the same proportions are maintained in all subsequent
generations.

AA x AA

AA x Aa

AA x aa

Aa x Aa

Aa x aa

aa x aa

The proportion Vr

D' V2 .1

while 2H' 2p(1
p' = V' + H' = p.

mating type

This result is extremely important. Assuming there are no
external pressures (such as are caused by one genotype being
more successful in producing offspring than others) acting on
the population, genetic variation is maintained. Notice that
the fraction, p, of A genes is constant in all generations.

We now turn to the 'external pressures' mentioned above.
We refer to the different survival or mating success of the
three genotypes as selection. How does selection affect gene
tic variation?

THE ROLE OF SELECTION

(*)0,1,2'.00 0, nPn+l

We will introduce three positive numbers wAA ' WAa' waa

which are called the relative fitnes88s of the genotypes.
They are used to model the effect of different viability and
fertility among the genotypes. If, for example, AA genotypes
are more successful (at reproducing or surviving) than aa
genotypes, then wAA is larger than waao Let Pn be the propor-

tion of A genes in generation n, and let qn=l-Pn , n=0,1,2,,00 ..

A mating table similar to the previous one can be used to show
that Pn +l is related to P

n
by the formula

P~CWAAP~ + wAaq~)

Noti~: that if wAA = wAa = waa ' then Pn+l = Pn = 0 ••. = PO'
which is the Hardy-Weinberg case we have already encountered.
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. Equations like (*) are called recurrence relations, and
they play an important part in mathematical modelling. From
our point of view the interesting question to ask ~s: What
happens to Pn after a large number of generations? In princi
ple, this is not a simple question to answer, but we will
illustrate what happens in some specific cases.

Case (a) wAA = 0, wAa = waa = 1.

This is a model in which AA-individuals cannot reproduce.
Examination of (*) in this special case shows that

Whence
Po

1 + npO
, n 0,1,2,.; ...

This shows that P approaches 0 as n increaseso Thus variation
tends to be lost,nin that the population will eventually com
prise only aa-individuals. To determine how long it takes to
reduce the ,fraction of A genes from Po to P, we have to solve

for n the equation P = pO/(l + npO)' giving n = p-1 ~ POl. For

example, if Po = 05, it takes 8 generations to reduce the

fraction to 01 and 998 generations to reduce it to 0001. Al
though the A-gene must disappear, it may take a long time.

Case (b) wAA = waa =1, wAa = 2.

Since individuals who have both genes A and a are fittest,
it is likely that both genes will survive. We might expect the
proportion Pn to stabilise to some value P* ~s n increases.

For example, if Po = 09, then P5 = o595~ P10 = 0513, P15 = ·502,

P20 = e5002, suggesting that P* = 85. In fact, starting from

any Po between 0 and 1,P
n

approaches 05 as n increases.

The importance of this example is that it shows that both
genes are maintained in the population, although we no longer
have the constant proportions given in the Hardy-Weinberg Law.
Eventually the population will comprise AA, Aa, aa in propor
t~ons i, ~, i respectively.

MUTATION

Another genetic factor we have to allow for is mutation.
Suppose that it is possible for A genes to change into a genes.
In any generation, an A gene has a chance v (0 < v ~ 1) of be
coming an a gene. We will ignore the possibility of a chang
ing into A. The recurrence relation for Pn is given by

Pn = Pn_l(l - v), n = 1,2, ... · (**)

This is derived by noting that the proportion P
n

of A genes at

time n is the proportion Pn -1 at time n - 1 times the chance

1 - v that the A's do not mutate. From (**) jt is clear that
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Pn = (1 - V)npo ' andh.ence that Pn approaches. 0 as n increases.

This confirms the intuitive. result that the A gene must eventu
ally be eliminated.

To assess how strong the mutation force is, we can compute
the time n required to reduce the A gene fraction from Po to p.

We solve for n the equation p = (1 - v)npo ' leading to

n = loge(p/PO)/loge(1 - v). For illustration, we take Po ·5

and v = 10-6 (a typical value of the mutation rate in man). The

time to reduce the fraction to 01 is 1 0 61 x 106 generations, and

to 0001 it is 6 0 21 x 106 generations. Comparing these results
with those obtained in case (a), we conclude that selection can
be a much stronger force in eliminating (genetic) variation than
mutation.

SMALL POPULATIONS

The previous models have assumed that the population we are
studying is very large. We might then enquire what effects
small population size have on the previous results. The mathe
matical models are now much more complicated to analyse, see [2],
but the following results indicate what can happen.

We consider a population of N individuals, each classified
as one of the three genotypes AA, Aa, aa. To keep things
manageable, we keep track only of the number of A genes, and
not how these are arranged in individuals. Our population can
then contain any of X = 0,1, ... ,2N A genes, the remaining 2N - X
being a genes.

Before describing our model, we digress briefly to review
some properties of the binQmial distribution. Suppose we per
form a series of n coin-flips, in each of which we have proba
bility P of throwing a head, and q = (1 - p) of throwing a tail.
Then the chance o! tossing X k heads is given by

Prob(X = k) = (~)pkqn-k, k 0,1, . .. ,n, (***)

n n n!
where (k) is the binomial coefficient, (k) k ! (n _ k)! • The

random variable X is said to have a binomial distribution with
parameters nand p. Letfs return to our genetic problem.

The model for the number of A genes in the next generation
is derived as follows. If in generation n the number of A
genes is i, then the proportion is Pn = i/2N. To produce the

genes in generation (n + 1), we take a binomial sample of size
2N from a very large pool of genes which.are A or a in propor
tions Pn, 1 - Pn respectively. Then the number X of A genes
at time n + 1 has the binomial distribution (***), with n = 2N,
P = Pn" It can be shown that the average fraction of A gepes

at time n is just the proportion Po in the first ~eneration.

We conclude that on average, the A gene frequency remains con
stant, in agreement with the Hardy-Weinberg Law. However, this
situation is very deceptive. It turns out that in fact the
proportions of A genes must ultimately be a or 1, so that the
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population eventually comprises either all A genes or all a genes.
Genetic variation is consequently lost!

The phenomenon of loss of variation due to finite population
size is known as random genetic drift. Clearly, it is possible
to sample a population of size 2N genes which contains no A genes,
in the same way that our series of coin-flips could result in no
heads.

CONCLUSIONS

In this article, we have presented some of the genetic
models that are used to describe the genetic composition of
populations. The precise nature of the interplay between selec
tion, mutation and random drift is still under active research.
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PROBLEM SECTION

PROBLEM '4.5.1.
What is the minimum number

of hits necessary to score ex
actly 100 on this rather un
usual rifle target? (This is
like the "knapsack" problem
mentioned in J. Stillwell's
article in Funation 4, Part ·3. )
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PROBLEM 4.5.2.

l U C K y

U C K Y 0

,C K Y '0 I

K Y 0 I P

Y D I P S

In how many ways can LUCKY DIPS
be spel t in -the following figure?

PROBLEM 4.5.3.
Show that if a set S of 10 different numbers is chosen

from 1,2,3, ... ,98,99, there will always be two completely dis
joint subsets of S whose sum is the same. For instance, if
S = {1,18,20,22,33,49,57,58,83,87}, then 22 + 49 = 18 + 20 + 33.
This time, it happens that 1 + 57 = 58, too.

MORE ON PROBLEM 4.1.2.
We partly solved this problem in Function Vol.4, Part 3.

Andrew Johnston of Ignatius Park College, Townsville, has sub
mitted a solution ·to the remaining part of the problem: "Is
it possible to find six different positive numbers such that
each is the product of two of the others?" Andrew found an in
finite number of solutions. Let m and n be any two different

positive real numbers. Then the set {m,n,l,l,~,~l can consist. n m m n
of six different positive numbers (with a few special provisos,

e.g. n f ! ) and each is the product of two others:
m

= ~ x ~ = x 1m n n -n m m

= !!: x m x 1
n m m -m n n
1 n 1 1 m x 1

- x - n 'inm m n n

SOLUTION TO PROBLEM 4.2.4.
Baggage trains used at airports, railway stations, etc.

have a small tractor which pulls a train of 4-wheeled trailers,
each connected to the one in front. The back axle of each
trailer is fixed, and the front axle pivots, being steered by
the towing bar connecting the trailer to the one in front. An
underneath view of a trailer is shown overleaf.

Problem: how should the dimensions a, band c be propor
tioned so as to make the train follow as nearly as .possible the
path taken by the tractor?
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A main requirement of such a train would be for it to
travel well. around'a circular arc. Th.e wheels would need to
travel parallel to the circle (i.e. perpendicular to its
radii), 'and the front and rear fittings (the loop A and hook D)
would need to travel in the same circle and at the same radius.
In the diagram, we need OA = OD,

that is OA 2 = OD~. Using
right angle triangles, this

reads a 2 + OB
2 = OC

2 + c 2 0

that is a 2 + b 2 + OC
2 = OC

2 + c 2
,

and thus, finally, we need

a 2 + b 2 = c 2 .

o

SOLUTION TO PROBLEM 4.3.2.
(iii) The mid-point OI a ladder sliding down a wall does

not trace out an ast~roid. What is the curve?
~ y

If the ladder is of length 2i,
and the foot is at position 2x, then
the mid-point (x,Y) is such that

x 2 + y 2 = ~2, so that it travels
along a quarter-circular path.

o
(iv) What curve is obtained

by joining equally spaced points Y
along the x and y axes?

The lines here are tan
gents to a parabola, as discussed in
the article by P. Greetham on Curve
Stitching, Function Vol.4, Part 3.

x 2x X

x

SOLUTION TO PROBLEM 404.4.
Squares of sides 1, 4, 7, 8, 9,

10, 14, 15 and 18 can be arranged to
form a rectangle of sides 32 and 33
as in the diagram.

32

9 10
14

r------Tr

8 I
4

7

18
15

33



THE PUPIL: No.. 508.

THE TEACHER (rnoreand moreastonished;aaZaulatesin his
head):.... Y~.s~y()uar~rigbt ..' 'I'he product is correct.. ' .(He mutters
unin.te~Z~~ibty)...• .•..··.<J.uilltillio.ns~.quadr~11i()nf:;~....·.trilli()~lS,
hi11+9Il,s,rnil.l!0J}fS ..••.· ._(lJistir/..at ly)· '. o~e .• bund:r~d ...·an~.-si0t.y ... four
th_OttSa,lldfivehun·d:reci and:eight... . .' (Stupefied) Butl1o\V could
yoUd()i"t.tf you do not understand the underlying principles of
arithmetic?

THE PUPIL: It's simple. Not trusting m¥ powers of reasoning
I let:l,rn"t by h~a.rtal1 possible reslJ.lts of all possible multipli
cati{ltis~

TIlE .. TEAQIIER:Th~t's rather .<ii:ffic tl1i: ••• '.' ..,. However, perrott
me .... to, ..•fi).ayt hat·.. ·. t,hatiqoe.E>- ·Il<;>t:•. sa.t-isjt¥ . PIe, .... ,l\1a.<l~moiselle ;.' .... I ...do •..... not
eong:rt:l,tll*at~yOU~·...~llIrl~tll~tpa.t~9f)•. a.nd·..eE;:p~eial1Y ·iu .•. ari-thmetic
wha.t·.. ·.. coullts· -:- beqa.us(3 ••·.··.•··..··~.l1;a:r-(itbIIleti<:·.·.i t "t.s- .• always: .. necessary ..·.·to
cOtlnt-\\Th.~jc()ulli;;s::t"Q()yea.lIisllIld~rstanding ..... It. is by mathe~
matiQa.1r-ea.sqning, ..•.• i~~~gt ~\Tea.n~<ied.ll~t ivea.t. ·.the.same.·t illle, .that
you' .must.,. f~nd~liis ..··~n.~'!~r,:and ·~l$o·alT .. other-. re~ults..... Mat he
ma~i..G~·... iS~-P9~·pi~~e:r:~n~IIlyo:fmernory,excellente18ewhere;. but
whollyhartpIul .'. ina:r"it:runetic. I am therefore· not happy ~.. you
are notgettillgonwellatall.

THE PUPIL (desolated): No, sir.

tranf)l~te(j... from _"La le~onH... by
Eu.gene .Ionesco (written.June 1950,
first produced at the Theatre de Poche,
20 February, 1951).

[1'l0tebyt:r"anSla.t;0r [G.I3.l?_l •.... Bothproduets given in the above
ex~raGt ~::rewr<:>~l~. T-he.. correct .·answeris

00.00'00'·0000 00 00.00 00 00.00 00
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