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This issue contains some interesting articles by some in
teresting people. We mention here some biographical details of
two of them.

Captain John Noble manages his marine supply business
"Great Circle Services". Previously, he was in command of New
Zealand ships, and was, for 20 years, a Port Phillip Sea Pilot.
He is also the author of a number of books concerning ships and
the sea.

Professor John Howie is Regius Professor of Mathematics at
St ~ndrews University, Scotland, and was a visitor to Monash in
1979. The ancient British universities (Oxford, Cambridge,
St Andrews, Glasgow, Aberdeen, Edinburgh) have a number of
professors appointed by the crown and designated "Regius" .
Mathematics was taught at St Andrews from its beginning (in
1411), but the first Regius Professor (James Gregory) was
appointed to the chair endowed by Charles II in 1668. John
Howie is the fifteenth such professor.
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THE FRONT COVER
J.N. Crossley, Monash University

Then pay schewed hym pe schelde~ pat was of schyr goulez
Wyth pe pentangel depaynt of pure gold hwez.

The pentangle or pentagram featured on the cover has been
known since at least 3000 B.C. in Babylon. The pythagoreans of
sixth century B.C. southern Italy (Magna Graccia) used it,
possibly as a symbol for identification of the members of the
sect. It was also used as a sign for Health and in this sense
the pentagram was used frequently in the sixteenth century A.D.

Some people believe that the pentagram or pentangle was
central in the discovery of irrational numbers (i.e. numbers
which cannot be written as fractions). The reason for this is
that the ratio of the side of a pentagon to its diagonal is ir
rationai that is CD:CF in the figure or,
equivale~tlY, BD:BE.
(There are lots of simi-
lar triangles here and
the angles of any of B E
the triangles in
figure 1 are all
multiples of 36° or
n/5 so verifying this
remark is· not hard.)
The ratio is the .Figure 1.
golden ratio treated
by Proclus, in his
commentaries on Euclid (see also Function, Vol.3, Part 4,
pp.29,30), and ubiquitous in the world of art and architecture.
~ormally the ratio is defined as follows. Consider the line

A ~ ~ then AB:AC is the golden ratio if

AB:AC BC:AB~ Numerically (-1 + 15)/2. We can see the ratio
is irrational but prove it directly from the figure on the
the cover. The fact that the figure keeps on repeating itself
while ietting smaller and smaller shows that the ratio of side
to diagonal can never be measured by a common unit of length
to give a ratio of integers (for otherwise the process of
drawing the inner pentagram would stop - which it doesn't).

t The letter p (thorn) has the sound th and was used in Middle
English. It survives, in bowdlerised form, as a y in "Ye aZde
... ", and such phrases.
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Whether the pythagoreans did'use this argument we shall
probably never know. Certainly the pentagram has captured many
people's imagination. The cover design was suggested by
Mr P. Greetham of Boronia Technical School, who also writes on
Magic Squares in this issue of Function. Our quotation at the
beginning comes from a famous British poem: Sir Gawain and the
Green Knight which dates from at least 1400 A.D. It reads
"Then they showed him the shield that was of shining red with
the pentangle coloured pure gold". The author goes on to point
out the significance of five, btlt not that of the "triple
intersecting triangle" as the pentagram is called by Lucian
the ancient Greek.

PURE MATHEMATICS CAN BE USEFUL
Rudolf Lidl, University of Tasmania

Abst~act mathematical ideas have an enormous (unfortunately
often unnoticed) impact on science and society. They helped to
make possible the revolution in electronics that transformed the
way we communicate; neither television, satellites, calculators,
nor computers would be possible were it not for numerous results
of "pure" mathematics.

Biologists, astronomers, chemists and physicists have less
difficulty in communicating the excitement and essence of their
fields to the general public. Mathematicians, however, face
the problem of the abstract, "otherworldly" vocabulary of
their subject, when they try to talk to nonmathematicians.
Molecules, DNA and even black holes refer" to things with a
material sense, providing the chemist, biologist and physicist
with an effective communication link based on physical reality.
In contrast not even analogy and metaphor are capable of
bringing the mathematical vocabulary within range of human
experience. Unfortunately, in addition many educated .people
are oblivious to the existence or significance of mathematics.
Their concerns only centre on the traditional feeling that "I
never was any good at maths". To display some of the essential
features of problems which can be solved by modern mathematics,
here are a few typical questions to indicate problem areas:
How large should a telephone exchange be to reduce queues? When
playing poker, does bluffing pay? What is the shortest way for
a commercial traveller to visit 30 given towns in Australia?
How can we decode a cryptograph? How can we protect number
sequences against errors in telegraphing? What is the cheapest,
safest and fastest coding of messages that have to be sent over
a noisy communication channel? Mathematical answers to these
questions show that a subject as pure and passionless as mathe
matics can have a lot to say about the world in which we live.
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To be a little bit more specific, modern algebra is basic
in radar and communication systems, particularly for long
range radars, such as satellite tracking radars and ~adars

which make maps of the Moon or measure ranges of Venus. The
techniques used consist of transmitting a long sequence of
signals of electromagnetic energy, coded in such a way that
one can match the transmitted and received energy in exactly
one way. So called periodic sequences (an analogy is

~ = -142857142857 ... ) with a very long period are used to

generate the transmitted radar signals and algebraic coding
techniques make it possible to encode signals and also to
decode, match or correlate returned ~ignals to which errors
have been added through "noisy" communication channels.
Such periodic sequences can be constructed by using certain

("primitive") binary polynomials, e.g. x 20 + x 3 + 1 to give a

sequence of period 220 - 1, which is about right for radar
observation of the Moon. FOT polynomials of degree 30, periods

of length 2 30 - 1 are obtained, suitable for obser~ations of
Venus; if polynomiais of degree 50 are used, then satellite
communication systems can be obtained which generate sequences

transmitted at intervals of 10-6 sec, but such a length that
they repeat only once a year. The algebraic concepts used
thereby are properties of fields with finitely many elements,
(called "Galois fields" or fini te fields),. polynomials with

coefficietits in these fields and formal power series I ckx k .
k=-co

Finite fields are also used in the modelling of finite state
machines; for decades they have been basic in experimeptal
designs and many other types of combinatorial designs. A
very recent application with important practical impact is to
"fast Fourier transforms", where the use of elements from a
finite field eliminates the problem of computer generated
round-off errors.

The techniques involving periodic sequences also lead to
the development of a high-precision interplanetary ranging
system and to test the General Theory of Relativity far more
accurately than by previous methods.

o
Satellite Sun Earth

According to Einstein, we should observe two non-Newtonian
phenomena as a radio signal travels from Earth to Probe, and
back. First, there is the "bending" of the ray 'by the sun's
gravitational field. Second) the photons gain energy from the
sun's field, and since they cannot speed up faster than the
speed of light the extra energy shortens the wave length
(increases the frequency) by~Planck's formula E = hv.
Fortunately, both of these effects are in the same direction.
Each has the effect of increasing the number of cycles above
what we would expect from the Newtonian model.
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Since the ranging device counts cycles, we can observe an
effect of the order of an extra hundred or so cycles. This
experiment has been performed in 1969, with Mariner's 6 and 7
space probes. They also sent back over 200 photographs of
Mars, each of them divided into 658 240 dots and each dot

given a brightness level ranging from 1 to 28 Therefore,
each photograph required about five million bits of information.
These bits were encoded, (using an error-correcting code, based
on properties of modern algebra) and transmitted back to earth
at a rate of 16 200 bits per second, where they were received
and decoded into photographs. "

History of mathematics clearly ,shows that mathematical
theories developed as part of pure mathematics appeared to be
of importance or sometimes even indispensable as a tool in
other branches of science. One of the best-known examples of
a surprising application is the theory of conics, which was
not applied until 1800 years after their discovery by the
Greek geometer Appolonius of Perga, when Johannes Keppler
described the planetary motions by ellipses. Most important
advances in pure mathematics rarely wait 1800 years for
application. With the increasing momentum of ma"thematical and
scientific activity, the speed of application has also in
creased. It took only 60 years from the development of matrix
theory as a part of pure mathematics in 1860 by A. Cayley to
its application in physics by Werner Heisenberg. Subseqtiently,
it took 30 odd years from the development of tensor calculus in
the 1870's to its application as the basic mathematical tool of
relativity theory by A. Einstein in the 1910's.

Mathematics has an incredibly long and sophisticated
history; it can measure its history in millenia. In comparison,
the physical sciences build on concepts and theories which are
at most a few hundred years old, much of the social and even
life sciences is of even more recent vintage. Although the
contributions of pure mathematicians may often seem to be
small, there is always a certain character of permanence about
them; and to produce and study anything of permanent interest
is to do something utterly beyond the powers of the vast
majority of scientific discipiines.

Here are some suggestions for further reading on the topic
of the uses of mathematics and its relevance today:

G. BIRKHOFF and T.C. BARTEE: Modern Applied AZgebra.
McGraw-Hill. 1970.

F.E. BROWDER: The Retevance of Mathematics. Amer. Math.
Monthly 83 (1976), 249-254.

Mathemat~cs in the Modern Worla. Freeman, San Francisco 1968.

L.A. STEEN (ed.): Mathematics Today~ TweZve Informal Essays.
Springer Verlag, New York-Heidelberg-Berlin, 1978.
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PI THROUGH THE AGES
J.M. Howi.e, St Andrews University

A little-known verse from the Bible reads

And he made a molten sea, ten cubits from the
one brim to the other: it was round all about,
and his height was five cubits: and a line of
thirty cubits did cODpass it round about.

(I Kings 7, 23)

The same verse can be found in II Chron. 4, 2. It occurs
in a list of specifications for the great temple of Solomon,
built around 950 B.C., and its interest for us here is that it
gives TI = 3. Not a very accurate value, o~ course,. and not
even very accurate in its day, for Egyptian and Mesopotamian

values of 3~ = 3·125 and ITo = 3 0 162 have been traced to much

earli~r'dates; though in defence of Solomon's craftsmen it
should be noted that the item being described seems to have
been a very large brass casting, where a high degree of
geometrical precision is neither possible nor necessary.

The fact that the ratio of the circumference to the
diameter of a circle is constant has been known for so long
that it is quite untraceable. The earliest values of TI,
including the 'biblical' value of 3, were almost certainly
found by measurement. The first theoretical calculation seems
to have been carried out by Archimedes of Syracuse (287-212 B.C.),
perhaps best known for his 'displacement principle' in hydro
statics, but arguably one of the greatest mathematicians of all
time. Let me attempt, using all the resources of modern mathe
matical notation, to describe the essence of the argument by
which he showed that

3'}~ < TI < 3~.

Before I do that, however, let me draw attention to the very
considerable sophistication involved in the use of inequalities
here. Archimedes knew, what so many people to this day do not,
that TI does not equaZ 22/7, and made no claim to have discovered
an exact value. If we take his best estimate as the average of
his two bounds we arrive at 3-1418, an error of about -0002.
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Now for the Archimedes argument. Consider a circle of
radius 1, in which we inscribe a regular polygon of

3 x 2n -1 sides, with semiperimeter q ; and esaribe a regular
n

polygon of 3 x 2n -1 sides, with semiperimeter p. In the
diagram this has been done for n 2. n

T
OA 1,

AB sin 1T

K'

AT = tan 7f

K'
where K = 3 x 2n -1.

The effect of this procedure is to define an increasing
sequence

Q1,q2,q3'·· .

and a decreasing sequence

such that

lim P
n

n-+oo

lim Qn = 1T •

n-+oo

From the diagram, and using trigonometrical notation, we
see that the two semiperimeters are given by

= K tan 7f = K sin
1T

Pn K' Qn K'
where K 3 x 2n - l . Equally, we have

= 2K tan 1T = 2K sin 1T

Pn +1 2K' qn+l 2K '.

and it is not at all a difficult exercise in trigonometry to
show that

(1)

2
Pn +l qn qn+l' (2)

1T
Archimedes, starting from Pl = 3 tan 3 = 3/3 and

• 1T 3/3
q1 = 3 Sln 3 = ~ calculated P2 using (1), then q2 using (2),
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then P3·using (1), then q3 using (2); and so on until he had

calculated P6 and q6' His conclusion
t

was that

q6 < TI < P6'

Let me emphasise that my use of trigonometrical techniques
here is totally unhistorical: Archimedes did not have the huge
advantage of an algebraic and trigonometrical notation and had
to derive (1) and (2) by entirely geometrical means. Moreover,
he did not even have the advantage of our decimal position
notation for numbers, so that the ·calculation of P6 and q6

from (1) and (2) was by no means a trivial task. So it was a
pretty stupendous feat both of imagination and of calculation
and the wonder is not that he stopped with polygons of 96
sides, but that he went so far.

For of course there is no reason in principle why one
should not go on. Various people did, including

Ptolemy (c. 150 A.D.)
Tsu Ch'ung Chi (430 - 501 A.D.)
AI-Khowarizmi (co 800)
AI-Kashi (c. 1430)
Viete (1540 - 1603)
Van Coolen (c. 1600)

3 0 1416
355/113
3·1416
14 places
9 places
35 places

Except for Tsu Ch'ung Chi, about whom next to nothing is known
and who is very unlikely to have known of Archimedes' work,
there was no theoretical progress involved in these improve
ments, only greater stamina in calculation. Notice how the
lead, in this as in all scientific matters, passed from Europe
to the East for the millenium from 400 to 1400 A.D.
AI-Khowarizmi lived in Baghdad, and incidentally gave his name
to .'algorithm'; while the words tal jabr' in the title of one
of his books gave us the word 'algebra'. AI-Kashi lived still
further east, in Samarkand, while Tsu Ch'ung Chi, one need
hardly add, lived in China.

The European Renaissance brought/about in due courSe a
whole new mathematical world. Among ·the first effects of this
reawakening was the emergence of arithmetical formulae for n.
One of the earliest was that of Wallis (1616 - 1703):

t My colleague Dr G.M. Phillips has pointed out that the
1

sequence 6fweighted means }(P
n

+ 2qn) converges to TI much more

rapidly than either of the sequences (P
n

) or' (qn). (Thi~ can be

shown quite easily by considering the Maclaurin expansions of
Ktan(n/K) and K sin(n/X).) Neither he rtor I can think of any
way in which "Archimedes could have hit on this ~mprovement by
a geometrical argument; but probably we underestimate him.
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2 _ 3. 3 . 5 . '5 . 7 . 7. . .
TI - 2.2.4.4.6.6 ...

and one of the best-known is

TI 111
i = 1 - ~ + K --~ +

This is sometimes attributed to Leibriiz (1646 - 1716) but in
St Andrews (with some justification - see Boyer [1], p.422)
we always attribute it to James Gregory (1638 - 1675), who was
appointed our first Regius Professor of Mathematics in 1668.

These are both dramatic and astonishing formulae, for the
expressions on the right are completely arithmetical in
character, while TI arises in the first instance from geometry.
They show the surprising results that infinite processes can
achieve and point the way to the wonderful richness of modern
mathematics.

From the point of view of the calculation of TI, however,
. neither is of any use at all. In Gregory's series, for
example, to get 4 decimal places correct we require the
error to be less than 0·00005= 1/20 000, and so we need
about 10 000 terms of the series. However, Gregory also showed
the more general result

tan-1x = x - %x 3 + ~x5 - (-1 ~ x ~ 1) + (3)

(from which the first series results if we put x = 1) . So

using the fact that tan-1 1 Tf get73 6" we

TI 1 1 + _1_ _1_ + .... ) ,6" 73(1 ~ 5.32 7.33

which converges much more quickly. The 10th term is 1/19.3
9 /3,

which is less than ·00005, and so we have ~t least 4 places
correct after just 9 terms.

An even better idea is to take the formula (beloved by
sixth form examiners the world over)

TI -1 1 -1 14 = tan 2 + tan 3 (4)

(5)

and then calculate the two series obtained by feeding first !
and then i into (3):

i = [! - !(!)3 + i<!)5 - ... J + ri - %<%)3 + ~<i)5 - ... J.

Clearly we shall get very rapid convergence indeed if we
can find a formula saying something like

TI - tan-1 l + tan-1 !4 - a b

with a and blarge. In 1706 Machin found such a formula:

TI _ -1 1 -1 1
4 - 4 tan 5 - tan .239'

tRemember the notations tan-1x = artan x.
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(Actually this is not at all hard to prove; if you know how to
do (4) then there is no real extra difficulty about (5),
except that the arithmetic is worse. Thinking it up in the
first place is, of course, quite another matter.)

With a formula like this available the only difficulty in
computing TIis the sheer boredom of continuing the calculation.
Needless to say, a few people were silly enough to devote vast
amounts of time and effort to this tedious and wholly useless
pursuit. One of them, an Englishman named Shanks, used+Machin's
formula to calculate TI to 707 places, publishing the results of
many years of rabour in 1873. Shanks has achieved immortality
for a very curious reason, which I shall explain shortly.

I have said that the calculation of TI to ever more places
is wholly useless. If Shanks had found that the expansion of
TI terminates, or that it becomes a reourring deoimal, that
would have been of great importance, but in fact he knew very
well that such a thing could not happen, since as early as
1761 it had been proved by Lambert that TI is irrational. One
way of expressing this is to say that there cannot exist
integers aO,a1 for which TI is a solution of the equation

a O + a1x = O. Shortly after Shanks's calculation it was

shown by Lindemann that TI has the much worse property of being
transoendental: that is to say, TI cannot be a root of a
polynomial equation

a o + a 1x + ... + anx
n

= 0

for any n or for any ohoioe of integers aO,a 1 , ... ,an. This

was an important result, since for reasons I cannot go into
here it laid to rest the classical Greek problem of 'squaring
the circle'. It is a consequence of the transcendentality of
TI that no ruler and compass construction can exist for con
structing a square equal in area to a given circle.

Very soon after Shanks's calculation a curious statistical
freak was noticed by De Morgan, who found that in the list of
707 digits there was a suspicious shortage of 7's. He
mentioned this as a curiosity in. his 'Budget of Paradoxes'
of 1872 (reprinted in [4]) and a curiosity it remained until
1945, when Ferguson discovered that Shanks had made an error
.in the 528th place, after which all his digits were wrong. In
1949 a computer was used to calculate TI to 2000 places. In
this expansion and in all subsequent computer expansions (the
most recent I have heard of being to 500 000· pl~ces!) the·
number of 7's does not differ significantly from its expectation;
and indeed the sequence of digits has so far passed all statis
tical tests for randomness.

The mention of statistics tempts me to include one last
curiosity about the calculation of TI, namely Buffon's needle
experiment. If we have a uniform grid of parallel lines, unit
distance apart and if we drop a needle of length ~ < 1 upon this
grid, the probability that the needle falls across a line is
(not ohviously) 2~/TI. By now you will not be surprised to learn
that various people have attempted to estimate TI by throwing
needles. The most remarkable result was that of Lazzerini (190i),



11

who made 3408 tosses and got

355
TI = 113 = 3 0 1415929

(incidentally the value found by Tsu Ch'ung Chi). This outcome
is suspiciously good, and the game is given away by the strange
number 3408 tosses. Kendall and Moran [3] comment that a good
value can be obtained by stopping the experiment at an optimal
moment. If you do not know in advance how many throws there
are to be then this is a very inaccurate way of computing TI.
Kendall and Moran indeed comment somewhat acidly that you would
do better to cut out a large circle of wood and use a tape
measure to find its circumference and diameter!

Still on the theme of phoney experiments, Gridgeman [2],
in a paper which pours devastating scorn on Lazzerini and
others, created some amusement by using a needle of carefully
chosen length £ = 0-7857, throwing it twice, and hitting a
line once. His estimate for TI was thus given by

2 x 0 0 7857 _ 1

TI - 2,

from which he got the highly creditable value of TI
He was not being serious~

3-1418.

As a postscript, here is a m~emonic for the decimal
expansion of TI. Each successive digit is the number of
letters in the corresponding word.

"How I want a drink, alcoholic of course, after the
heavy lectures involving quantum mechanics. All of
thy geometry, Herr Planck, is fairly hard ... "

3-14159265358979323846264 ...

REFERENCES
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Editorial Note: We believe there is a book with TI listed to

10
6

places. See also Function Vol.3~ Part 5> p.32 fop a story
about someone who memorized 15151 decimaZ places of TI.
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GAME THEORY

AND NURSE ROSTERING

Peter G. Schulz,
Footscray Institute of Technology

Introduction

Throughout history man has been preoccupied with conflicts
of interest such as games of chance, business competition,
collective bargaining and international conflict. Games are
mathematical models of conflict situations where the payoffs
(outcomes) are de~ermined by the strategies of the players.
Because a player can choose his strategy, he has some control
over the outcome of the game. But he.is not in complete con
trol, since the outcome also depends on the strategy of his
opponents.

The modern mathematical approach to game theory is generally
attributed to von Neumann who wrote several papers on the sub-l \
ject in the late 1920's and 1930's. The Second World War saw
considerable work being done in the areas of logistics, sub
marine search, air defence etc. As a result, von Neumann and
Morgenstern's book "Theory of Games and Economic Behaviour"
became the first standard reference on Game Theory.

Games are classified by the number of players (m) and the
number of moves or strategies (n). If one player's gain
always equals the other player's loss (e.g. in poker) the
game is called "zero-sum". The matrix of payoffs from one
person to another for each strategy employed results in an
m x n playoff matrix. If a player can select his strategy
after he knows how his .opponent has committed himself, his
appropriate strategy is obvious and the gam& is trivial. The
essence of game theory, however, is that each player must
commit himself without knowing his opponent's decision; he
only knows the payoff matrix and his opponent's past pattern
of play.

In this article the following two games will be considered:
(i) strictly determined two person games, and

(ii) an application of game theory to the rostering of nurses
at a hospital.
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Strictly 'determined two-person games

Consider the following payoff matrix for a two-person
game:

1 40

2 20

2

-20

-1

3

10

5

B has three strategies and A two. The matrix represents
payments from B to A e.g. if A selects strategy 2 and B
selects strategy 1, B pays 20 units to A. If A selects
strategy 1 and B selects strategy 2, A pays 20 units to B.

We can state the problem in the following way: we have
to select A's strategies (or combination of strategies) so
that A's expected gain over a number of plays is a maximum and
to select B's strategies (or combination of strategies) so that
B's expected loss over a number of plays is a minimum.

Consider A's position: the continuous play of strategy 1
is unattractive. It does contain the largest payoff (40) but
B will (if he finds A playing strategy 1 all the time) switch
to strategy 2 thus forcing A to lose. A thus selects strategy
2. Mathematically, A calculates the minimum value in each row
of the matrix (-20,-1) and selects the maximum (i.e. the
llmaximin ll) whic'h occurs for strategy 2.

B wishes to keep the payoff small - he is ill-advised to
play either strategy 1 or strategy 3. Mathematically B
calculates the maximum value for each column (40,-1,10) and
chooses the minimum (i.e. the "minimax") which occurs in
column 2. Both A and B should play strategy 2.

Note that here minimax = maximin = -1; such a game is
said to be strictly determined. For the above game, player B
can guarantee an expected win of 1 unit per game regardless of
what his opponent may do. However, it should be noted that
this is only the value towards which the average tends; if the

'game is played only a few times, luck may increase or decrease
the payoff. We also note that game theory leads to very con
servative strategies.

As a trivial example, let us consider the following game:

Rules: You choose one side of a coin i.e. either H or T.
I select one of the 4 aces from a deck of cards.

Payoffs: (i) If you select H: I pay you 15~, 4~, -5~, and 1~.

(ii) If you select T: I pay you 1~, -8~, -6~, and -2~

if I have chosen ~he spade, heart, diamond or club ace respec
tively for both (i) and (ii).

Do you agree to play the game?

This is an example of a zero-sum game as my ~ayouts equal
my gains for the strategies.



14

The payoff matrix (representing payments from me) to you is

Maximin

)~ Spade Heart Diamond Club Min

H 15 4 -5 1 -5

T 1 -8 -6 -2 -8

Max 15 4 -5 1

Yo

Minimax

Since minimax maximin, the game is strictly determined.
Here, I will play the ace of diamonds all the time and I can
be guaranteed a win of at least 5~ per game. You should not
play this game!

Nurse rostering

Hospital administrators are becoming increasin.gly concerned.
Staff and students from the Mathematics Department here at
Foo~scray have conducted p~ojects for the Western General
Hospital relating to (i) a better internal courier system,
(ii) a bed demand for emergencies, (iii) a survey of people
attending the outpatients department and (iv) a study of
waiting times in both the outpatients and the accident and
emergency departments.

The Western General Hospital conducts a large accident
and emergency department where people either receive emergency
treatment or are referred to the department's clinic (where
"a wait of 24 hours or more would not affect the patient".).
Nursing and medical care demand can be forecast using the
previous year's data. However, the demand on public holidays
can fluctuate greatly due to unpredictable variables such as
weather. Duckett [4} has suggested the use of game theory to
assist in the determination of the level of nursing manpower to
be provided on such days. In most hospitals, rostering is done
by guesswork leading to either overstaffing (i.e. under
utilization of staff) or understaffing resulting in poor
quality attention from the nursing staff.

Since the demand cannot be forecast, let us assume that it
can be classified as low, medium or high. Also, let us assume
that between ,2 and 5 nurses can be rostered on any shift.
These represent the strategies' for our game leading to a 4 x 3
payoff matrix. The payoffs in this game are a measure of the
value of a particular combination of strategies to the
hospital. These measures can be quaQtified by discussions
between the director of Accident and Emergency and the nursing
administration. Duckett suggests a possible payoff matrix by
allocating a maximum of 10 points for each payoff; for ,
example, high demand and 5 nurses would have ,a payoff of 10
whilst high demand and 2 nurses would earn 1 point.

A possible payoff matrix is:
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DEMAND
Nurses per

shift Low Medium High

(R l ) 5 4 8 10

(R 2 ) 4 7 10 8

(R
3

) 3 10 5 2

(R
4

) 2 5 3 1

Unlike the games mentioned in the previous section, we
cannot select a demand strategy - we cannot say that the best
strategy is low demand! We can select the number of.nurses per

. shift and one method used is to select the maximin i.e.
calculate the minimum payoff per row (4,7,2,1) and then select
the maximum (7,row 2). This method of solution leads to 4
nurses being rostered per shift. Thus~ each roster is
appraised by looking at the worst payoff for each roster and
the "optimal choice" is the one with the best worst payoff.

The maximin and minimax criteria are each ultraconserva
tive in that they concentrate upon the state having the
worst consequence. Why not look at the best state or a
combination of the best and worst? This is the essence of
what is called the Hurwicz criterion [2]. For an act R., let
m. be the minimum and M. be the maximum of the payoffs. ~Let
a~fixed number a (0 < a~< 1), called the pessimism-optimism
index, be given such that to each Ri we associate an index

H = ami + (1 - a)Mi , called the Hurwicz a-criterion. Of two

acts, the one w'i th the higher a-index is preferred.

For the above,

H(5) 4a + 10(1 a) 10 6a

H(4) 7a + 10(1 a) 10 3a

H(3) 2a + 10(1 a) 10 8a

H(2) a + 5(1 a) 5 - 4a.

Since 0 < a < 1, H(2) < H(3) < H(5) < H(4), and hence 4 nurses
per shift results in the optimum solution. The maximin made the
same decision.

Another cri terion is based on the "principle of in
sufficient reason". Since we are not able to forecast the
level of demand, let us assume that all are equally likely.
For each act (R i ) let us calcu~ate the expected or average

payoff, and select the act with the largest average.
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For the problem above, we have:

Act

Average

1

7 0 33

2

8 0 33

3 4

3·00

Again the second act, 4 nurses per shift, is the one to
be selected.
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GREAT CIRCLE NAVIGATION
Capt. John Noble,

8 Agnes Ave. North Balwyn

Great circZes are circles on a sphere, whose centres are
the centre of the sphere. In navigation, courses and dis-
tances along arcs of great circles are determined by spherical
trigonometry. The alternative to great circle navigation is to
follow a rhumb Zine - a path which cuts all meridians, of longi
tude at the same angle. Rhumb line course and distance are
determined by plane trigonometry. Meridians of longitude, and
the equator, are both ~reat circles and rhumb lines. On east
and west courses in high latitudes, a considerable distance
can be saved by following a great circle track in preference _
to a rhumb line. On Mercator's projection, rhumb lines are
straight, but great circles curve toward the poles, the curve
increasing with latitude.

Sailing ships on the voyage from England to Australia
kept to rhumb lines in the Atlantic, making the best progress
permitted by the prevailing winds and the variables of
Cancer until they picked up the north east trade winds - the
permanent area of high pressure with anticyclonic circulation
that persists between the tropic of Cancer and the equator.
Bowled along by this favourable and reliable wind, they
sought the doldrums at their narrowest, favouring the coast
of South America for this purpose. T~ey then picked up the
south east trade winds for a close-hauled trek almost due
south into the variables of Capricorn - a more significant
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area of variable winds in the South Atlantic (known as the
Horse Latitudes).

Progress was uncertain in this area until the westerlies
were encountered between 30° and 40° south latitudet . From
this position, advantage could be taken of great circle
navigation, the curve to the south providing a shorter
distance as well as taking advantage of the more persistent
westerlies in higher latitudes. The course commenced as south
easterly, gradually changed to easterly as the apex of the
great circle was reached at about 60° latitude and came slowly
back to northeast as the destination came closer.

But, at 60° south latitude, there were increased hazards
from extreme cold, violent storms and icebergs. Prudent ship
masters determined their maximum latitude, probably 50° to 55°,
and followed a "composite great circle": great circle to
maximum latitude, rhumb line along this latitude to a longitude
where the original great circle intersected the latitude again,
then great cir~le again to the destinat~on~

Figure 1
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In this polar gnemonio projection, great circles appear as
straight lines and latitude circles (dotted) are seen as cir
cular. A is a point somewhat south of the Cape of Good Hope
and B is close to Port Phillip. The path ACDB is a composite
great circle route.

---~-

t see Funotion, Vol.2, part 30
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Figure 2

The paths drawn ·in Figure 1 reappear in the more familiar
Mercator projection~ Note that the great circle no longer
appears shorter, due to the distortion introduced by the map.

\
Great circle navigation required a continuous monitoring

of longitude. Determination of longitude presented a major
problem for navigation at this time. Ships bound for Port

. Phillip (whose longitude had not been accurately calculated)
faced, after a 5 000 mile trek across the Southern Ocean, the
reef-strewn southwestern shore of King Island, if they were
only a few miles east of ~heir estimated longitude. A similar
discrepancy to the west and their landfall would be out of
range of Cape Otway lighthouse, in the region where the Loch
Ard and a number of other ships foundered.

Longitude discrepancies, in fact, led to disastrous ends
for many sailing ship voyages. Adelaide-bound ships, for
example, came to grief off Kangaroo Island.

Homeward bound from Australia, well-found ships continued
eastwards round Cape Horn. The true great circle route in
this case goes well into the Antarctic and a composite route
was invariably followed. Cape Horn lies at latitude 55° south,
and once this was reached, a rhumb line was followed due east
to the landfall.

Determination of longitude by ships at sea had been a
problem since world trading for merchant ships had been made
possible by the defeat of the Spanish Armada in 1588 and the
opening of the sea route around Africa 100 years earlier by
the Portuguese navigator Diaz.

Pope Alexander VI had decreed that the Portuguese explore
eastwards and the Spanish to the west, but Magellan, a
Portuguese who had defected to Spain, discovered and named



Magellan Straits in 1520 and then sailed westwards to the
Spice Islands.

World trade by British and Dutch ships started in 1595
when four ships of the Dutch East India Company rounded the
Cape of Good Hope to consolidate their East Indian Empire ..
London merchants then petitioned Queen Elizabeth I to
authorise a British expedition in a similar direction. The
British East India Company sent four ships round the Cape in
1601, and both companies developed fleets of slow and cumber
some ships requiring fifteen to eighteen months to complete
a single voyage.

While latitude could be determined readily from mid-day
readings of the sun's altitude, longitudinal differences
between landfalls could not be determined. Generally, there
fore, these ships followed either coastlines or parallels of
latitude to their destinations.

The East Indiamen, after rounding the Cape, followed the
African coast north to the eighth parallel of south latitude
and then maintained this to a landfall on the coast of Java.
This course took them through the doldrums, whose light winds
and frequent calms were responsible for the slow voyages.

In 1611, Hendrik Brouwer, in a Dutch East Indiaman,
varied this procedure by continuing due east from the Cape
of Good Hope for an estimated 3 000 miles, after which he
sailed northwards to Java. This gave him the advantage of
the high latitude westerlies, and he was able to complete
~is voyage in a record seven months.

Seven years later, Dirk Hartog in the Eendracht, overshot
the turning point and made a landfall at what was later named
Shark Bay by Dampier~ Other Dutch navigators followed
Brouwer's example also, although some came to grief off
West Australia's inhospitable coast. The most disastrou~

wreck was that of the Batavia on the Abrolhos Islands in 1629.

Although world trade developed during the ensuing 150
year~, navigators still had no means of determining their
longitude. One step in this direction was the determination
of the longitude of known landfalls. Lieutenant James Cook,
during his service in North Ameri~a, prepared a paper on the
deduction of longitude from simultaneous observations of an
eclipse of the sun. By comparing the local times of the
eclipse as recorded in Newfoundland, with those recorded
(simultaneously) at Greenwich, he established the longitude
of Newfoundland.

The planet Venus was to transit across the sun in 1769
and the Royal Society successfully petitioned George III to
send an expedition to Tahiti. Cook's method was to use this
event to establish the longitude of Tahiti, by then a focal
point of Pacific exploration.

Cook was appointed leader of the expedition and sailed
from Plymouth in HMS Endeavour on the 26th of August, 1768.
After rounding Cape Horn he reached Tahiti on the 11th of
April, 1769, completing his observations there on the 13th

19
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of July. He then continued westwards and, after charting the
coasts of New Zealand and Australia, reached Batavia (modern
Jakarta) on the 11th of October, 1770. (Cook, in fact,
recorded the date as the 10th of October, as he did not skip a
day on crossing the 180th meridian - now the International
Date Line.)

The other major advance in determination of longitude was
the introduction of chronometers. These were reliable time
pieces which enabled ship's local time, as determined byastro
nomical observations, to be compared with Greenwich time.
Every four minutes in the difference corresponds to one degree
of longitude (so that 180

0

of longitude produces a twelve
hour discrepancy).

Figure 3

Three great circles intersect at
P,Z,X the vertices of a spherical
triangle. The angle ZPX is termed
the hour angle of a heavenly body
above X, the observer being at Z.
Spherical trigonometry is the
branch of mathematics used to
analyse such "triangles" as ZPX,
and is used in navigation.

In Britain, a "Board of Longitude" had been established,
and a reward of £20,000, a very large sum in those days, was
offered for a timepiece which would allow longitude
determinations accurate to within 30 miles at the end of a six
weeks' voyage.

In 1728, John Harrison produced a chronometer similar to
a grandfather clock. However, its pendulum mechanism was use
less at sea. He allowed for this in his second model by
replacing the pendulum with a pair of straight bar balances
so arranged that the motion of the ship accelerated the period
of one balance in the same proportion as it retarded the other.
Springs controlled the balances and these were so constructed
as to compensate for the effects of changing temperatures.

In his later models, he made these coupled balances
circular and used a spiral balance spring. His fourth
chronometer was only five inches in diameter, and proved to be
reliable within the required limits. He did not, however,
receive the full reward until a further instrument was produced
by his son in 1770 .. This instrument proved accurate to within
4~ seconds over ten weeks.

Cook too~ a duplicate of this on his second voyage in
HMS Resolution (1772 - 1775). This performed well in all
climates from the Tropics to the Antarctic.
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Thereafter, chronometers became an essential navigation
instrument. They were soon supplemented by a system of time
signals at every major harbour.

The solution of the "longitude problem" made possible
accurate great circle navigation and allowed a considerable
reduction in the time taken to sail from England to Australia.

Further Reading

G. Blainey: The Tyranny of Distance (Sun Books)~

D. Charlwood: Wrecks and Reputations (Angus and Robertson).

D. Charlwood: Settlers under Sail (Vic. Govt Printer).

P. Mason: From Genesis to Jupiter (Aust. Broadcasting Commission).

These books should be available from your school or municipal
library.
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THE MODEL MAKER AND THE

OOLIGOOJI HIGH DAM

N .8. Barnett.
Footscray Institute of Technology

People become mathematicians, as with other professions,
for a variety of reasons. Some enter the profession by design
and others because of circumstances. Most enjoy the problem
solving situation and some delight in the construction of ab
stract systems. A few have had their interest in mathematics
fired by the enthusiasm of a teacher. Some see mathematics as
a means of solving practical problems whilst yet others use
practical situations as a stimulus for mathematical modelling,
without ever really tackling real life problems. In order to
understand this better and to perhaps gain some understanding
of the difficulties of mathematical modelling in its practical
context, consider the following story. The story is not true;
neither have the names been changed to protect the innocent.

Suppose you live in an arid region of Ooligooji and your
major concern as you eke out your existence from year to year
is water - will there be enough to feed your camel - to water
your meagre patch of maize let alone sufficient for your three
wives and fifteen children. Your worries are alleviated when
your country decides to employ the services of some 'crack'
overseas scientists and engineers who, filled with love and
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concern for the inhabitants of Ooligooji, embark on a scheme to
eliminate its nagging water shortage. A major development in
this scheme will be the construction of the Ooligooji High Dam,
a vast concrete monolith to which boggle-eyed tourists will
flock annually, not to mention envious engineers and politic
ians from around the globe. Plans are drawn up, contracts ten
dered and vast numbers of locals employed at,twice their usual
salary (and at half the salary of those brought in from over
seas) .

Prior to commencement of construction much work has gone
on 'behind the scenes'. A survey of the possible sites has
yielded, as most appropriate, a location adjacent to the presi
dential palace, providing the added benefit that El-Presidente
can follow closely the progress of construction of this giant
edifice. All agree (all, that is, who are deemed worthy of
comment) that the dam should be big - large - gigantic if neces
sary, so as to completely eliminate the dependence of Ooligooji
on the whims of mother nature. Just how big should the dam be?
EI-Presidente has objected to the exhorbitant cost even though
95% of the financing is coming from foreign aid; after all, 5%
of a colossal sum, everyone knows, is a large amount. "Never
in a hundred years will there be enough water to flood over
such a dam!" shouts El-Presidente. "The capacity could be re
duced by a half and still meet all our requirements in addition
to facilitating new irrigation programs" The engineers, how
ever, have done their sums. They insist that to remove any
reasonable possibility of flooding and to permit the proposed
irrigation development the dam must be constructed its intended
size. You see, the Ooligooji monsoon dumps most of its nation's
precipitation in three short weeks of the year and the loss from
the proposed dam through evaporation and stagnation during the
rest of the year would be enormous.

Whilst the debate rages, deep in the dark recesses of the
mathematics department of the Ooligooji National University, a
lone mathematician is working industriously (as do all mathe
maticians). He has contemplated the operation of the proposed
Ooligooji High Dam and has broken it down into three fundament
al components. At any time the dam will contain a certain vol
ume of water, it will of course have an input (largely dumped
in three short weeks) and its operation will involve a draught
or release schedule. "Wouldn't it be great," he surmises, "if
by suitably characterising these components I could perform ~he

appropriate calculations and present figures to El-Presidente
which would establish that the dam could safely be built a
fraction of the proposed size." He immediately sets to work
but quickly finds that if he is to obtain suitably compact re
sults and if he is not'to spend hour upon hour working a com
puter he will have to make some simplifying assumptions. One
of these assumptions is that the amount of input into the dam
in anyone week (through run-off, rainfall and stream input)
is totally independent of the amount of input in any previous
week. Moreover, if the release is a fixed amount each week
then with some simplifying input assumptions he can calculate,
for a given size dam, the probability of the dam flooding over
or emptying within a certain number of years. If he further
supposes that the reservoir operation quickly settles down to
a steady mode of behaviour he can calculate the probability of
the dam ever overflowing or going empty. With such steady



23

state behaviour the effect of the initial content of the dam is
negligible. Chuckling with excitement he presents his findings
before the contracting engineers and of course El-President~o

The derision which greets his findings reverberates around the
presidential palace. "What nonsense," he is told, "to assume
that dam inputs are independent, from month to month; what about
the three-week wet season, at least there should be some regard
in the calculations for this."

The assumption that dam release is constant," he is told,
"is totally and utterly ludicrous. In reducing the dam oper
ation to the fundamentals of input, content and release you
are forced to include in the draught, not only the scheduled
release but all losses from the dam through seepage; evaporat
ion, etc .... and to say such losses are constant is extreme stu-
pidity. The supply for domestic purposes, within bounds, is
basically a supply and demand process which to some extent has
an inverse relationship to the amount entering the dam. "How then,"
he is asked, "does he account for the fact that he assumes, in
his model, that the release is independent of input? Anyway, if
the level of the water in the dam is depleted sufficiently, ob
viously output will be restricted," - and so his demise contin
ues ad nauseum.

Dejected he returns to his quiet corner of the National
University to try and improve on his model. In fact improving
his model in accordance with the engineers' comments is no
great problem but what it does to his calculations is nobody's
business. He is quickly bogged down and ~t looks as though
he will be forced to spend hours computing. It isn't that he
has anything against computing but the main advantage of his
analytical approach is that the structure of the problem is pre
served and he is able to observe how the probabilities are de
pendent on the input and output characteristics. As he strug
gles he finds that he can introduce seasonality without too
great a difficulty but the interdependence of input and re
lease', that really fouls things up. "But, wait," 'he says "how
have the engineers traditionally proceeded - how have they de
cided in times past on the size of dams to be built? Of course!
By observation of rainfall, experience, intuition, intelligent
guesswork and a large margin for error. Anyway, mother nature
tends to be unpredictable." "The engineers," he reas'ons, "are
not after exact ans~ers so let me derive some approximate re
sults for the quantities previously alluded to." Carefully
avoiding heavy calculations but favouring, rather, elegant
mathematics,he proceeds. As he does so he finds that he is
able to satisfy a number of the engineers' quibbles regarding
assumptions. With his new-found approximations concerned with
the effect of dam size on the likelihood of flooding he presents
himself once more at the presidential palace. The engineers are
quick to inform him that his approximations are still dependent
on a number of simplifying assumptions which just cannot be
justified in practice. Moreover, and even more damning, they
say that approximations without some idea of the degree of
approximation are of little use.

Arriving back at his office he telephones a fellow-mathe
matician who works in the University of Upper Ooligooji. This
individual is much more of a pragmatist - "The lesson is simple,"
he states, "the engineers aren't interested in elegant mathe-
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matical argument but rather in simulations and computations."
"Look!" he says, "Your dam model and its operation is an in
teresting stochastic process, doubtless it has a number of
interesting properties which make it well worthy of further
investigation." So he sits down and manipulates assumptions
to suit his mathematical analysis rather than to meet practical
demands. Thus a new theory is born,a theory which had its
origin in a practical problem yet develops quickly into a
problem of sophisticated mathematics. Many more mathematicians
subsequently join the team and so the theory (and the learned
papers) increase ad infinitum. Anrl what about the engineers?
Well, they are free to argue their case with EI-Presidente who
eventually (with the promise of further financial aid) suc-
cumbs to pressure and the mighty edifice begins its construction.

This little story is of course fiction and it certainly is
n't meant to ridicule mathematicians or engineers, but rather to
point out that their approach to problems frequently differs.
There is an area of mathematics called dam theory whiCh treats
problems of the sort here mentioned. It is also true to say
that this theory developed (largely in Australia) from an effort
to model and analyse a practical situation but much of subse
quent work in this area has been of purely theoretical interest.
Another area of mathematical pursuit which has developed simi
larly is called queueing theory. This has some similarities
with dam theory and much of the original work was centred
around the problems of telephone calls arriving at an exchange.
Many life situations involve queuing so the study of the opera
tion of such queues so as to minimise waiting time, for example,
would be of great interest. Certain production line problems
and maintenance problems can be catagorised as queues. A vast
theory has developed over the years but only a relatively small
amount has found practical usage. Such studies' as these have
the involvement of three types of person. (i) Those who are
basically interested in the practical issues - usable answers
are what counts, after all its areal world. (ii) Those who
are interested in the theoretical aspects; and the usually
small category (iii) those who realise that both (i) and (ii)
have something to offer, and endeavour to bridge the'gap be
tween them.

Just because an area of study is called "applied" doesn't
always mean that it is applied! Queueing theory, and dam theory
are classified as areas of applied probability. It would per
haps be safer to conclude from usage of the word "applied" that
the study in question had its origins in an applied problem.
Many theoretical mathematicians point to the fact that much
that was once accounted of just theoretical interest, many
years later has found practical use, so perhaps it is approp~

riate to conclude with a comment by William Feller, an eminent
twentieth century mathematician:

"It has been claimed that the modern theory of probability
is too abstract and too gener~l to be useful ... only yesterday
the practical things of today were decried as impractical, and
the theories which will be practical tomorrow will always be
branded as valueless games by the practical men of today!"

00 00 00 00 00 00 00 00 00 00
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MAGIC SQUARES
P. Greetham" 'Boronia Technical School

A magic square is a square array of numbers which has
the property that all the rows, diagonals and columns add up
to the same numbe"r.

It seems to have been the Chinese who developed magic
squares in approximately the 12th Century, and called them
lo-shu. Shown below is the lo-shu as it was traditionally
drawn by the Chinese, and translated into Arabic numerals.
Legend has it that the Emperor Yu spotted the square pattern.
on the back of a tortoise while walking beside the riverLo.

The lo-shu above is the simplest form of 3 x 3 magic
square since it is constructed with each of the integers from
1 to 9. It is called the standard square. Seven (7) other
minor versions of this can be formed by reflecting or rotat
ing the square. Ignoring these minor variations, this stan
dard 3 x 3 square is unique. Why?

To answer this question, let the rows, columns and dia
gonals each add up to m. For the standard square,
m = (1 + 2 + 3 + •.. + 9)/3 = 15. Let the central number be a,
the top right number be c and the middle number in the top row
be b. The square then becomes:

cb15 - b - c

a + b + 2c - 15 a 15 + a - b - 2c
~--=-~-----a--+--l-"5---a---b--+---b-+-c---a-.--1
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But the sum of the numbers in the second row is 3m, which

must be equal to 15. Hence a = 5. The square now becomes:

15 - b - C b C

b + 2c - 10 5 20 - b - 2c_.
10 - c 10 - b b + c - 5

(This argument may proceed by a number of alternative

routes.)

We may now set up a number. of inequalities based on four

considerations:

1. Every entry must be. positive;

2. Every entry must be less than 10;

3. We may so orient the square that c is the largest cor-

ner entry;

4. We may so orient the square that b < 20 - b - 2c.

The resulting inequalities reduce to these:

b < 5

c > 5

b + c < 10

15 < b + 2c < 20

(i)

(ii)

(iii)

(iv)

By inequality (i), b
by inequality (ii),c

1 or 2 or 3 or 4, and
6 or 7 or 8 or 9.

But b f 4, as this would violate inequality (iii), and

C i 9, for the same reason. This leaves nine possible combina

tions. Of these, four violate inequality (iv),. and three

others violate inequality (iii). We are left with two possi

bilities:

b = 1, C = 8 or b = 2, C = 7.

It is simple.now to test these to show that only the first

works. (The second gives 15 - b - C = b + 2c - 10 = 6.)

If the restrictions applying to the standard square are

relaxed, somewhat more general squares may be obtained. You

may care to investigate these for yourself.
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LETTER TO THE EDITOR

To construct a right-angled triangle given the length of'
one of the sides (other than the hypotenuse) it is possible,
using the following rules, to .find suitable lengths for the
hypotenuse and the other side.

Let x be the length of the given side,
z be the length of the hypotenuse,
y be the length of the other side,
a be any real number, other than x or O.

Then
2

al = Ix
2
2~ a21y I(x I a)2 -

2

+ al =
x 2 + a 2

z = Ix La2 - a
2a

For example, let a = 12, x = 6. Then y 4 0 5, z 7 0 5.
The triangle of sides 6, 4~5, 7 0 5 is right-angled.

Negative values of a are also possible. E.g. let a = -18;
x = 6. Then y = 8, Z = 10. The 6, 8, 10 triangle is right
a·ngled.

To prove the formula is correct, we form 2 2
x + Y .

so that Pythagoras' Theorem is satisfied.

Genet Edmondson,
Year 9 (1979), Presbyterian Ladies'
College.

[A nice observation. It is usually given in mathematics courses

in a slightly different~ but equivalent~ form. If x 2 + y2 = z2~
then all possible triples x,y~z are given by x = 2uv,

y = u CJ
_ v2~ Z = u 2 + v 2 . A cuneiform tab·let known aG Plimpton

322 allows us to deduce that this result was known to the
Babylonians, but we do 'not know how they arrived at ito Eds.l
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CORRECTION

In trying to re-draw Fig.1 in the article by Dame Kathleen
Ollerenshaw (Function Vol.3, Part 5, p.18), we goofed! The
correct figure is

A

SOLUTION TO PROBLEM 3.4.2
Many hallways have light switches at either end, allowing

the light to be operated from each. How can the wiring be
arranged to achieve this?

Ravi Sidhu, Grade 10 (1979)
Ignatius Park College, Townsville
and Stephen Tolhurst noted that
two ordinary switches (simpler
than those above), if wired in
parallel, allow the light to
shine if either switch is
turned on, but if one switch
is on, the other doesn't con
trol the light.

Magnus Cameron, Year 7 (1979) at Glen Waverley High School,
Victoria, and Stephen Tolhurst,
Year 12 (1979) at .Springwood High
School, N.S.W., both provided a
circuit diagram which solves the
problem.

Stephen also discussed what happen~ if the switches are in
~eries. Our correspondents mentioned the importance of these
swi tching circuits in computer logic-. Would someone write us an
article on that subject?

SOLUTION TO PROBLEM 3.4.3
'The following solution was contributed by Andrew Mattingley,

Science I (1979) Monash·University.
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Problem: Let ~n denote the number of ways of putting 'n'
letters in tn' addressed envelopes so that every letter goes
into a wrong envelope. Derive a formula for ~n" .

Solution:

Recursion formula: ~n

~1 0

~2 1

by formula ~3 2

~4 9

~5 44 and so on.

Sample proof:

Let E
i

denote the ith envelope and L i denote the ith letter.

If the mailing was to be done properly L. should go into Ei for
all i E {1,2,""",n}. ~

Now for n letters and n envelopes we take L1 and place it

in one of the other envelopes Ej , say, (note that there are

'n - l' possibilities). Now if Lj goes into E1 then the remain

ing letters can all be put into the wrong envelope in ~n-2 ways.

The other possibility is that L
j

does not go into E1 " Now we

have 'n - l' letters and n - 1 envelopes where all the letters
must go into the wrong envelopes where in this case the right
envelope for L~ is E1 . The number of ways in which these let-

ters can be ar~anged is 6 1" So if L1 goes into E. the num-
n- J

ber of ways the letters can all be put in the wrong envelope is

~n-1 + ~n-2·

And so for the 'n - l' possible envelopes L1 may go into we ob
tain for 6

n

6
n

(1)

Furthermore with one letter and one envelope it is not possible
to enclose the letter incorrectly, hence

6 1 = 0,

and with two letters and two envelopes

1.

Then, from (1), ~3 44, etc.
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SOLUTION TO PROBLEM 3.'5.1
Magnus Cameron also tackled

in Australian Rules Football,
the number of points, p, is
correctly given by multiply-
ing the number of goals, g,
by the number of behinds, b,
in five cases. He thought
these were the only possible
cases, and he was right. We
seek non-negative integers g, b,

this problem, and found that

g b P
0 0 0
2 12 24
3 9 27
4 8 32
7 7 49

P such that both equations

p

p

6g + b

g x b

(1)
(2)

hold. Equating (1) and (2) we find

g(b - 6) = b (3)

so that g, and b - 6, both divide b exactly. Let us suppose
that b = kg where k is an integer. Then we must have, from (3),

g(kg - 6) = kg,

so that either g o (leading to Magnus' first solution) or

kg - 6 k, that is, g = 1 + .~

Tryingk = 1,2,3,4,5,6 yields respectively g = 7,4,3,~,~1,2,
and b = 7,8,9,10,11,12, which include the other cases
Magnus found, and two impossible (fractional) cases. Higher
values of k only lead to fractional cases.

We still seek solutions to problems 3.3.2, 3.3.5, 3.4.1,
3.5.2, 3.5.3, 3.5.4. Here ar~ some further problems.

PROBLEM 4.1.1 (stolen from the Gazette of the Australian
Mathematical Society).

OABC is a square box, of side 1 unit in length. XY is a
ladder touching the box at B.
Find conditions under which
the length XY of the ladder, cY • 1 ~
and its height OY, are both
rational numbers.

PROBLEM 4.1.2 o A x

x,y,z are positive numbers such that each is the product
of the other two. What are the values of x,y,z? Is it possi
ble to find six different positive numbers such that each is
the product of two of the others?
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PROBLEM 4.1.3
Find the locus of the points, P, such that when viewed

from P, a given square subtends an angle of 90°.

PROBLEM'4il.4

~,
p to',,,,,

sq are

A man seeks a wife. The marriage-agency will present him
with three ladies, in random order. But if he wishes to marry
one of the ladies, he must make her an offer just after they
have been introduced. Except for the last lady, he cannot wait
until he has met them all and then decide which is best.

In order to maximize his probability of choosing the best
lady, should he

(a) choose the first lady,

(b) ignore the first and choose the second,

(c) ignore the first, and choose the second if she is
better than the first. If not, choose the third,

Cd) ignore the first two ladies and choose the third?

WHAT IS THE CORRECT PERCENTAGE?

A mammoth 92~92 per cent of Sunday's cricket crowd at the
MeG behaved themselves (33 arrests; crowd 39 183).

The Age, 12.12.79.

A PREDICTION

After the metric system has been adopted ... and our people
have become accustomed to its use, we would no more dream of go
ing back to the present syst-em of weights and measures than we
would think of carrying on the processes of arithmetic through
the medium of the old Roman letters in place of the 'Arabic nu
merals we now employ~

Alexander Graham Bell before
the U.S. Congress, February,
1906.
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MONASH SCHOOLS' MATHEMATICS
LECTURES 1980

Monash University Mathematics Department invites secondary
school students studying mathematics, particularly those in
years 11 and 12 (H.S.C.) to a series of lectures on mathematical
topics. The first lecture of 1980 will be given by the chairman
of the Mathematics Department, Professor P. Finch~ who will
speak on

"Statistical Problems in Medicine"

Friday, March 21, 1980

at 7.00 p.m. in the Rotunda Lecture Theatre Rl.

The lectures are free, and open also to teachers and parents
accompanying students. Each lecture will last for approximate
ly one hour and will not assume attendance at other lectures in
the series. Lecture theatre Rl is located in the "Rotunda",
which shares a common entry foyer with the Alexander Theatre.
For further directions, please enquire at the Gatehouse in the
main entrance of Monash in Wellington Road, Clayton. Parking
is possible in any car park at Monash.

Further lectures in the series, all at 7.00 p.m. in R1,
will be:

28th March "How Euclid didn't solve quadratic equations".
Pro~essor J. Crossley.

11th April "Stonehenge and ancient Egypt: the mathematics
of radiocarbon dating'''. Dr R. Clark.

18th April "Exploring the world with Newtonian mechanics".
Professor B. Morton.

2nd May'

9th May

"Black holes". Dr C. McIntosh.

"The sundial". Dr C. Moppert.

We hope to publish some of the talks in Function later
this year, for students who are unable to attend in person.

Please tell your friends at school about the lectures.
They don't all subscribe to Function!
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