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Our'main article in this issue is by John Stillwell and
is an account, written specially for Fun~tion, explaining how
one of the famous problems of mathematics, first posed in the
1850's, the so-called Four .Colour Problem, was solved in 1976.
Its solution is a great event and was unusual in that it in
volved over 1200 hours of computer time and so, perhaps, is
suspect until the computing as well as the reasoning has been
adequately checked.

We are pleased to include two, articles by authors
Peter Watterson and Christopher Stuart who were in sixth
form in 1976, but who will be starting university courses
this year. We call for further articles to be offered for
publication from authors still at school.

Each issue of Function will contain problems for your
enjoyment and interest. We ask you to send us any problems
you think may interest others. We hope to cover a wide range
of applications, and a wide range of mathematical techniques
will be called upon to handle those applications. Some
problems may yield up their solutions only after some numerical
calculations have been carried through - calculator~ and
computers are not barred. Some problems will be harder than
others, of course; we hope none prove to be impossible!

We shall invite you' to send us your solutions to some of
the problems (these will be specially indicated). Function
will publish some of the solutions received. Please tell us
your name, your form, and the name of your school.

CONTENTS

Louis P6sa, adapted from Mathematical Gems

Odds Spot, by G.A. Watterson

The Four Colour Problem, by John Stillwell

Mathematics as it was, by Peter A. Watterson

A Perpetual Calendar, by Liz Sonenberg

Fibonacci Sequences, by Christopher Stuart

Problems

3

7

9

17

19

24·

23, 29



2

BALBUS'S ESSAY

"When a solid is immersed in a liquid, it is well known
that it displaces a portion of the liquid equal to itself in
bulk, and that the level of the liquid rises just ·so ~uch as
it would rise if a quantity of liquid had been added to it,
equal in bulk to the solid.

"Suppose a solid held above the surface of a liquid and
partially immersed: a portion of the liquid is displaced, and
the level of the liquid rises. But, by this rise of level, a
little bit more of the solid is of course immersed, and so there
is a new displacement of a second portion of the liquid, and a
consequent rise of level. Again, this second rise of level
causes a yet further immersion, and by consequence another
displacement of liquid and anothe~ rise. It is self-evident
that this process must continue till the entire solid is
immersed, and that· the liquid will then begin to immerse what
ever holds the solid, which, being connected with it, must for
t~e time be considered a part of it .. If ~ou hold a stick, six
feet long, with its ends in a tumbler of water, and wait long
enough, you must eventually be immersed."

Lewis Carroll, A TangZed TaZe



LOUIS
~

POSA

adapted from Chapter 2 of ~Mathematica'l Gems Q *
by Ross Honsberger

This is a story about the life and work of a remarkable
young Hungarian named Louis Pasa (pronounced po-sha) who was
born in the late 1940's. When quite young·he attracted the
attention of the eminent Hungarian mathematician Paul Erdos
(pronounced air-dosh).· Erdos is now 63 years old and is an
internationally known mathematician. His three great interests
are combinatorics, number theory and geometry and he has written
more than 500 mathematical papers. For decades Erdos has
travelled the world's universities, seldom visiting anywhere
for more than a few months. During 1970 he yisited the
University of Waterloo in Ontario, Canada and spoke about a
number of the child prodigies he has known. Except for a few
minor changes the following is his story of pasa.

In the course of the story Erdos mentions some mathematical
terms with which you may not be familiar. At the end of this
article there are some explanatory notes to help you follow what
Erdos is talking about.

Erdos 4 Story
"I will talk about Pasa who is now 22 years old and the

author of ab6ut 8 papers. I met him before he was 12 years
old. When I returned from the United States in the sumffierof
1959 I was told about a little boy whose mother was a math
ematician and who knew quite a bit about high school mathematics.
I was very interested and the next day I had lunch with him.
While Pasa was eating his soup I asked him the following question:
Prove that if you have n + 1 positive integers less than or
equal to 2n, some pair of them are relatively prime (see Note 1).
It is quite easy to see that the claim is not true of just n
such numbers because no two of the n even numbers up to 2n are
relatively prime. Actually I discovered this simple result
some years ago but it took me about ten minutes to find the
really simple proof. Pasa sat there eating his ~oup, and then
after a half a minute or so he said "If you have n + I positive
integers less than or equal to 2n, some two of them will have
to be consecutive tllnd thus relatively prime" (Note 2). Needless
to say, I was very much impressed, and I venture to class this
on the same level as Gauss' summation of. the positive integers
up to 100 when he was just 7 years old" (Note 3).

At this point Erdos discussed a few problems in graph theory
which he gave to pasa. In order to avoid any misunderstandings,
let us interject here a brief introduction to this material.

*'Mathematical Gems' was published by the Mathematical Association of
America in 1976. We are most grateful to Professor Honsberger for
permission to use his arti·cle as reproduced here. If you enjoy this
article, you will enjoy.reading the book.
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By a graph w'e do nbt mean anything" connected wi th axes and
coordinates. A graph consists of a collection of vertices
(points) and a set· of edges, each joining a pair of vertices.
How the graph is pictured on paper is not essential. The edges
may be drawn as straight lines or curves, and it is immaterial
whether they are drawn so as to intersect or not. Points of
intersection obtained by edges which cross do not count as
vertices. Only the given vertices are the vertices of the graph.
Also a graph need not contain every possible edge which could .
be drawn, that is, there are in gener~l many different graphs
with the same set of vertices.

For example, here are three different graphs each with
four vertices.

I II

•

III

•

•

Graphs I and II each have three edges and graph III has no
edges (Note 4).

A loop is an edge both of whose endpoints are the same
vertex. When two or more edges join" the same pair of vertices
we call these multiple edges. In general a graph may contain
loops and multiple edges, but throughout this. article we use
the word graph to mean a graph without loops and without
multiple edges.

We continue now with the story.

"From that time onward I 'worked s.ystematically with P6sa.
I wrote to him of problems many times during my travels. While
still 11 he proved the following theorem which I proposed to
him: A graph ·with 2n vertices and n 2 + 1 edges must contain'
a triangZe (Note 5). Actually this is a special case of a well
known theorem of Turin, which he worked out in 1940 in a
Hungarian tabor camp. I also gave him the following problem:
Consider an infinite series whose nth term is the fraction with
numerator 1 and denominator the lowest common·multiple of the
integers 1, 2, ... , n; prove that the sum is an irrational
number. This is not very difficul t, 'but it is certainly sur
prising that a 12 year old child could do it.

"When he was just 13, I explained to him Ramsey's theorem
for the case k = 2: Suppose you have a graph wi.th an infinite
number of vertices; then there is either an infinite set of
vertices every two of which are joined by an edge,op there is
an infinite set of vertices no two of which are joined by an
edge (Note 6). It took about 15 minutes for Posa to understand
it. Then he went home, thought about it all evening, and before
going to sleep had found a proof.
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"By the time Pasa was about 14 years old· you could talk
to him as a grown-up mathematician. It is interesting to
note that he had some difficulty with calculus. He never
liked geometry, and he never wanted to bother with anything
that did not really excite him. At anything that did interest
him, however, he was extremely good. Our first joint paper
was written when he was l4!. Pasa wrote several significant
papers by himself, some of_which still have a great deal of
effect. His best known paper, on Hamiltonian circuits, for
which he received international acclaim, he wrote when he
was only 15! (Note 7).

"The first theorem that he discovered and proved by
himself which was new mathematics was the following: A graph
with n vertice$ (n ~ 4) and 2n - 3 edges must contain a circuit
with a diagonal (Note 8). This result is the best possible,
because for every n, one can construct a graph with n vertices
and 2n - 4 edges which fails to have a circuit with a diagonal.

"A problem which I had previously solved is the following:
A graph with n vertices (n ~ 4) and 2n - 3 edges must contain
two circuits which have no vertices in common. I told P6sa of
the problem, and in a few days he had a very simple proof which
was miles ahead of the complicated one. I had come up with. A
most remarkable thing for a child of 14.

"I would like to make a few conjectures why there are so
many child prodigies in Hungary. First of all there has been
for at least 80 years a mathematical periodical for nigh school
students. Then there are many mathematical competitions. The
Eotvos-Kurshak competition goes back 75 years. After the first
world war a new competition was begun for students just
completing high school, and after the second war several new
ones were started.

"A few years ago a different kind of competition was
starte4. It is held on television. Bright high school students
compete in doing questions in a given period of time. The
questions are usually very ingenious and the solutions are
judged by a panel of leading mathematicians such as Alexits,
Turan, and Hajos. It seems many people watch these competitions
with great interest even though they do not understand the
problems.

"In Hungary a few years ago a special high school, the
Michael Fazekas High School, was opened in Budapest for children
who are gifted in mathematics. The school started just when
Pasa was due to go to high school. He liked the school very
much, so much so, .in fact, that he refused to leave it for
entrance into univ~rsity two years early."

This is the end of the story told by Erdos. In later
issues of Function we will publish solutions to some of the
problems mentioned here. You may like to find solutions for
yourself. If you have a solution to any of the problems you
are invited to submit them to the editors. The address is on
the inside front cover of this issue.



Notes
(1) Two integers are called relatively prime if their

highest common divisor is 1. For example 4 and 9 are relatively
prime. However 4 and 10 are not relatively prime because both
4 and 10 are divisible by 2. Note that the property of being
relatively prime is a property of two numbers considered to-·
gether. We can say that 4 and 9 are relatively prime but we
cannot say separately that 4 is relatively prime or that 9 is
relatively prime.

(2) P6sa's explanation uses the fact that for any positive
integer n no number greater than 1 divides both nand n + 1.
We can show that this is true as follows. Whenever a number k
divides both the numbers a and b then k also divides (a -·b).
So any number which divides both nand n + 1 will also divide
(n + 1) - n = 1. But the only divisor of 1 is 1 itself.

(3) Carl Friedrich Gauss was born in Gottingen, Germany,
in 1777. He was a scientist of great note whose main interests
were in the fields of mathematics, astronomy, and physics.
There are many stories about Gauss's ability even in early
childhood. One such episode occurred in his arithmetic class
at school when he was 7 years old. The class was given the
exercise of w~iting down all the numbers from 1 to 100 and
adding them. Gauss found this total almost immediately.
Instead of adding up a column of 100 numbers, as did the rest
of the class, Gauss reached his answer by noticing that
100 + 1 = 101, 99 + 2 = 101, 98 + 3 = 101, etc., and that there
are 50 such 'pairs' thus the total is 50 x 101, i.e. 5050.

(4) There are eleven different graphs with four vertices.
Try.to draw them all.

(5) A triangle in a graph is a set of three vertices in
the graph such that each pair of the vertices. is joined by an
edge.

(6) This theorem is due to F.P. Ramsay, an English
mathematician who made important contributions to mathematics,
mathematical logic, mathematical economics and philosophy.
His death at age 26 in 1930 was a tragic loss. His father was
a well-known applied mathematician. The Archbishop of Canterbury
from 1961 to 1974 was his brother.

(7) A circuit in a graph is a path along edges of the graph
which returns to its .starting point. A Hamiltonian circuit is
one which passes through every vertex of the graph exactly once.
In the following graph which has 6 vertices A, B, C, D, E, F
and 10 edges we see that (AB, BP, FA) and (FB, BC, CD, DE, EF)
are circuits, but {AD, DE, EC> is not (because it does not
return to its starting vertex A). The circuit (AB, Be, CD, DE,
EF, FA) is a Hamiltonian circuit in the graph. Can you find
any other Hamiltonian circuits in this graph? (Opposite page.)
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(8) If S is a circuit in a graph and XY is an edge in the
graph whose endpoints are on the circuit S call the edge XY a
diagonaZ of 5 if XY is not itself an edge used in S. For
example, in the graph drawn above the edge FC is a diagonal
of the circuit (FB, BC, CD, DE, EF).

00000000000000000000000000

ODOS SPOT

by G. A. Watterson, Monash University

On 18 October, 1976, the eight dogs in the last greyhound
race at Olympic Park finished in the same order as they
appeared in the race book. As there are
8! = 8 x 7 x 6 x 5 x 4 x 3 x 2 x 1 = 40 320 different orders
in which the dogs could have finished, a most unlikely event
occurred. But then, a large number of races have been run at
Olympic Park, Melbourne!

Examples of unlikely coincidences have been argued in the
law courts. In one case*, the Australian Taxation Commissioner
was trying to assess a bookmaker for taxation. The bookmaker
possessed some Treasury Bonds, namely three bonds each for
£1000, one bond for £500 and five bonds of £100. The case

depended on how long the bookmaker h~d possessed" the bonds.
There was evidence that he had had £4000 in bonds at an earlier
date, split up according to denominations in exactly the same
way as the above. This was considered unlikely unless the
bonds were identical. Moreover, there were eleven series of
bonds available; we shall call them A, B, C, D, E, F, G, H, I,
J, K. It was shown that on both the earlier and the later
occasions, the bonds in the bookmaker's possession were

1 x £1000 series A

2 x £1000 series B

1 x £500 series A

5 x £100 series A.

*The ·author thanks Sir Richard Eggleston for information concerning this
taxation case.
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Since each bond could have come from any of the eleven series,
a barrister argued that, even assuming that the 5 x £100
bonds would very likely be of the same series as each other,
there were still 11 x 11 x 11 x 11 x 11 = 161 051 different
orders in which the series could have been allocated to the
bonds. Only three of these orders (depending Dn whether the
A series was allocated to the first, second, or third"of the
£1000 bonds) were consistent with the actual series arrange
ment on both occas;ntls. 11(\ though t. LIl:' t this was pretty
conclusive evidenc(' that tlH' bookmak(~l' had kept the same packet
of £ 4000 worth 0 f hOllds throughout. I cannot vouch that the
series were equally Ijkf~]Y, though.

Another example of the use of probability in the law was
in a case in Sweden. A policeman noticed the position of the
valves of the front and rear tyres on one side of a parked car.
There was a maximum period allowed" for parking in that spot.
Well after that period had expired', the policeman returned and
found the car still there, with its tyre valves in the same
positions as before. The car driver claimed he had driven
away and returned later and that the tyre valves just happened
to return to the same positions. The judge accepted his
argument. If there were twelve different positions for a tyre
valve to take (like 12 hours on a clock face) then the chance
of both valves returning to their previous positions was
claimed to be (1/12)2 = 1/144. Although this is not very
large, the judge agreed that the case was not proved beyond
reasonable d~~bt. "

Incidentally, would it be correct that the front and back
tyres of a car move independently, as assumed in the above
calculation? Observe what happens next time you go for a car
ride.

co 00 co co 0000 00 co 00 co 00 co co

CRICKET TEAMS

On February 11, 1977, the Melbourne 'Age' announced the
winners of its Centenary Test cricket competition. The Age
stated:

"Readers were asked to pick from a list of 10 Tes~ players,
Mr Johnson's choice as the best post-war t~dm in batting order,
12th man,captain and vice-captain.

The probability of only one reader filling the requirements
was 455,730) 000, OOO,OOO} 000 to one."

[Twenty seven people chose the correct 12 players, of whom
one person chose the correct order. The number of entries was
not announced. J

What, if anything, does The Age statement mean, and is it
(;orrect?



THE FOUR COLOUR PROBLEM

by John Stillwell, Monash University

"A student of mine asked me today to give him a reason
for a fact which I did not know was a fact, and do not yet.
He says, that if a figure is anyhow divided, and the compart
ments differently coloured, so that figures with any portion
of common boundary line are differently coloured - four colours
may be wanted, but no more."

Letter from Augustus de Morgan to Sir William Rowan Hamilton

October 23, 1852.

Introduction

Few mathematical problems are as easy fo~ the layman to
understand as the four colour problem,in fact the problem is
so down-to~earth it does not even sound like mathematics to
many. Nevertheless, since it was first proposed in 1852 most
great mathematicians have ta~kled it without success, and a large
number of "solutions" have been proposed only to have errors
exposed shortly afterwards. Fa'lse solutions eventually became so
numerous that experts became extremely wary of claims that the
problem had been solved. The first reaction was to disbelieve
any such claim~ And when the solution of Raken and Appel was
announced in 1976 there was a strange sense of anticlimax. because
the mathematical cOIDmunity still couldn't quite believe it.

Before going on to outline their solution, a few more words
about the history of the problem may be of interest. Although
it is easy to imagine (as some popularizers of mathematics have
done) that map makers had long bee,n aware that four colours
seem to suffice, 'there is actually no evidence that they were.
Probably the fact was quite obscured by other requirements of
map-making, such as reserving blue for lakes and seas, and
colouring colonies the same as the mother country, which can
force more than four colours to be used. At any rate, extensive
research has failed to find any statement of the problem earlier
than the letter of Augustus de Morgan quoted above (the student
incidentally was Francis Guthrie, who later became professor of
mathematics at Cape Town).

The problem first appeared in print in 1878 when Arthur Cayley
asked, in the Proceedings of the London Mathematical Society,
whether it had been solved. The following year A.B. Kempe
published a "proof" that four colours suffice, in the American
Journal of Mathematics. This solution evidently did not set the
world on tire, for it was not until 1890 that P.J. Heawood dis
covered a simple mistake in it. However, Heawoodwas able to
save enough of Kempe's argument to prove that five colours

9
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always suffice.

The simple map'

shows that four colours are sometimes necessary, so Heawood's
theorem left an apparently "small" gap between necessary and
sufficient. Despite this, the story of the next 80 years is
one of painfully slow progress - by the end of the 1960's
little was known except that four colours suffice for maps ()f

not more than 40 regions - punctuated by the occasional false
"solution". One of the most amusing of these was the del ib(~ratp

hoax by Martin Gardner in the April (Fool's Day) issue of
Scientific American in 1976. Gardner claimed that the following
map cannot be coloured with four colours.

I-- ~

- I--

- f-- ~ ~

- - - 10-

- ~ - 10- - ~

- 10- I-- I-- -- ~

I-- f-- - f--o I---- I-- I-- - -....---
I-- I-- f-- I--

H ~
f-- - - I--

I-- i-- f-- - I-- I-- - -
- l- I-- i-- I-- I"'- - - I------

I-- i-- I-- - ~ I--- ~ - -
-- --- ~ - I-- I--

I- - ~ - - ~

-- !"- ~ ~

I-- - - -
~ ~

I- -

Can you prove him wrop.g?,

Outline of the Haken - Appel solution

It might be' best to begin by disposing of the false
"solution" which everyone thinks of when they first see
this problem. When we construct
the map (alongside) which needs@42
4 colours it is easy to see that
there is nowhere to put a 5th
region so that it has common
boundaries with each of the regions 1, 2, 3, 4. In fact it
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is a theorem which goes back to Mobius in 1840 that 5 regions
cannot be arr.anged so tha t each has common boundaries wi th
all the others. Unfortunately, this is quite beside the
point, because a map may need 4 colours even though no 4 of
its regions touch each other, e.g.

Now let us look at a more serious way to attack the problem.
There are of course infinitely many maps, so no amount of colour
ing individual maps will solve the problem. We could somehow
classify maps into finitely many types, and try to prove each
tUlle is 4-colourable, but there is still the difficul ty that
some types will have infinitely many members. The way round
this is to define each type by the presence of a particular
part M, and make the argument depend on the properties of M
alone. To classify all maps we therefore need a finite set of
~'s such that every map contains one of them. Such a s~t of
:... ' sis called an unavoidab le se t.

Then the property of M that we need is 4-eolour reducibility,
meaning that the 4-colourability of any map 'containing M can be
made to depend on 4-colourability of a smaller map obtained by
shrinking l~" to a map j\f' wi th fewer regions. Another way to
express this property is by saying that M cannot be a part of
the (hypothetical) smallest map which needs 5 colours (since
shrinking :.: to M' would then give a smaller map which required
5 colours*). If every type of map is 4-colour reducible, then
there cannot be a map which needs 5 colours. .

A finite solution of the four colour problem is now
conceivable - we have only to find a suitable unavoidable set
of ~'s, then prove them all 4-colour reducible.

This argument is actually a fai-r summary of what Kempe
was trying to do in 1879. What Kempe did not know was that
the unavoidable set side of the argument does not mesh with
the reducibility side until both have been elaborated to an
incredible length, requiring computations that were out of the
question before the age of computers.

It is against a mathematician's instincts to embark on
long calculations without a clear picture of where they will
lead, because the desire is always ,for a beautiful solution,
particularly in the case of a famous problem like the four
colour problem. So perhaps the decisive step towards the
present solution occurred in 1969 when Heesch dared to produce
ugly mathematics by enumerating thousands and thousands of

*For let K be a map with the smallest possible number of regions among
those requiring 5 colours and suppose that K contains M. Then shrinking
M to ~' replaces K by a map K' containing fewer regions than K. So K'
can be coloured by 4 colours. Hence" since M is by assumption 4-colour
reducible, K can also be coloured by 4 colours, a contradiction.
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reducible map types in the hope that eventually all maps would
be included.

Heesch's computer tests for reducibility were refined by
Appe~ and Haken at the University of Illinois, and complemented
by an equally ugly theory of" unavoidable sets. They divided
all maps into 1936 types which they had reason to believe were
reducible, then used their tests (and 1200 hours of computer
time) to verify that this was in fact the case. The maps M
used by Haken and Appel to define their types have as many as
14 rings of regions and they claim that this cannot be improved
upon, so a proof of the four colour theorem by this method is
bound to be complex.

I shall say some mo~e about ultra-complex proofs in the
concluding remarks below; in the meantime, readers who want
to get their teeth deeper into the mathematics are invited to
study the next two sections, where the basic results on
unavoidable sets and reducibility are proved.

Unavoidable Sets
At th~s stage we should make it clear that ~~ are talking

about maps on the plane with finitely many regions, and every
part of the plane is counted as belonging to some region.
E.g. the sea surrounding the figure of mainland Australia below
counts as the 7th region.

Also, we omit any region which is completely surrounded by
anoth~r(as the A.C.T. is surrounded by New South Wales) since
there is no problem colouring such regions if they are put
back later on. Our maps will then satisfy Euler's formula:

V-E+F=2

where F
E
V

number of faces ("regions")
number of edge"s ("borders" between regions)
number of vertices (points where two or more
borders me"et).

In the example the vertices are mark.ed by small circles
and the" edges are the pieces of line (not necessarily straight)
between these circles. It can then be checked that
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v - E + F = 10 - 15 + 7 = 2

so the formula is true for this example.

A detailed proof of Euler's formula would take up too
much space, but it is easy to be convinced it is true in
general by cutting all faces into triangles by new edges
(where a "triangle" now means any region with 3 edges, such
as Victoria) and then removing triangles successively from
the outer boundary. If this is done carefully, V - E + F
will be unchanged at each step and one can end with a triangle

6
for which V - E + F = 3 - 3 + 2= 2.

Euler's formula implies that all maps are subject to a
surprising restriction:

Kempe's Theorem: In any map at l~ast one region has not
more than 5 neighbours.

Proof: suppose.~here are n regions (so F = n) and A is the
average number of edges which each region has.

IThen E = 2nA (because the average region has A edges,

but each is shared by 2 regions) ,

and V < !nA (because the average region has A vertices,= 3

but each is shared by 3 or more regions) .

(Here we are using the assumption that no region completely
surrounds another. This means each region has'vertices, and
their number equals the number of edges of the region.)

So
1 I . A

V - E + F ~ snA - 2nA + n = n(l - 6)

But V - E + F must be greater than 0 (namely, 2) which is only
possible if A, the average, is less than 6. If the average is
less than 6 then at least one region must have not more than
5 edges and so not more than five neighbours.

Q.E.D.

This theorem gives a particularly simple example of an
unavoidable set, for it says every map must contain one of
the following configurations:
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which we shall call M2 , M3 , M4 , MS·

M2 , M3 , M4 are 4-colour reducible (this can be proved

using the ideas in the next section), and Kempe thought that
M5 was also. Unfortunately, this is where he was wrong, and

the damage can only be repaired by a far larger unavoidable
set (1936 configura~ions in the Baken and Appel proof, which
they believe could not be lessened'by more than about 2S%).

Reducibility
Reducibility can be defined wfth respect to any number

of colours, and we shall warm up for the main exercise by using
6-coZour reducibiZity to prove that 6 colours suffice ~or any
map.

Suppose there are maps which need 7 colo~rs, and let S be
one which has the smallest possible number of regions. S must
contain one of M2 , ... , M

5
and we shall assume for the sake of

argument that S contains M5 :

s
If we shrink the centre
region C of MS down to a

point C' the result is a
map S' with fewer regions,
so by hypothesis S' can be
coloured with no more than
6 colours.

But at most ,5 colours
are used in the regions
surrounding the centre
point C', so tbe colouring
of S' can be transferred
back to S by using the 6th
colour for C.

5'

Transfer of the 6-colouring from S' to S says that M5 is

6-coZour reducibZe, and it means that MS cannot be part of the

hypothetical smallest map S which requires 7 colours. By a
similar argument, neither can l~12' M3 , M4 ; so S does not existo

Using a clever idea of Kempe, we can improve this result
to 5-colour reducibility, and hence prove Heawood's theorem
that 5 colours suffice for every map.

Heawood's Theorem: No map requires 6 colours.
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the colouring of

5'This time it is not
enough simply to
transfer the colour-
ing of S' back to S,
since all the available
colours may have been
used in the 5 regions
surrounding C'. We shall have to revise
S' until only 4 colours surround C'.

Proof: If there are maps whicp need 6 colours, let S be one
which has the smallest possible number of regions, and look

at the case where S contains
S M5 · We shrink C down to a

point C', so that the new map
Sf has fewer regions, and
hence can be coloured with no
more than 5 colours.

Suppose that the colours initially surrounding C', are
red, blue, yellow, green, orange (in the regions marked R, B,
Y, G, 0 in the diagram). Starting at R we construct what is
called the red-green Kempe chain containing R, by combining R
with all its green neighbours, then combining these with all
their red neighbours, and so on, until no more red or green
neighbours are found. A Kempe chain can be constructed for
any pair of colours X, Y, with any starting point, and since
any regions bordering the chain are not coloured X or Y, X
and Y can be interchanged throughout the chain without spoil
ing the colouring of the map.

5,' If the red-green Kempe chain
containing R does not contain G
then a red-green interchange
will produce a validly coloured
S' (shown at left) where only 4
colours now surround C'. This
revised colouring can now be

transferred back to S, using red for C, and we have a 5-colouring
of S, contrary to assumption.

If the red-green Kempe chain containing R does contain G
we must have a situation like this:

5'

or elS8
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In either case the red-green chain separates 0 from Y, so
th~ yellow-orange Kempe chain 'containing Y will not contain
o and we can similarly use yellow-orange interchange to
obtain a 5-colouring of S.

We have thus proved that M5 is 5-colour reducible, and

it is obvious, tha t M2 ,. M3 ,M
4

are also, so the hypothetical

map S which required 6 colours does not exist.

Heawood's theorem is the end of the line for the un
avoid~ble set {M2 , M

3
, M

4
, MS }.' It is of no use in proving

4.colours suffice because (short of proving the 4 colour
theorem itself) we aannot prove that MS is 4-aoZour reduaibZeo

M2 and M3 obviously are, and we can prove that M4 is 4-colour

red~cible by the Kempe chain method, but not M
S

' so we are

forced to consider larger unavoidable sets.

This is where the going gets rough and enormous
calculations have to be made. Haken and Appel had to
experiment with 10 000 different configurations before
they found their set of 1936 which is both unavoidable
and reducible, so a brief description of their work is
impossible. Nevertheless, the basic tools remain Euler's
formula for finding unavoidable sets and Kempe chains for
proving reducibility.

Concluding Remarks
In 1971 there was an interesting "proof" of the four

colour theorem based on a computer check of reducibility
by Heesch's test. Shimamoto, assuming that the theorem
was false, showed that there must be a non-4-colourable
map containing a configuration H which had already passed
Heesch's test. This coritradiction showed that the
th,eorem was in fact true, Q.E.D. Shimamoto's argument'
was checked, and circulated in a detailed form by Haken,
only to have its support shot away when it was found that
the computation had been wrong - it did not pass the test!

The moral is that computer p.rograms are just as
subject to error as mathematical arguments, and we shall
therefore have to wait until Haken and Appel's 1976
computations have been independently checked before we
can be sure that the four colour theorem is really proved.
This is a barbarous way to do mathematics, and most
mathematicians will continue to hope for a solution
which uses powerful ideas rather than massive amounts
of brute computation.
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On the other hand, there may be no other way. The
four colour theorem may be a new breed of animal - a
question whose answer can be known but not understood.
To give another example of this type of qu~stion, suppose
one looks at a table of prime numbers and picks one at
random, say 9 925 387. Then the question: "Is 9 925 387
aprime?" has a known answer, yes, but we do not know
why unless we actually divide 9 '925 387 by hundreds bf
different numbers, which can hardly be called "understand
ing". It is one thing to concoct questions of this type
using random processes, but something else to find a
natural question whose answer is known but not understood.
The four colour problem will not really be settled until
we know whether or not it has a more understandable
answer.
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MATHEMATICS, AS IT WAS

by Peter A. Watterson, 6th form, Haileybury College
There are many mathematical textbooks on the market

today, but one less commonly found is "A Treatise on Practical
Mensuration" by A. Nesbit. If it is of little relevance to
today's students, it is certainly of great interest, for it
was written in 1841. (Note: Darwin's revolutionary book,
"Origin of Species" was not published until 1859.) Here are the
opening lines of the preface.

"Various have been the conjectures concerning the origin
of Geometry or Mensuration; but as it is a science of general
utility, there can, I think, be little doubt that its existence
is nearly coeval with the Creation of Man. Indeed I can see
no reasonable objection why we may not attribute its invention
to our first parent Adam; especially as we are infornled in
Holy Wr~t, that his son Cain built a city; to do which, it is
evident, would require some knowledge of a measuring unit which
is the first principle of Mensuration. By the same infallible
testimony, we find that the Arts and Sciences were cultivated
to a considerable extent long before the Flood."

I will use some of the Preface notes to give you an idea
of the book's contenti. After geometrical definitions and
theorems, the mensuration of superficies, and land-surveying,
"Part the Fourth" includes "Rules and Directions for measuring
and valuing standing Timber; many of which were never before
published. I have given a description of Timber Trees, and
pointed out the purposes for which their wood is best adapted;
for it is impossible to become a valuer of timber without be
ing made acquainted with the properties of trees." Mathematics
was certainly "Applied" in those days.

"Part the Fifth treats of the Method of measuring the
-Works of Artificers viz. Bricklayers, Masons, Carpenters and
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Joiners, Slaters and Tilers, Plasterers ... and Pavers. Part
the Sixth treats of the Mensuration of Haystacks, Drains,
Canals, Marlpits ... Clay-heaps, and irregular figures, by
means of equidistant, parallel sections, founded upon the method
of equidistant ordinates." I will return to this method later.

The antiquity o~ the book itself, the faded brown pages,
the old language and the type it's written in, are a source of
pleasure, but the exactness of the worked examples (7 or 8 sig
nificant figures), is equally fascinating. Here's a technique'
on arched roofs - "To find the solid content of the vacuity
formed by a groin arch, either circular or elliptical.

RULE. Multiply the area of· the base by the height and
the product -by "904."

I won't ask for an interpretation of this rule, but an
interesting exercise could be to derive "the invaluable Rule
finding the areas of curvilineal figures, by means of equi
distant ordinates." The author says it was first demonstrated
by "the illustrious Newton" and later given on p. 109 of
"Simpson's Dissertations" - hence, today, we attribute it to
him as Simpson's Rule.

In the curyilinear figure AMNB below, take the equidistant
ordinates AB, CD, EF etc., where AC = CE AB and MN are.
the first and last ordinates; EF, IJ are the odd ordinates; and
CD, GH, KL are the even ordinates.

B
D

F H J L N "RULE. To the sum of the first and last
ordinates, add four times the sum of all
the even ordinates, and twice the sum of
all the odd ordinates, not including the
first and last; multiply this sum by the
common distance of the ordinates
(e.g. AC), divide the product by. 3, and
the quotient will be the area (AMNB)."

"Note: By this Rule, the contents of
all solids~ whether regula~ or irregular,

ACE G I K M may be found, by using the areas of the
sections perpendicular to the axe, instead of the ordinates; and
it is evident that the greater the number of ordinates or sections
are used, the more accurately will the area or solidity [volume]
be determined."

This rule appears to have occupied an important place in
mathematics of the past (certainly in this treatise.) Hopefully
its derivation will appear in a later issue of Function.

From the above examples you will probably notice the
literary style of all "rules" etc. t In fact virtually no
algebraic symbolism appears in this practical manual, because
"algebraic form is seldom perfectly comprehended by learners".

co 00 co 00 co co coco 00 coco co 00
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A PERPETUAL CALENDAR

by Liz Sonenber~, Monash University

We use a calendar to tell us on which day of the week
a given date falls. In this article we shall describe a
formula which enables you to work this out for any-date.

Our calendar has its origin in Roman times. It is
based on a calendar introduced in 45 B.C. by Julius Caesar.
Before this the Romans used a calendar of 12 months based
on the lunar cycle. The first month of their year was
Martius and the eleventh and twelfth months were Januarius
and Februarius. Adjustments were mad~ to keep the lunar
months in line with the seasons. The process of inserting
additional days in a standard ,calendar is called intercalation.
The early Romans made intercalations at the end of the year,
i.e. after Februarius. It is for this historical reason that
now the intercalation in a leap year is made at the end of
February.

The new Roman calendar was a modified version of a
calendar developed in Egypt about 3000 B.C. Astronomical
evidence in Caesar's time suggested that the length of the
solar year (i.e. the time of one revolution of the earth around
the sun) was 365i days. To accommodate this odd quarter day
it was decided to adopt a four year cycle in which the first
three years had 365 days and the fourth had 366 days. The
new calendar also had 12 months and the previous names of the
months were retained but each year was counted to start in
Januarius. Each month had 30 or 31 days except Februarius,
which had 29 days (and 30 days every fourth year). A later
change took one day away from Februarius and added it to the
month Augustus, giving this month 31 days.

Since Roman times, more accurate astronomical observations
showed that by reckoning the solar year as 365i days, its
length was overestimated by about 11 minutes 14 seconds; an
error amounting to approximately one day in every 128 years.
In 1582 Pope Gregory III ordered that henceforth of the years
which are a multiple of 100, not all should be leap years but
only those which area multiple of 400 should be retained as
leap years, i.e. the year 1600 was to be a leap year but 1700,
1800, and 1900 were not.

This Gregorian calendar was adopted forthwith by the
principal states of the Holy Roman Empire but was hot adopted
in Protestant Great Britain or her American colonies until
1752. This calendar is still in error by about one day in
3323 years. It has been proposed to correct this by omitting
the Gregorian intercalation in the year 4000 and all its
multiples! .

There are many interesting stories surrounding the
development of the calendar and you should be able to find
books in your local library describing some of the historyo
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The week - day problem

We begin by looking at dates in the twentieth century.
Since January 1, 1900 was a Monday, "January 0 1900" would
be a Sunday and we shall use this as our 'standard' date.
If we. are given a date after our standard date and we know
how many days (x days, say) have passed from "January 0 1900"
to the given date then we can 'find the given day quite easily.
For divide x by 7 and look at the remainder. If the remainder
is 0 then a number. of complete weeks has passed since the
standard day, which was a Sunday, so the given day must also
be a Sunday; if the remainder is 1 then the given day must be
a Monday, and so on.

But how are we to work out the number x in the· first place?
Actually we are not really interested in the number x itself
but rather the remainder after dividing x by 7 and so we'll
show how to work out what this remainder is without working
out x ..

We can get the general idea by looking at dates in 1900.
What day was April 12, 1900? From our standard date there
are 31 + 28 + 31 = 90 days before April 1st 1900, so April 12
is day 90 + 12. Now 90 = (12 x 7) + 6 and 12 = (1 x 7) + 5
so' (90 + 12) = (13 x 7) + 11 = (14 x 7) + 4, i.e. April 12,
1900 is 4 days after a Sunday, i.e. a Thursday.

Notice something about this last calculation. 'We didn't
add 90 and 12. All we did was divide each by 7, find the
remainders, and add the remainders. This observation will be
the key to our calculations.

The numbers we deal with are non-negative int'egers
0, 1, 2, ... and we call the remainder after dividing the
number x by 7· the residue (modulo 7) of x. So 6 is the residue
(modulo 7) of 90, 5 is the residue (modulo 7) of 12, and 4 is
the residue (modulo 7) of 90 + 12. It is a nuisance to write
(modulo 7) all the time, so we'll leave it out and just refer
to the residue of x. We write x for the residue of x, e.g.
90 6, 12 = 5, and 90 + 12 = 4.

Now 6 + 5 = 11 = (1 x 7) + 4, i.e.~ = 4. So we have
90 + 12 = 6 + 5 and~ = 4 and 4 = 90 + 12, i.e. the residue
of 90 + 12 equals the residue of 90 + 12. Is there something
special about the numbers 90 and 12 or is this just part of a
general rule?

We say two numbers are congruent if they have the same
r~sidue.. If a,., and b are congruent we wri te a == b. So a == b
if and only if a = D We can prove the following rule:

Rule: If a :: band e == d then a + e == b + d.

This rule explains the properties of the numbers 90 and 12 that
we pointed out in the last paragraph, so let us prove the rule.
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Suppose a = b and a = d. Then a and b have the same
residue, let us call it r, i.e. a = 7m

1
,"+ rand b = 7m

2
+ r

for some numbers ml and m2 . Similarly there is a number 8

such that c = a = 8, i.e. a tnl + 8 and d = 7n2 + s for

Then a + a = (7m
l

+ r) + (7n
l

+ 8)

And b + d = (7m2 + r) + (7n2 + s)

So~=~. Notice that r + 8

may be greater than 6 so we cannot say a +c = r + 8.

Similarly b,+ d =~. So we have a + c = b + d. This
says a + a = b + d so we have proved the rule.

We have already calculated that the number of days up to
and including March 31, 1900, is 90 and 90 = 6. We can use
our rule to work out the day of any date in April 1900. For
example, April 23, 1900, is 23 days after March 31, so there
are 90 + 23 days from the standard date to April 23. But
using the rule, 90 + 23 = ~ + 23 = 29 = 1. So April 23, 1900
was a Monday.

Similarly, if for each month we know the residue of·the
number of days up to the first of that month, then we can
calculate the day for dates in that month. Here is a table
of these residues.

January ... 0 April .. 6 July ...... 6 October.'.. 0

February .. 3 May .... 1 August .... 2 November .. 3

March ..... 3' June ... 4 September. 5 December .. 5

For example let us look at November 15, 1900. From the
table the residue of the number of days before November 1 is
3. Now 3 + 15 = 18 and 18 = 4 so November 15, 1900, was a
Thursday.

We can also use this table to extend our calculations
to cover all dates in the twentieth century. Notice that
365 = (52 x 7) + 1 so the residue of 365 is 1, and the residue
of 366 is 2. This means that by knowing that November 15, 1901
was a Friday, November 15, 1902, was a Saturday and November 15,
1903, was a Sunday. ·But as 1904 was a leap year, November 15,
1904, was·a Tuesday (not a Monday). Can we write down a
formula to take account of all this? We need to take into
account the number of years that have passed since 1900 (this
is just the last two digits of the year) and we rieed to know
the number of leap years that have passed.

For any real number c we write [cJ for the greatest integer
less than or equal to c. For example,

[3t] 3, [~] = 3, and [4] = 4. Using this we can count the

number of leap years since 1900. For example 1922 is 22 years
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22
after 1900 and [if] = [5·5] = 5.

occurred between 1900 and 1922.

This says that 5 leap years

-24
Similarly [41 = [6] = 6, so

1924 is the sixth leap year after 1900.

Now we can give a formula which, with the aid of the table
of residues, enables us to calculate the day of any date in the
20th century. The formula is

x ::

where x is the day number (Sunday = 0, etc.), M is the residue
for the month (from the table), D is the day of the month, Z
is the last two digits of the 'year, and L = ° except when the
given date is in January or February of a leap' year and then
L = 1. .

Since x is the only unknown it can readily be calculated
by working out the residue of the right-hand side of the
formula. The term L is in the formula because in a leap year
it is only days which occur after February 29 that are advanced
because of the extra day in the year. Da~es before ~ebruary 29
should be treated as though they were in an ordinary year, but

in our .calculation [i] of the number of leap years since 1900

we also count the year itself if it is a leap year. For
example only 5 leap years should be counted when considering

a date in January 1924, but [~4] = 6. The term L subtracts

this extra 1 where necessary.

Example: What day of the week was November 11, 1918?

L 0, M = 3, D II" Z 18, [il [4.5] 4,

M + D + Z + [~] L = 3 + 11 + 18 + 4 - 0 36 - 1,

so this was a Monday.

Example: What day of the week was February 8, 1976?

Z
L 1, M = 3, D = 8, Z = 76, [4] = [19] = 19.,

x - 3 + 8 + 76 +19 - 1 = 105 ~ 0,

so this was a Sunday.

To use the formula you need to have the table of residues
for each month (or to remember them). Other formulae have
been worked out which don't require such a table. Here is one
which was worked out in 1882. Notice that this formula works
not only for dates in the twentieth century but for all dates
in the Gregorian calendar.

x = D + [26i~+1)] + Z + [i] + [~] - 2J - 1
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where the given date is day D of month N of year J x 100 + Z
(i.e. D and Z are just as before). On applying this formula
the convention is made that January and February of any year
are to be regarded as the 13th and 14th months of the previous
year. (This is for the same reason as the term L was included
in the first formula.)

N. B. Work out the residues of the numbers [26(N + 1)] for
. 10

N = 3, ... , 14 and compare these with the given tables of
residues. You should then be able to see that for dates in
the twentieth century (i.e. when J = 19) the two formulae
are exactly the same.

Example: January 26, 1788.

D. 26, N = 13, J 17, Z = 87, so 26(N + 1) = 364 and

x - 26 + [36·4] + 87 + [21·75] + [4·25]

So January 26, 1788, was a Saturday.

~4 _. 1 = 139 ~ 6.

Using the formulae given above we can answer questions
of the form "O.n which day of the 'week does a given date occur?".
With a knowledge of some p~operties of residues and congruences
one can use the formulae to answer differ~nt sorts of questions,
for example:

tlln which years of this century does February have 5
Sundays?tl,. and

"In which years of this century does ~y birthday fall
on a Saturday?tl.

Unfortunately we do not have the space here to go into these
things. You might like to try to solve the following problems
yourself.

1. Show that if a ~ b and a 3 d then ac 3 bd.
(Hint: Look at the way we proved the RULE on page 4 of this
article.)

2. Find the residue of 6 40 . (Hint: Use question I.)

3. Show that if ab = aa then b = a, or a = O. (Hint: Recall
that we write x = y to mean that x and y have the same remainder
after dividing by 7. To solve this problem you will need to
use the fact that 7is a prime number.)

00000000000000000000000000

PROBLEM 1.1 (i.eo problem number 1 in Part 1 of Funation).~.:.

Show that the thirteenth day of the month is more likely
to fallon a Friday than on anyone other day of the week.
(Solutions invited.)



FIBONACCI SEQUENCES

by Christopher Stuart, 6th form, Ki.ngswood College

The Fibonacci Sequence is a sequence of numbers beginning
1, 1 .... in which each term is equal to the sum of the previous
two. The sequence is thus:'
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144~ 233, 377, 610 ~ ..

It has many fascinating properties, and a detailed study
opens many exciting avenues for research, some of which will
be explored here.

The first notable point is that the sequence is defined
if two terms are specified. For example, the first two terms
1, 1 determine the Fibonacci Sequence. If different first two
terms are used, and the same rule is used to generate subsequent
terms, a similar sequence is formed. For example, when the
first two are 3, 4, the following sequence results:

3, 4, 7, 11, 18, 29, 47, 76, 123 ...

The sequence beginning 1, 1, ... will be referred to as
the Fibonacci Sequence, and any others as fibonacci sequences.

Denote the nth term of a fibonacci sequence by t. Thus
n

t 1 = 1, t 2 = 1, t 3 = 2, t 4 = 3, etc., for the Fibonacci Sequence,

and for any fibonacci sequence t 3 = t l + t 2 , t 4 = t 2 + t 3 , and

in general the (n + l)th term is the of the th andso on; sum n

(n - l)th terms, i.e. t n+1 = t + t n-1' There is no reason why
n

a fibonacci sequence cannot be extended to the left by rewriting

this rule as, t n _
1

= t n +1 - tn. Allowing n now also to run

through the negative integers the extended Fibonacci Sequence
becomes:

-21, 13, -8, 5, -3, 2, -1, 1, 0, 1, 1, 2, 3, 5, 8, 13, 21

Note the symmetry, except for the.sign of the terms, of
the sequence about zero. There is basically only one other
symmetrical fibonacci sequence, the Lucas Sequence, which is:

-29, '18, -11, 7, -4, 3, -1, 2, 1, 3, 4, 7, 11, 18, 29

All other symmetrical fibonacci sequences are multiples of
one of these. A multiple of a fibonacci sequence is one which
has had every term multiplied by a constant. ~or example, the

24
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Lucas Sequence multiplied by four is:

72, -44, 28, -16, 12, -4; 8, 4, 12, 16, 28, 44, 72 ....

A multiple of a fibonacci sequence is another fibonacci
sequence. If two fibonacci sequences are added term by term,
then the sum is ~nother fibonacci sequence.

Using these results it is possible to form a general
fibonacci sequence in which the first two terms are x, y, as
follows:

-x, x 0,

y, 0, y,

x,

y,

x,

2y,

2x,

3y,

3x,

5y,

5x

8y,

8x,

13y,

13x

21y

... y-x, x, y, x+y, x+2y, 2x+3y, 3x+5y, 5x+8y, 8x+13y, l3x+2ly ...

This general sequence gives us a method of calculating any
term of any fibonacci sequence, given the Fibonacci Sequence.

Let In be the nth term of the Fibonacci Sequence, where 11 = 1

thand f 2 - 1; and let t n be the n term of ~a fibon~cci sequence

where t l = x and t 2 y. Looking at the general fibonacci

sequence above, it is seen that:

(1)

This formula enables us to calculate terms for a fibonacci
sequence.

For example, if t l = 3 and t 2 = 4, find t 7 . Here

t n xfn_2 ~ yfn-l' where x = 3 and Y 4. Hence t 7 = xi5 + Yfa
= 3f

5
+ 4f

6
= 3 x 5 + 4 x 8, since 15

t 7 = 47.

The sequence is:

5 and fa = 8, so that

3, 4, 7, 11, 18., 29, 47 ... ,

so the answer is correct.

An important find is made if each term in the Fibonacci
Sequence is divided by the previous one. A sequence is formed
which is as follows:

5 -3 2 -1 1 ° 1 1 2 3 5 8
-8' 5' -3' 2' -1' I' 0' I' I' 2" 3' 5'

This sequence approaches a limit as the following argument
shows. Put d~~ = f __ J..1 11M' Then it is not too difficul t to check
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n+1
that dn+l - dn = (-1) /fnfn+l . A standard argument, using

the theory of alternating series t , then shows that d tends
to a limit as n tends to. infinity. n

Let us now find this limit. By the symmetry of the
Fibonacci Sequence,

d
-n f_n+l/f-n

-l/dn _ l ·

Put lim dn
n-+-oo

i.e.

Also

d and lim d d Thus d -l/doo '-00 n 00 -00n-+oo
d. d = -1.

00 -00

d + d fn+l/fn fn-l/f nn -n

fn+l/fn (fn+l fn)/fn

fn/fn = 1.

(2)

Thus, taking the limit,

d + d
00 -00

1. ( 3)

From (2) an·d· (3) it follows that doo and d are the
-<lO

solutions of the quadratic equation

x 2 _ x-I = 0 (4)

Thus doo = (/5 + 1)/2 and d~ -(/5 - 1)/2. Note that these

values satisfy d-oo = -l/doo •

We shall denote (15 + 1)/2 by $. It is called the golden.
ratio.' Hence doo = $, d~ = -1/$.

In fact any fibonacci sequence displays this same limit
property. Let t l = x, t 2 = Y be the first two terms· of a

fibonacci sequence. Then, by equation (1), t n = xf
n

_2 + yfn-l' so

tn+1/tn (xfn _1 + Yfn )/(xfn _2 + yfn-I)

f n- I x + y(fnlfn_ l )

f n- 2 x + y(fn- l /fn- 2 )

Now lim (x + Y(fn/fn _I )) = lim (x + y(fn- I /fn - 2 )). Hence, if
n -+00 . n-+oo

this common limit is non-zero,

lim f n - l /fn - 2n-+oo
$ .

~see a later issue of Function for a discussion of alternating series.
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Similarly, lim tn+l/tn = -l/~
n+-co

except when lim (x + y(f_n/f_n_1 ») = 0.
n+o::>

I now deal with the exceptional cases.

When the terms of a fibonacci sequence are not necessarily
integers we meet in particular the special cases where the
arguments used to show that lim t +l/t = ~ and lim t +l/t = -l/~

n+CO n n n+-oo n n
break down. As noted, the argument broke down when

lim (x + y (fn/ f n-l) ) = °n-+oo
i.e. when x + y<1> = 0, (5)

and when lim (x + y(f_nlf_n_ l ) 0,
n-+oo

i.e. when x + y(-l/~) = 0. (6)

Let us consider the case of equation (6). In particular
(6) is satisfied when x = 1, Y = <1>. Since, by equation (4)

~2 _ <1> - 1 = 0, we have

1 + <1> <1>2,

<p + <p
2

<P(l + ~) = <1> <1>2 = <p
3 ,

~2 + <1>3 <1>2(1 + <1» = ~2 <1>2 = <p
4 ,

and so on. Hence the sequence is

1, ~, ~2, <1>3, ••• , ~n,

This fibonacci sequence is a geometric sequence as we11~

In fact the continuation to the left,

5<1> - 8, 5 - 3<P, 2<1> - 3, 2 - <1>J <p - 1, 1 ~ ..

may be shown to have the same constant ratio between terms~

For this sequence, therefore

lim t n +1 /t n = <1> = lim tn+l/tno
n+oo n+-oo

This sequence is called the perfect fibonacci sequence.

Similarly, considering the case of equation (5), we get
a fibonacci sequence which is also ~ geometric sequence, with
common rat'io now -1/<1>. This sequence is called the imper·fect
fibonacci sequence.

Any fibonacci sequence can be expressed as the sum of
multiples of these two sequences. I shall do this for the
general fibonacci sequence.
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k<P- 3 , k<P- 2 k<P- l , k, k<P, k<p 2 , k<p 3,

0(4)-3, -1 -2 -1 -1 -1 -1 2 0(4)3C«p) , C(4)") , c, C«p) , C«p) ,

... 2y - 3X , 2x - y, y - x, x, y, x + y, x + 2y

We find the required multiples k and e in terms of x and
y from the equations

k + C x

kef> C/ef> y.

Solving these gives

15. HenceBut, since <p

k '(x/<P + y)/(<P + 1/<1»

a = (x<P - y)/(ef> + 1/ef».

(/5 + 1)/2, it follows that ef> + 1/<1>

k (x/ef> + y)/15,

a = (xel> - y) / 15.

We now know a new method of calculating the nth term in a
fibonacci sequence:

t n

where x,

and k and c .are given above.

This new formula may be used to prove many. results. For
example, that lim tn+1/tn = <P.

n-+oo
Using ·these new formulae, it is possible to give a meaning

to t n f?r non-integral n; t l / 2 , for example, but the answer is

a complex number. In general, for n not an integer, several
values of t n will satisfy (7). There is room for more research
here.

One final aspect of <I> is its value as a number base, and
was found quite accidentally.

Our number system is to base.lO, computers use base 2, and
other integer bases may easily be used. However, what is the
most simple non-integer base?

To find this, consider the simple problem, 1 + 1 = 2, and
express 2 in numbers to a certain base involving ones and zeros.
In base 2, the answer is 10. Any solution with only one one in it
will be basically binary, and will not do. Any solution in
volving only two ones will just use the ones for counting. Thus
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the solution must have three ones. The most simple solutions
are Ill, 11·1 and 1·11.

Finding bases for Which these results hold yields the
following bases:

For 1 + 1

For 1 + 1

For 1 + 1

Ill, bases l/~ or -~.

11·1, no solution, if we exclude complex bases.

1·11, bases -1/$ or ~.

Since the simplest base is one which is greater :than one,
~ is the simplest non-integer base. The interesting aspect of
this number as a base is that integers may be expressed SOl

easily, in spite of the fact that the base is not rational.

Here are a few 'phinary' numbers:

2 1·11

3 11·01 = 100·01

5 1000·1001 = 1000·0111 110·1001

10 10011·0101.

Note that there are always infinitely many ways of
expressing a number.

Every new discovery opens new avenues for exploration,
but an end must be made, leaving further exploration into
the wonders of mathematics to those who have the same
fascination as I of the pattern that lies beh~nd all things.

00000000000000000000000000

LEONARDO FIBONACCI (1175-1250), though born in Pisa, was
brought up and educated at Bugia in Barbary where his father
was a merchant and customs controller. His book Liber Abaci
(1202)'is generally credited with having introduced the arabic
numeral symbols into Europe. By the end of ' the 13th century
they had largely superseded Roman numerals.

He had a great reputation as a mathematician and
Emperor Frederick II stopped at Pisa in 1225 to hold a math
ematical tournament to test Leonardo's skil~. Leonardo solved
all the questions set and his competitors solved none of them.

PROBLEM 1.2. (This was one of the problems solved by Leonardo.)

Find a number of which the square when increased or
decreased by 5 remains a square. (All numbers are to be taken
to be rational numbers.)
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PROBLEM 1.3.
Prove that the volume of a frustum of a cone is

obtained by either of the rules: (1) To the areas of the
two ends of the frustum add the square root of their

product; multiply the result by ~ of the perpendicular

height. (2) To the product of the
diameters of the two ends, add the sum of their squares;
multiply this sum by the height, and again by ·2618.

(From A. Nesbit, A Treatise on Practical Mensuration, 1841.)

PROBLEM 1840

The left hand digit of a natural number is removed and
replaced at the right hand end, and this results in increasing
the original number by fifty percent. Find such a natural
number. (Solutions invited.)

PROBLEM 1.5.
A newspaper report st~ted that the combined effect of Australia's

17·5% devaluation and New Zea1~ndfs 7% devaluation was to revalue
the New Zealand dollar by 12·7% in comparison with the Australian
dollar. Where does this figure come from.. Is it correct?

PROBLEM 1.6a
The blackboard has been filled with 100 statements, as

follows:

"Exactly one of these statements is incorrect.
Exactly two of these statements are incorrect.

Exactly one hundred of these statements are incorrect".

Which (if any) of the 100 statements is correct?

PROBLEM 1.78 (Supplied by Christopher Stuart.)

thShow that if t is the n term of any fibonacci
sequence then n
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PROBLEM 1.8.
+ ! + 1 11 2 3 + .. , + nand logen

are not equal. But for large natural numbers n, the
difference between them is quite small. Use-a calculator
or computer to investigate how the difference between them
varies as n increases.

In fa~t. lim (1 +l + ~ + ... + ~ - loge n) exists,
n+~ -

Roughly what is the limiting value?

PROBLEM 1.9.
Fibonacci (1202 A.D.) considered the following problem.

A pair of rabbits is put into an enclosure. They produce one
pair of offspring in the first month and they reproduce just
once more, namely a second pair of offspring in the second
month.

Similarly each pair of offspring follows exactly the
same pattern of reproduction, beginning to reproduce one
month after birth. There is no other breeding between
other pairs of rabbits.

Show that the number of pairs produced in a certain
month is equal to the numbers produced during the preceding
two months. Relate this to the Fibonacci Sequence as discus~ed

in Christopher Stuart's article.

PROBLEM 1,10.
Consider the following

(1 + 12)2 3 + 2/2 ~ 3 + 2·828

(1 + 12)3 7 + 5/2 ~ 7 + 7·070

(1 + 12)4 17 + 12/2 ~ 17 + 16-·968.

From the above we might guess that if

(1 + 12)n = a + b/2 where a, -b, n are positive integers

then a is the integer closest to b12. Prove this.

Use a computer to print a. an approximation to b/2 and
the difference between a and b/2 as n increases.

Can you generalize the above problem in any way? If so
prove your generalization. (Solutions invited.)
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"Let us sit on this log at the roadside," says I,
"and forget the inhumanity and ribaldry of the poets.
It is in the glorious columns of ascertained facts and
legalized measures that be~uty is to be found. In this
very log we sit upon, Mrs Sampson," says I, "is statistics
more wonderful than any poem. The rings show it was sixty
years old. At the depth of two thousand feet it would be
come coal in three thousand years. The deepest coal mine
in the world is at Killingworth, near Newcastle. A box
four feet long, three feet wide, and two "feet eight inches
deep will hold one ton of coal. If an artery is cut,
compress it above the wound. A man's leg contains thirty
bones. The Tower of London was burned in 1841."

"Go on, Mr Pratt," says Mrs Sampson. "Them ideas is
so original and soothing. I think statistics are just as
lovely as they can be."

o. Henry, The Handbook of Hymen

ClOClOClOClOClOClOClOClOClOOOClOClOClO

"Would you tell me, please, which way I ought to go
from here?"

"That depends a good deal on where you want to get
to," said -the Cat.

"I don't much care "where __ If said Alice.
"Then it doesn't matter which way you go," said

the Cat.

Lewis Carroll, AZiae's Adventures in Wonderland

OOOOClOCOClOOOClOOOClO
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