
B U R K A R D  P O L S T E R  

YEA WHY TRY I IER 
RAW WET HAT 
A Tour of 
Projective 

the Smallest 
Space 

Remember  our  dea r  col league the Rev. Thomas  P. 
Kirkman, bes t  k n o w n  for the following c lass ica l  p rob lem 
in combina tor ics?  

Kirkman's Schoolgirls Problem 
Fif teen schoolgir ls  walk  each day in five groups  of  

three. Arrange the girls '  walks  for a w e e k  so that, in 
that  time, each  pa i r  of  girls walks  toge the r  in a group 
jus t  once. 

Recently, I r ece ived  a le t ter  from Thomas  which I feel 
obl iged to share  wi th  you. It contains  the  reasons  why 
Thomas  dec ided  to  flee our  world,  a p ic tor ia l  solut ion to 
his problem,  and  a lot  of  i l lustrat ions which  cannot  be 
found in any tex tbook .  It also contains  some  of  Thomas ' s  

most  recen t  insights  into the nature  of  his problem,  and 
some sinis ter  impl ica t ions  of  his resul ts  of  which  I think 
all of  you should  be aware.  

The Nightmare 
Dear f r i e n d , . . .  Fo r  many  years  I had a susp ic ion  that  there  

is something f lmdamenta l ly  wrong with  o u r - - t h a t  is, 
your - -un ive r se .  In 1851 I finally f igured out  what! I woke  
up in the middle  of  the night and the only thing I could re- 
member  was this  n ightmare  of  me falling into some kind 

of  bo t tomless  pi t  (Fig. 1). Sounds  familiar? As usual,  I had  

fal len as leep  thinking about  geometry.  Probably  it was  be-  
cause  of  this that  I woke  up in a mathemat ica l  f rame of  
mind, thinking, "Let us a s sume  tha t  I am a f la t lander  and  I 
wake  up from the flat equivalent  of  my falling nightmare.  
Then the last  p ic ture  f rom my d ream that  I r e m e m b e r  will 

look  l ike this." 
At  this  point,  it dawned  on  me  that  the  fact  tha t  para l -  

lel  l ines do  not  mee t  is the  r eason  for  my flat coun te rpa r t  
having this terr ible  dream. Similarly, it is because  there  a re  
para l le l  p lanes  that  I keep  waking  up in the middle  of  the  
night. I had  heard  rumours  of  cer ta in  projective spaces in 
which  two  p lanes  a lways in te rsec t  in a line, and I real ized 
tha t  I had  to travel  to one of  these  dis tant  wor lds  to  escape  
the  ter r ib le  nightmare.  As you know, my  journey  was  suc- 
cessful,  and I have been  living a carefree  life in the small-  

es t  pro jec t ive  space; a life ded ica t ed  to research  in com- 
b ina tor ia l  mathemat ics .  That  is, carefree  until 2 w e e k s  ago, 
when  I woke  up from a n ightmare  again! Not the  same  as  
before.  It all has to do with my  research  connec ted  with 
the  p rob l e m  which is n a m e d  af ter  me. Let me explain.  

The Smallest Projective Plane 
R e m e m b e r  that  a project ive  p lane  is a point-l ine geomet ry  
that  sat isf ies the following axioms.  
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Figure 3. A stereogram of the Fano plane. 

Figure 1. The dream. 

�9 Two dist inct  poin ts  are  conta ined  in a unique line. 

�9 Two dist inct  l ines in te r sec t  in a unique point.  
�9 Every point  is con ta ined  in at  least  three l ines and  every 

line conta ins  at  leas t  th ree  points.  

Assoc ia ted  with every field K is a classical projective 
plane whose  points  and  l ines can be identif ied wi th  the 1- 
and  2-dimensional  subspaces  of  the  3-dimensional  vec to r  

space  over  the field K. In these  classical  p ro jec t ive  planes,  
the  three  axioms are  easi ly  verified. For  example ,  the  first 
ax iom cor responds  to the  fact  that  two 1-dimensional  sub- 

spaces  of  a 3-dimensional  vec to r  space  are con ta ined  in ex- 
ac t ly  one 2-dimensional  subspace .  

Fo r  comple teness ' s  sake,  I should  remark  that  there  are  

nonclass ica l  project ive  planes.  
The smal les t  pro jec t ive  plane is the Fano plane, that  is, 

the  project ive  plane a s soc ia t ed  with the field Z2. It has  
seven poin ts  and seven lines. Every line conta ins  exact ly  
th ree  poin ts  and every po in t  is conta ined in exac t ly  three  
lines. Figure 2 is a wel l -known picture  of this plane.  In fact, 

it  s eems  to be the  only p ic ture  of  this  fundamenta l  geom- 
e t ry  of  which  most  peop le  are  aware.  Remember  tha t  the 

"circle" counts  as a line. 

I have to  admit  that  it is a nice picture,  but  is it real ly  

the only p ic ture  wor th  drawing, and  is it even the bes t  
model  of  th is  plane? Well, all the  p lanes  in the  world tha t  

I am living in are Fano  planes,  and I have to show you at  
least  two more  beautiful  p ic tures  wi th  which you are prob-  

ably not  familiar.  
The s te reogram in Figure 3 shows  a spatial  model  of  the  

Fano plane.  The s te reogram can be  v iewed with either the  
paral lel  or  the  cross-eyed technique; that  is, one of  the tech-  

niques that  you had to master  a couple  of years  ago to be  
able to view random-dot  s t e reograms  that  were  in fashion 
in your  world.  You can think of  this mode l  as being inscr ibed 
in the t e t rahedron  as  follows. The po in ts  are the  centers  o f  

the six edges  of  the te t rahedron  plus the  center  of  the te t ra-  
hedron. The lines are  the three  line segments  connect ing 
the centers  of  opposi te  edges plus  the  circles inscr ibed in 
the four s ides  of  the te t rahedron.  Every  symmetry  of the  

t e t rahedron  t rans la tes  into an au tomorph ism of  the geom- 
etry. The symmet ry  group of  the t e t rahedron  has  order  24. 

The p ic ture  of  the Fano p lane  in Figure 4 shows tha t  

none  of  the  poin ts  of  the p lane  is d is t inguished among the  
poin ts  and  tha t  no line is d is t inguished among the lines. In 
fact, the  ro ta t ion  through 360/7 degrees  a round  the cen te r  
of the  d iagram cor responds  to an au tomorph i sm of o rde r  
7, which genera tes  a cyclic group of  au tomorph i sms  act-  

ing t ransi t ively  on the point  and  line se ts  of  the  plane. 
Together  wi th  an au tomorph i sm of  o rder  7 like the one  

underlying Figure 4, the 24 au tomorph i sms  apparen t  in the  

Figure 2. The traditional picture of the Fano plane. Figure 4. The Fano plane: all points are equal! 
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Figure 5. The smallest projective space. 

spatial model generate the full automorphism group of  the 
Fano plane. It has order  24 • 7 = 168. 

The Smallest Perfect  Universe 
Associated with every field K is a (3-dimensional) projec- 
tive space whose  points, lines, and planes can be identified 
with the 1-, 2-, and 3-dimensional subspaces  of  the 4-di- 
mensional vector  space over the field K. Of course, there 
is also a set of  axioms for projective spaces. I will not  
bother  reminding you of  these axioms, as, essentially, there 
are no examples of  projective spaces apart  f rom the clas- 
sical ones associated with fields. 

The smallest projective space over the field Z2 has 15 
points, 35 lines, and 15 planes. Each of  the 15 planes con- 
tains 7 points and 7 lines; as geometries, they are isomor- 
phic to the Fano plane. Every point is contained in 7 lines 
and every line contains three points. Furthermore,  two dis- 

tinct points are contained in exactly one line and two 
planes intersect in exactly one line. 

The diagram on the left in Figure 5 is a partial picture 
of  this space. It shows all 15 points  and 7 "generator lines." 
The other  lines are the images of  these generator lines un- 
der four successive rotations of  the diagram through 360/5 
degrees. Given a point p and a line 1 not through this point, 
form the union of  all points of  the lines connecting p with 
points of  1. This union is the point  set of  one of  the planes 
of  the space. All planes are generated in this way. The di- 
agram on the right shows one such plane. Note that  all lines 
connect ing different points in such a plane are fully con- 
tained in the plane. As a point-line geometry, every such 
plane is really a Fano plane. 

Hall's Magical Labelling 
Figure 6 is a construction of  the smallest projective space 
due to my friend Hall. Let SEVEN and EIGHT be the sets 
{1, 2 , . . . ,  7} and {1, 2 , . . . ,  8}, respectively. Label the points 
of  the Fano plane with the numbers  in SEVEN in all pos- 
sible ways. Remember that  the automorphism group of  the 
Fano plane has order 168. This means that there are 
7!/168 = 30 essentially different such labellings. On close 
inspection, it turns out that  2 among these 30 labellings 
have either 0, 1, or  3 lines (=tr ip les  of  labels) in common.  
There is a unique partition of  the 30 labelled Fano planes 
into 2 sets X and Y of  15 each such that any 2 Fano planes 
in 1 of  the sets have exactly 1 line in common. Now, the 
15 points  of  the projective space can be identified with the 
15 labelled Fano planes in either X or Y, and the lines with 

Figure 6. Hall's magical labelling. 
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Figure 7. Generalized quadrangle and spread. 

the (7) = 35 triples of distinct numbers in SEVEN. A point 
(=labelled Fano plane) is contained in a line (=triple) if 
the triple is a line in the labelled Fano plane. Figure 6 is a 
labelling of the above model of the projective space with 
labelled Fano planes. The highlighted line corresponds to 
the triple 237. 

Generalized Quadrangles 
Fix a number n in SEVEN. Then, there are (6) = 15 triples 
containing this number and 2 of the remaining 6 numbers 
in SEVEN. The 15 points of the projective space together 
with these 15 lines make a so-called generalized quad- 
rangle; that is, a geometry satisfying the following axioms: 

�9 Two points are contained in at most one line. 
�9 Given a pointp and a line 1 that does not contain p, there 

is a unique line k through p which intersects 1. 

For example, the generalized quadrangle which corre- 
sponds to the number 7 is the geometry depicted in Figure 
7 on the left. Note that an ordinary quadrangle with its four 
vertices considered as the points and its four edges con- 
sidered as the lines of a point-line geometry is a general- 
ized quadrangle. Furthermore, just as in this prototype, the 
smallest n for which an n-gon can be drawn in a general- 
ized quadrangle using only lines of the geometry is 4. 

this world, and I can handle the fact that there are disjoint 
lines in this space. Still, I discovered that there are 56 
spreads of lines! 

Fix two of the elements of SEVEN. Then, there are five 
triples containing these two numbers. Every such set of 
five triples corresponds to a spread in the space. For ex- 
ample, the numbers 1 and 7 correspond to the spread in 
Figure 7. We can construct (7) = 21 of the 56 spreads con- 
tained in our space in this way. 

Here is a natural identification of the 56 spreads in our 
space with the (s) = 56 triples of numbers contained in the 
set EIGHT. Let xy8 be such a triple. Then, the spread as- 
sociated with it is the spread associated with the two num- 
bers x and y. Let xyz be a triple in SEVEN. Then, the spread 
associated with it consists of xyz itself plus the four triples 
in SEVEN which are disjoint from xyz. 

Packings--Solutions to Kirkman's 
Schoolgirls Problem 
Now consider any labelling of the Fano plane with elements 
of EIGHT. Then the seven spreads corresponding to the 
seven lines (=triples in EIGHT) of the Fano plane are pair- 
wise disjoint. In fact, every line in the projective space is 
contained in exactly one of these seven spreads. Any set 
of seven spreads of our space which has this property is 
called a packing of the space and is, oh horror of horrors, 
just a "spread of spreads." Because every packing of the 
space corresponds to such a labelling of the Fano plane, 
there are 8!/168 = 240 packings of our space. Figure 8 
shows one packing and the labelled Fano plane associated 
with it. 

Ironically, every packing corresponds to a solution of 
the problem which is named after me. Just identify the 15 
girls with the 15 points, the "groups of 3" occurz~g during 
a week with the lines of the space, and the 7 walks with 
the 7 spreads of a packing. For a long time I thought that 
things cannot get any worse. I was mistaken. 

The Nightmare Continues 
A spread of a geometry is a partition of its point set into 
disjoint lines or planes. Two parallel lines are quite scary, 
but the mere thought of a spread makes me want to hide 
somewhere. Fortunately, there are no spreads of planes in 

Hyperpackings-- the One-Point Extension 
of the Fano Plane 
Let us play the f o l l o ~ g  game. Remove the 7 spreads cor- 
responding to a packing from the 56 spreads of our space 
Try to find a packing among the remaining 49 spreads. If 
you find one, put it aside and try to find yet another one 
among the remaining 42 spreads, and so on until no more ~ ~  ~ 268:3:348 P:;,k~n::havan e bef:uns hy;Pe~pen;;nhe~hna:i:P:e;djis 

~ d  ~ ' ~  ~ 245 467 356 :ioO n Cfletharly5,6eSpIr~ad~pmetr~a8c~g::p::pkiong~s tW~o : s ahOr ;  

Figure 8. Packing.  F igure 9. One-point extension of the Fano plane. 
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eight labelled Fano planes whose labels are contained in 
EIGHT and which are pairwise line-disjoint. Figure 9 is one 
way to construct such a set of labelled Fano planes. 

The one-point extension of the Fano plane has eight 
points; the seven points of the Fano plane plus one addi- 
tional point. It has 14 lines containing 4 points each. These 
are the complements of the lines of the Fano plane in its 
points set, plus the lines of the Fano plane which have all 
been extended by the additional point. Note that any 3 dis- 
tinct points of the geometry are contained in exactly 1 of 
the 14 lines. The points of the one-point extension can be 
identified with the eight vertices of the cube such that the 
lines turn into the following sets: 

�9 The vertex sets of the regular two tetrahedrons inscribed 
in the cube. 

�9 The vertex sets of the six faces of the cube. 
�9 The vertex sets of the six "diagonal rectangles." 

The points of the derived geometry at a point p of the 
one-point extension are the seven points different from p. 
The lines are the lines of the one-point extension contain- 
ing p which have been punctured in p. Clearly, every such 
derived plane is a Fano plane. Label the one-point exten- 
sion with the elements of EIGHT. This labelling induces a 
labelling of the eight derived Fano planes, and it is easy to 
see that any such set of eight labelled Fano planes derived 
like this has the "desired" property. Figure 10 shows the 
eight packings of a hyperpacking which corresponds to the 
labelling of the cube in the middle of the diagram. The de- 

rived Fano planes at the points 1, 2 , . . .  correspond to the 
packings in the upper left corner, in the middle above, and 
so on in the clockwise direction. Up to automorphisms, 
there are 30 different labellings of the one-point extension 
corresponding to the 30 essentially different labellings of 
the Fano plane. Unfortunately, not all hyperpackings can 
be constructed like this. In fact, there are 27,360 different 
hyperpackings! 

Hyperhyperpackings 
Let us play another game. Remove the 8 packings corre- 
sponding to a hyperpacking from the 240 packings of our 
space. Try to find a hyperpacking among the remaining 232 
packings. If you find one, put it aside and try to fmd yet 
another one among the remaining 224 packings, and so on 
until no more hyperpackings can be found. If this happens 
when no packing is left, you have constructed a hyperhy- 
perpacking; that is, a partition of the 240 packings into 30 
disjoint hyperpackings. Unfortunately, these hyperhyper- 
packings do exist. In fact, the 30 hyperpackings corre- 
sponding to the essentially different labellings of the one- 
point extension form a hyperhyperpacking. 

Hyperhyperhyperpackings? 
I do not know what other monsters are lurking in the shad- 

ows. Conceivably, it might be possible to construct hyper- 
hyperhyperpackings, hyperhyperhyperhyperpackings, and 
so on ad infinitum. I do not know, and I do not dare to 
investigate any further. I think it is time to flee again. I just 

Figure 10. Hyperpacking. 
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0 0 

0 0 0 
F igu re  11. Inversive plane--the sign of the devil. 

found  out  that  o ther  pro jec t ive  spaces  also conta in  sp reads  
and  packings.  So, I th ink  I will  t ry to turn mysel f  into a flat- 

l ander  and move to a pro jec t ive  plane. 

Wish me luck that  no o ther  n ightmares  are  wai t ing for 

me  there. 

Yours, apprehensively ,  

Thomas 

P.S.: YEA WHY TRY HER RAW WET HAT! I j u s t  discov- 

e red  the sign of the  devil  r ight in the middle  of  this  uni- 
verse  while investigating the  counterpar t  of  the geomet ry  

of  circles  on the sphere  in this  space.  A sphere in this  wor ld  
is a se t  of  five poin ts  such  that  any line of  the  space  inter- 

sec ts  the  set  in one or  two  points .  Every poin t  of  a sphere  
is conta ined  in exact ly  one tangent  plane. Hence there  are  
five p lanes  intersect ing the  sphere  only in one point .  The 
remaining 10 planes  in te r sec t  the  sphere  in 3 po in ts  each. 

The sets  of  points  of  the  th ree  nes ted  regular  pen tagons  of  
po in ts  visible in our  mode l  of  the  space are  th ree  such 

spheres .  The points  of  the  geomet ry  of  circles  a s soc ia t ed  
with  such a sphere  are  the  poin ts  of  the sphere.  Its c ircles  
a re  the  in tersect ions  wi th  the  sphere  of  all those  p lanes  
tha t  in tersec t  the sphere  in three  points.  Jus t  l ike the  one- 
po in t  extens ion of  the  Fano  plane,  this geomet ry  has  the 
p rope r ty  that  three d is t inct  poin ts  are conta ined  in exac t ly  

one circle. If  you d raw the  circles  of  the geomet ry  associ-  
a ted  with  the  inner  pentagon,  you arrive at  the fol lowing 
picture .  (See Figure 11.) Ominous.  

Acknowledgements,  Further Readings, 
and Some Remarks 
I wou ld  like to thank  Gordon  Royle for  conduct ing  an ex- 
haust ive  compute r  sea rch  to calculate  the numbers  of  the 
different  hyperpackings  and  for  suggesting the  n a m e s  for 

these  new structures.  By the  way, Gordon and his col league 
Rudi Mathon have class i f ied a large number  of  nonclass i -  
cal  project ive  planes.  If  you are  in teres ted  in invest ing in 
real  es ta te  in one of  these  planes,  or  if you wan t  to have 
one named  after  you, get  in touch with them. Thanks  are 
due to  Keith Hannabuss  for  the  title of  this article.  

Fo r  an access ib le  in t roduc t ion  to combina tor ics  re la ted  

to Kirkman's  schoolgir ls  problem,  see [2]. Fo r  more  infor- 
ma t ion  about  the smal les t  projec t ive  space,  see  [1-7]. In 
const ruct ing  Figure 6, I used  the different  labenings  in [5]. 

The ident i f icat ion of  the different  packings  wi th  the dif- 
ferent  label l ings of  the  Fano p lane  wi th  e lements  of  EIGHT 

can be found in [3] and  [7]. The d iagram of  the general ized 
quadrangle in Figure 7 is cal led the  doily and is due to 

Payne. Lots of  s te reograms and  o the r  p ic tures  of spat ia l  
and p lane  mode l s  of  the smal les t  projec t ive  space and  
many o ther  finite and  topological  geomet r ies  can  be found 

in [61. 
Finally, I should  acknowledge  tha t  Kirkman is no t  

known to have  fled our  world  in horror .  
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