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1. INTRODUCTION. Starting in 1971, Jean Pedersen published a number of arti- 
cles in which she introduced and investigated an ingenious paper-folding construction 
for approximating certain rational angles and regular star polygons. Later on, she and 
Peter Hilton wrote a series of joint articles in which they generalized this construction, 
thereby allowing one to approximate any rational angle and any regular star polygon. 
Furthermore, they did an in-depth investigation of the number-theoretical ideas that 
their construction suggested. See [1], [2], [4], and [5] for excellent surveys of their 
work on this topic. 

When first encountered, the Hilton-Pedersen construction produces a magical 
"AHA!" effect similar to the one produced by a M6bius strip cut in half. Just like 
the Mibius strip trick, it uses only a simple strip of paper. It can be put to good use in 
the classroom, as a mathematical magic trick to impress nonmathematical friends and, 
last but not least, as a source of some very pretty nontrivial mathematics. Anyway, 
once the reader has understood what it is all about, he or she will never forget it. 

In this article, we summarize the construction in a way that enables us to describe 
other related paper folding constructions as alternative geometrical front-ends to the 
sound mathematical base created by Hilton and Pedersen. One such construction is 

Fujimoto's method for approximating rational subdivisions of arbitrary angles and line 

segments as described in [7]. 
To really appreciate the beauty of the constructions presented in what follows, the 

reader is strongly encouraged to try them out with real paper. 

2. THE HILTON-PEDERSEN CONSTRUCTION. The Hilton-Pedersen con- 
struction splits into two parts. First, an angle-folding algorithm, which is the part 
of the construction that has the different geometrical front-ends that this paper is all 
about. Second, the so-called FAT-algorithm for turning the output of the angle-folding 
algorithm into regular star polygons. Our focus is on the angle-folding algorithm, 
which we present in such a way that all the geometrical front-ends attach to it seam- 
lessly. For more details about the results mentioned in this section, we refer the reader 
to any of the survey articles listed earlier. 

The angle-folding algorithm. We start with an acute rational angle (an angle that is 
a rational multiple of 7r) ao = aoir/n, where ao and n are relatively prime positive 
integers and n is odd.' Using a strip of paper whose two long edges are parallel, we 
fold this angle as in Figure 1. For the moment, we stick with virtual paper and don't 

Figure 1. Angle to = aow/n folded into a strip of paper with parallel edges. 

1We explain later why this is not a serious restriction. 
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worry about how one would actually go about folding ao into a real strip of paper. Note 
that in the diagrams, we label creases in the paper in the order in which we produce 
them. 

Depending on whether ao is an even or an odd number, we proceed in one of two 

ways, which we call a fold and a switchfold, respectively. 

Fold (ao even): In this case, we bisect the angle ao by folding the original crease onto 
the edge that borders this angle (Figure 2). If we set a -= ao/2, then the resulting angle 
is a, = arr/n. 

Figure 2. If ao is even, perform afold by bisecting ao. 

Switchfold (ao odd): In this case, we bisect the angle (n - ao)rr/n on the other side 
of the original crease (Figure 3). If we set a, = (n - ao)/2, then the new angle is 

al = a7 r/n. Note that since n is odd, al is an integer. 

Figure 3. If ao is odd, perform a switchfold; that is, "switch" to the angle "opposite" ao and bisect it. 

In both cases, the resulting angle a = a jr/n is acute, and a1 and n are relatively 
prime. We iterate this procedure to construct a sequence of angles ao, al, a2, 

. as well as the paper-folding sequence corresponding to ao that consists of folds and 
switchfolds. It is easy to prove that the value ao appears repeatedly in the angle se- 

quence. If we let m denote the smallest positive integer such that ao = am, then it is 
also clear that the sequence of angles constructed is cyclic of period m. 

For example, let ao = xr/3. Then, all the angles in the first sequence are 7r/3, and 
the paper-folding sequence corresponding to r/3 is 

switchfold - switchfold - switchfold . 

The corresponding folded strip of paper is shown in Figure 4. 

Figure 4. The crease pattern corresponding to the angle 7r/3. 
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For later use, we list the paper-folding sequence of 7r/5, which is 

switchfold -fold - switchfold -fold - switchfold -fold , 

and that of n/7, which is 

switchfold - switchfold -fold - switchfold - switchfold -fold . . 

Approximating angles. Using a new strip of paper-this also works with real paper- 
we fold an arbitrary approximation P0 to the angle ao, and continue folding according 
to the paper-folding sequence generated by ao0. It turns out that as i goes to infinity the 
angle Pim constructed by such a method will converge rapidly to ao. (Here m is the 
period of the angle sequence corresponding to ao.) This means that, in this way, we 
can construct arbitrarily good approximations to ao with very little effort. For example, 
if we start with an approximation o0 to r/3 and apply the paper-folding sequence of 

7r/3 to it, then we are very quickly led to a sequence of creases that is indistinguishable 
from the one that we constructed starting with r/3 itself (Figure 5). 

Figure 5. The crease pattern corresponding to an approximation to n7/3. 

It is a routine exercise to extend the angle-folding algorithm to a method for approx- 
imating any rational angle. As a first important step towards realizing such a method, 
just note that once we have found a good approximation to aon/n, a rational angle with 
odd "denominator," we can successively fold this angle in half r times to construct a 
good approximation to the rational angle aorr/(2rn), which has an even denominator. 

Approximating regular polygons and star polygons. Let arr/n again be one of the 
possible input angles to the angle-folding algorithm. We fold an approximation to this 
angle into a long strip of paper and apply the corresponding folding sequence to this 
approximation "lots of times." From what we said before, it is clear that from some 
point on the resulting crease pattern will be indistinguishable from the crease pattern 
we arrive at by starting with the angle an/n itself. For the following to work, it is 
important that we produce all creases in the same manner, that is, when we look at 
one side of the creased strip of paper either all creases look like valleys or all look like 
ridges. 

The FAT-algorithm of Hilton and Pedersen is a systematic way to "Fold And Twist" 
along some of the creases of the crease pattern to arrive at a regular (star) (n/a}-gon; 
i.e., a connected sequence of edges that visits every ath vertex of a regular n-gon. 
Figure 6 shows two regular star polygons produced in this manner. 

Start by selecting 2n equally spaced pairs of creases such that the two creases in a 
given pair intersect at the top edge of the strip and such that both the angle between 
the two creases and the angle between the top edge and the top crease are axr/n. 
The reader can convince himself or herself that this is always possible. For example, 
Figure 7a shows part of a crease pattern that corresponds to both r/7 and 27r/7 (since 
"folding" 2r/7 gives r/7). Figure 7b shows how to select pairs of creases in each case. 
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Figure 6. A regular 7-gon (= regular star {7/1}-gon) and a regular star 17/2)-gon produced with the FAT- 

algorithm. 

Figure 7. (a) The crease pattern corresponding both to an approximation to r/7 and to 27r/7; (b) two selec- 
tions of pairs of creases; (c) orders in which to fold and twist along the selected creases to produce a regular 
7-gon and a regular {7/2}-gon, respectively. 

Following these choices, we number the selected creases as indicated in Figure 7c. 
Note that in the second selection we choose only every second possible pair of creases 
in order to allow for enough room to "weave in" the resulting strip as in the right 
diagram in Figure 6. 

We now return to the general case. We fold the strip flat along crease 0 and keep 
it folded. This aligns crease I with one of the edges. Then we fold the strip flat along 
crease 1 over this edge and, again, keep it folded. This produces the first corner of 
the {n/a}-gon we are after and also results in a full twist of the strip of paper. We 
fold crease 2 followed by crease 3 to produce the second corner, and so forth. Mainly 
for aesthetic reasons, we also weave in the growing star polygon as we fold and twist 
away. 
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We note in passing that the extension of the angle-folding algorithm to a method for 

approximating any rational angle mentioned earlier gives rise in a natural manner to 
an extension of the FAT-algorithm that approximates any regular {n/a}-gon. However, 
if either n or a is even, the situation can become more complicated, and may involve 
some secondary folds. It is also possible, and a lot of fun, to use the creased strips of 

paper constructed above to plait regular polyhedra (see, for example, [3]). 

3. VARIATION 1: FOLDING IN CIRCLES. For this variation simply replace the 

strips of paper that we have used so far with circular pieces of paper. Figure 8 illustrates 
what we have in mind; namely, how exactly folding an angle and performing a fold 
and a switchfold translate into this alternative setting. 

Figure 8. Fold the angle ar/n as in the left-hand diagram. If a is even, fold as in the middle diagram. Other- 

wise, switchfold as in the right-hand diagram. 

As before, we start by folding an acute angle axr/n, with n odd and relatively prime 
to a. It is easy to see that, even in the circle setting, the angle-folding algorithm applied 
to this angle yields exactly the same paper-folding sequence as in the strip setting. 

In the circle setting, constructing regular {n/a)-gons is straightforward. Just fold the 
initial angle axr/n and then apply the corresponding paper-folding sequence. Figure 9 
shows what happens in the case of the angles 7r/3, 7r/5, and 7r/7 (in the last case we 

only draw the first four creases). Another interesting fact about this construction is that 
all the creases that are produced are diagonals of the target regular star {n/a }-gon. 

Figure 9. Constructing an equilateral triangle, a regular 5-gon, and a regular 7-gon using the folding sequences 
corresponding to the angles 7r/3, xr/5, and n/7, respectively, on a circular piece of paper. 

Of course, if we start with an arbitrary angle and apply the paper-folding sequence 
of axr/n to it, we will be constructing better and better approximations to this angle 
as we continue folding. This implies that we will also be approximating a regular star 

{n/a)-gon. 
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Figure 10. Approximating an equilateral triangle using the paper-folding sequence corresponding to n/3. 

Using the example in Figure 10, we indicate how this last statement can be made 
precise. Here, an equilateral triangle is being approximated using the paper-folding 
sequence corresponding to 7r/3. In this special case, we can consider the last three 
creases constructed at any stage as an approximation to an equilateral triangle. This 

approximation will improve rapidly as we keep folding away. 

4. VARIATION 2: DISSECTING ANGLES INTO EQUAL PARTS. In the fol- 
lowing, we identify a construction by Fujimoto [7] as a variation of the angle-folding 
algorithm. In this variation, we change two things. First, we replace the strip of pa- 
per with a wedge of paper whose determining angle is A (Figure 11). Second, we 
replace 7r in all the angles with A. So, for example, we start with the angle aA/n 
instead of anr/n. 

Figure 11. A wedge of paper. 

Figure 12 illustrates how folding an angle and performing a fold and a switchfold 
translate into the wedge context. As usual, we start by folding an angle a A/n, where n 
is odd, relatively prime to a, and greater than a. As in the circular situation, it is 
straightforward to see that in the wedge setting the angle-folding algorithm applied 
to the angle a A/n yields exactly the same paper-folding sequence as the algorithm 
applied to the angle a7r/n in the strip framework. 

Figure 12. Fold the angle aA /n as in the left-hand diagram. If a is even, fold as in the middle diagram. 
Otherwise, switchfold as in the right-hand diagram. 
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Figure 13. Sequences of creases corresponding to the angles A /3 and A /5. 

Figure 13 shows the creases that are produced for the starting angles A /3 and A/5. 
Note that these are all the creases one will ever get no matter how long one keeps 
folding. For example, for A /3 one will fold crease 0 on one step, then crease 1, then 
crease 0 again, and so on. 

Of course, if we apply the paper-folding sequence corresponding to a A/n to any 
positive angle smaller than A, we end up approximating a A/n. In the simplest case 
where a = 1 and n = 3, we achieve the "impossible" by trisecting the angle A. Well, 
not really, since we are only talking about an approximation, no matter how good and 
fast it might be. However, we should note at this point that the impossible really is 

possible with origami in that angles can be trisected and cubes doubled exactly using 
origami techniques (see [6] for more details). 

It is also interesting to consider what happens if we let A take on the extreme 
values 0 and 27r. At first glance, the first case gives nothing interesting because the 

wedge turns into a line. However, we may consider any infinite strip of paper with 

parallel edges as a wedge with determining angle 0 whose edges meet at infinity (see 
the left-hand diagram in Figure 14). In this case the creases run parallel to the edges 
of the strip, and we can use the paper-folding sequence corresponding to A /n, derived 
for positive A, to approximate a subdivision of the strip into n horizontal strips of 

equal height. We note that there are exact methods to achieve the same using origami. 
In the case A = 27r, we may consider the wedge as a circular piece of paper that 

has been cut along one of its radii (see the right-hand diagram in Figure 14). In this 
instance, the creases are radii of the circle, and we use the paper-folding sequence 
corresponding to A/n to approximate the n "spokes" of a regular n-gon inscribed in 
the circle such that one of the spokes is the cut in the circle. 

Figure 14. Sequences of creases corresponding to the angle A /3 in the extreme cases A = 0 and A = 27r, 

respectively. 

5. VARIATION 3: MORE DISSECTING OF ANGLES. The following variation 
is due to Pedersen (see, for example, [8]). In it we once more replace the strip of paper 
with a wedge of angle A and replace the angle 7r in the definitions of folding and 

switchfolding with the angle r - A. However, this time the angle A has to be smaller 
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Figure 15. Fold the angle a (r - A)/n as in the left-hand diagram. If a is even, fold as in the middle diagram. 
Otherwise, switchfold as in the right-hand diagram. 

than 7r, and the way we fold is the same as in the case of a strip of paper (see Figure 15 
and compare the three diagrams in this figure with those in Figures 1, 2, and 3). 

Note that since the starting angle is a(.r - A)/n with a < n, we can be sure that 
the first and all subsequent creases actually intersect both edges of the wedge. We can 
make the usual remark that nothing of substance changes in the algorithm. In partic- 
ular, if we apply the paper-folding sequence of a(rr - A)/n to any possible positive 
angle, we end up approximating a (r - A)/n (see Figure 16 for an example corre- 
sponding to the initial angle A/3). 

Figure 16. The crease pattern corresponding to the angle (7r - A)/3 for small A. 

We can use the creased strips produced by this method to fold self-similar spirals. 
Figure 17 offers an example of this. 

Figure 17. Folding the creased wedge in the previous figure into a spiral. 

Observe that if we let A = 0, in the same sense as in the previous variation, this 
final variation turns into the strip setting that we started with. 
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