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THE MATHEMATICAL GAZE'I 'E 

Irrational thoughts 
MARTY ROSS 

'Now as to what pertains to these Surd numbers (which, as it were 
by way of reproach and calumny, having no merit of their own are 
also styled Irrational, Irregular, and Inexplicable) they are by many 
denied to be numbers properly speaking ...' 

Isaac Barrow (1734) 
We begin with the most infamously irrational number: 

El] 
This number arises naturally, of course, as the hypotenuse of a right triangle 
with legs of length 1. Notoriously, V2 was found to be irrational by the 
Pythagoreans in around 500 BC. Their mathematics and philosophy was 
based upon natural numbers and small number ratios, and thus this 
discovery would have been very troubling: the Pythagoreans wouldn't be the 
only ones to react badly to the imposition of the irrational. 

At some level, all demonstrations of the irrationality of V2 involve a 
proof by contradiction. Suppose that /2 is rational, that is that we can write 

-2 = - m, n integers. (1) 
n 

We then show, by some general method, that 

_2= m 
ni 

where this new fraction is somehow simpler. (For instance ml is less than m, 
or n1 is less than n, or both). Repeating the procedure, 

n2 

and then \/2 = -, 
n3 

and so on, each time obtaining a simpler rational expression for V2. But 
clearly, this can't go on forever: eventually, the numerator or denominator 
will be 1, or we'll have ended in some similar absurdity. And that's the 
contradiction. The assumption that we can write (1), together with our 
general method for simplifying the fraction, inevitably leads to a 
contradiction, to an equation that we know is false. The only possible 
conclusion is that (1) is impossible, that V2 is in fact irrational. 

That's the format of the proof, but we still have to give a method for 
simplifying the fractions, and it is here that the various proofs differ. 
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IRRATIONAL THOUGHTS 

Commonly (and probably what the Pythagoreans did*), one looks at the 
factors of m and n: it is not hard to show from (1) that m and n are both 
even, and thus a factor of two can can be cancelled to give a simpler 
fraction. (Of course this is done, without contradiction, all the time: f = 4 
for instance. But 3 cannot be simplified further. The contradictory 
implication of (1) is that we can always simplify further). We give here a 
somewhat less familiar proof; it is in a sense more elementary in that it 
doesn't rely upon investigating the factors of m or n. 

To begin, notice that 

n < m < 2n. (2) 

(Both inequalities follow immediately from the fact that m2 = 2n2.) Now 

/ V2 (V2 - 1) 

(V2X- 1) 

2 - V 
2 - m 

2 _m 
m _nl (by(1)) 2nm n 

2n - m 
m - n 

ml 
nl 

But by (2), 2n < 2m 

= 2n - m < m 

= ml < m. 

Thus the numerator (and similarly, the denominator) of our new fraction 
is smaller, and we have our contradiction. 

Before investigating other irrationals, it is worth pondering for a 
moment on a fundamental issue we have thus far ignored: 
Question 

What exactly is an irrational number? 

(Notice that V2 is geometrically intuitive, but numerically we have only 
concluded what /2 isn't, not what it is.) 

* Ascribing concrete mathematical results to the Pythagoreans is very difficult, and to 
Pythagoras himself almost impossible. However, it is generally accepted that the 
Pythagoreans knew of the irrationality of /2, and there is agreement that if the 
Pythagoreans had any sort of argument, it would have been based upon the classification of 
numbers into even and odd (of which they were certainly aware). B. L. Van der Waerden 
[1] argues that the Pythagoreans probably did produce such an argument; Walter Burkett, in 
[2, p. 436] is more sceptical. 
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THE MATHEMATICAL GAZETI'E 

A standard response to the above question is 
Correct but unhelpful answer 

An irrational number is an infinite non-repeating decimal. 

It doesn't take much thought to realise that this answer, however correct, 
is not very illuminating. How does one multiply or divide infinite decimals? 
How do you even tell what a number's decimal expansion is? (No one 
knows the complete decimal expansion of V2, for instance). This is a 
genuinely deep question, only satisfactorily answered in the 19th century. 
(By way of comparison, the complex number i = T- is often considered 
to have an air of unreality about it; but - is in fact much easier to define 
than x2/, and was well understood by about 1800.) 

The Pythagoreans were right to be troubled. We won't pursue this 
matter (later we touch on a more natural method of expressing irrational 
numbers). Here, we just note that our argument above, as well as the ones 
below, can be made without explicit reference to irrational numbers. For 
example, 
Alternative statement that /2 is irrational 

There is no rational number m such that (m,)2 = 2. 

Phrasing the irrationality of X2 in this manner, one can go on to prove the 
statement by rephrasing the calculation above: one simply replaces each 
occurrence of V2 by m, using the hypothesis 2 = (m)2 at the critical stage of 
the argument. 

Having ended our theoretical interlude, we continue the hunt for 
irrational numbers. Easy targets are other 'algebraic' irrationals: V3, 
/2 + V/, vn, nn, etc. Of course not all such numbers are irrational: /9- for 

instance. Usually, though, if such a number looks irrational, it is. And, it 
can usually be proved to be irrational by a variation of a V2-proof combined 
with simple algebraic manipulations. Nonetheless, intuition has its 
limitations. For example, we have 

Question 

a, b irrational = ab irrational? 

It is easy to imagine that an irrational number raised to an irrational 
number must always be irrational, but in fact 
Answer 

No. 
This result has the following simple and intriguing proof. Consider the 

calculation 

i/ 21 
2 

( -\/2\.V2 (/)2 2 
= (2) = 2. 

Now, either F2/ is rational or it is irrational. In the former case we're 
clearly done (a = b = V2). And, in the latter case we're done by the 
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IRRATIONAL THOUGHTS 

above calculation (a = /2, b = V). So, we have an example, but we 
just don't know what it is! 

In fact, XV is irrational, R. Kuz'min proving this in 1930. The 
recentness of the proof indicates how difficult it can be to prove the 
irrationality of even an easily defined number: once we go beyond nth roots 
(and their generalisation, roots of polynomial equations) proving 
irrationality is almost always tough. (Alternatively, it illustrates how easily 
one can hide difficult definitions in simple notation: what exactly does it 
mean to raise a number to an irrational power?) Later, we give further 
illustration by giving a selection of numbers for which the question of 
irrationality is still unanswered. 

We now leave the algebraic world, but we'll delay discussion of 
Everybody's Favourite Number a while longer. First, we consider another 
well-known fellow: 

In order to discuss the irrationality of e, we need a characterisation of it. 
However, unlike the situation with V2, there is no single obvious choice. 
The original definition, dating to around 1600, is 

/ i Inl 
e = lim 1 + - . (3) 

This expression arises naturally in finance with the notion of continuously 
compounded interest. Alternatively, in the study of the calculus, one tends 
first to introduce the function f(x) = ex and then e = e1 = f(1). But of 
course this approach just shifts the question: what special property 
determines the base e? In fact, for any base a, there is a constant M such 
that 

(ax) = Max. 
dx 

We can then define e to be that (unique) base for which M = 1. That is, e 
is defined by the identity 

d (ex) = ex. (4) 
dx 

Of course, it doesn't matter whether we start with (3) or (4), as either 
can be proved from the other. 

The expression for e we actually want is the infinite series 

1 1 1 1 
e = k! = 

+ 
-- 

+ -- + +.... (5) 
k= 1! 2! 3! 

This identity follows readily from either (3) or (4). In the former case one 
applies the Binomial Formula to the expression (1 + _)n (taking the limit as 
n -> oo needs some thought, but as all terms in the expansion are positive 
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72 THE MATHEMATICAL GAZE' I'E 

and increase as n increases, this is not too hard); in the latter case, one uses 
Taylor's Theorem to expand f(x) = ex around x = 0 to approximate 
f (1) = e, and then one shows that the remainder tends to zero as higher 
degree polynomials are used in the approximation. 

From (5) we can prove 
Theorem (Euler, 1737) 

e is irrational. 
Proof 

As for v2, the proof is by contradiction. Supposing that e is rational, 
we have 

e = - m, n integers. (6) n 

By (5), 
n! n! n! n! n! 

e'n! = n! + -- + -- + ... + + + + 
1! 2! n! (n + 1)! (n + 2)! 

and thus by (6) 
m n! n! n! n! n! 
--n!-n! ----- + + (7) n 1! 2! n! (n + 1)! (n + 2)! 

Now each term on the left hand side is an integer. On the other hand, 
1 1 1 

0 < RHS= + + + 
(n+ 1) (n+ l)(n+2) (n+ l)(n + 2)(n + 3) 

1 1 1 
< + + 12 13+ + 

(n + 1) (n +)2 (n+ 1)3+ 
This last expression is a geometric series, which sums to 

1I 

1 - nl n 

So, though the left hand side of (7) is supposedly an integer, the right hand 
side is definitely positive but less than one. We have our contradiction. 

Though (5) dates to 1665 and Isaac Newton, the above proof was first 
given by Joseph Fourier in 1815. By contrast, Leonhard Euler's original 
proof is based on his continuedfraction expansion, 

e- 1 
2 1 1 

6+ 1 
10 + 

14 +... 
(The way to read this is, al = 1, a2 = I, a3 = l = 6, and so on. Then 

e-1 liman). In fact, every number has a simple continued fraction 
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expansion (that is, one with all numerators 1 and all denominators positive 
integers). For example, 

v2=+ 1 
2+ 1 

2+. 2 +... 

(The expansion for V2 is easy to prove, but that for e takes more work). 
Clearly, a finite continued fraction (i. e. one where eventually all the 
numerators are zero) is rational. Conversely, Euler proved that any infinite 
simple continued fraction is irrational. In particular e -1 is irrational, and 
thus e is as well. 

We close our discussion of e by noting that any integer power em is also 
irrational; this is in stark comparison to 2, which of course satisfies the 
equation (2)2 = 2. The irrationality of em is more difficult to prove: 
Johann Lambert used continued fractions to prove this in 1766, but Fourier's 
method doesn't apply. (Later we'll indicate a third approach.) As a 
consequence, log 2 (for example) is irrational, since 

log2 = - e" = 2". 
n 

Thus, since elog 2 = 2 

we have another example of an irrational number to an irrational power 
being rational. 

Now we have the star of our show: 

Of course n is naturally defined as the ratio of the circumference of a 
circle to its diameter. However, unlike the case of V2, this geometric 
definition does not immediately transform into numerical information. 
People have been chasing formulas and estimates for n for thousands of 
years, with varying degrees of success. The following table indicates a very 
partial history of numerical approximations to n. 

When Approximation for nr Who/Where 
2000 BC 31 Mesopotamia 
2000 BC (6)2 Egypt 
1200 BC 3 China 
550 BC 3 Old Testament 
250 BC between 34 and 34 Archimedes 
263 AD 3.14159 Liu Hui 
1429 3.14159265358979 AI- Kash i 
1706 to 100 decimal places Machin 
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1853 to 500 decimal places Shanks 
1897 4 Indiana 
1958 to 10000 decimal places Genuys 
1995 to six billion decimal places Kanada 

The 1897 episode wins the prize for jr-silliness. An eccentric named 
Edward Goodwin persuaded the Indiana House of Representatives to pass a 
bill legislating the value of n (the bill is so bizarrely written it contains 
geometric claims implying six different values of 7). Unfortunately for fans 
of the absurd, a visiting mathematician enlightened the Indiana Senate 
before they had a chance to vote the bill into law. 

More generally, there is an element of confusion in the table above: we 
have not indicated whether those who used an approximation to nr knew it 
was an approximation. Certainly, Archimedes knew this, but the situation 
with some of the early historical values is unclear. In any case, for the 
context of irrational numbers, we'll leave no room for doubt. 

Question 
Suppose we know the first eight trillion digits of ir. What can that tell us 

about whether 7i is rational or not? 

Answer 

Absolutely nothing. 

Fascination with n has given rise to many beautiful formulas. 
Archimedes' approach, perhaps the most intuitive, was to approximate the 
unit circle by regular polygons; the perimeter of such a polygon then gives 
an approximation to 2ir. He used both inscribed and circumscribed 
polygons, thus obtaining both lower and upper estimates for n. His method 
was to double the number of sides repeatedly, (essentially) using half-angle 
formulas for sine and tangent to express the new perimeters in terms of the 
old. Starting with a hexagon, he worked up to (at least) a 96-sided polygon, 
but his method can theoretically be applied to give any desired accuracy. 
Taking the limit, the inscribed polygons give the expression 

rf = lim 3.2 sin (32). 
n -- 3 -2n 

Regular polygons and half-angle formulas were also used by Francois 
Viete. In 1579 he calculated the area of these polygons, using a clever 
algebraic trick to obtain the infinite product 

2 z 7 nr 
- CO cos- cos- cos-... 

if 4 8 16 

- (1 \)1 (I + ( 
22 2 2 2 2 
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Given the power of the calculus, one can go to the limit more directly, 
the area of the unit circle being 

n = 4 V1 - x2dx. 

An explicit limit can now be obtained by approximating the integral (for 
example by applying the binomial theorem to expand the integrand /1 - x2 
and then integrating term by term). In 1666 Newton used this idea with a 
slightly different integral to obtain a series beginning 

+= 24 1 - 1 _ 1 _ - r = 4 + 12 5.25 28.27 72.29 .... 

Closely related is the idea of expressing Jr in terms of inverse 
trigonometric functions. The earliest of many such results, due to an 
unknown Indian mathematician from the 15th century, is the famous series 
expression for arctan 1: 

n 1 1 1 1 - = - -- - +-+ .... 
4 3 5 7 9 

Two more identities, too beautiful to overlook, are the infinite product 
by John Wallis (1655), 

J 224466 

2 1335577 
and the infinite series by Euler (1734), 

Jr2 1 1 1 1 

6 12 22 +23 42 
Both are derived from clever analysis of the sine function. 

The above are all beautiful identities, but it is not clear that any of them 
help us determine whether nr is irrational. (Certainly, the limit nature of 
these identities is not enough in itself to conclude anything.) We might 
hope to mimic our proof of the irrationality of e, but it is tough to come up 
with a sufficiently neat series for r (even em seems to be beyond the reach of 
such methods). An astonishing series which is tempting but doesn't quite 
work is 

1 = 2n! 3 42n + 5 
r n=O n!n!! 212n+4 

This deep result from the theory of theta functions, is due to the amazing 
Srinivasa Ramanujan (1914). 

Another natural approach is to hunt for a simple continued fraction 
expansion for Jr. However, though one can compute the terms of the 
fraction one by one (just as one can compute the decimal expansion of V/), 
the complete simple continued fraction for J is still unknown. There are 
many non-simple fractions for Jr, beginning with a corollary of Wallis's 
infinite product, the lovely identity of William Brouncker's (1655): 
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4 12 
-72 +32 

2 52 

2+ 2 +... 

However, such expressions are not necessarily irrational. 
In fact the original proof that 7r is irrational, due to Lambert, is in terms 

of continued fractions, but in a brilliantly inverted manner. In 1766 he 
derived the functional continued fraction 

tanv = 

v 3 () 1 

\v/ 

Lambert then proved that if the angle v is rational then the continued 
fraction must be irrational. But tan I = 1 is rational, and thus I (and so 7r 
as well) must be irrational. 

In principle, Lambert's is a fine proof, but it takes considerable work to 
justify all the steps*. So we'll give a second proof, a beautiful argument due 
to Ivan Niven. 

r1 
Consider the integral I = p(x) sin x dx, 

where p(x) = xN( - x)N 

and where the integer N will be chosen (large) later. Noting p (x) = 0 at the 
endpoints, an integration by parts gives 

I = - | p' (x) cos ;zx dx. 
7 0 

Now p (x) = NxN ( - x)N - NxN (1 - x)N 

which is still zero at the endpoints. So, integrating by parts again, 

= I p" (x) sin rx dx. 

We keep integrating, at each stage using the product rule to differentiate 
p (x). After a few differentiations this will be quite a mess, but a lot of the 
terms will still be zero at the endpoints: in order for a term to give a non- 

*Assigning credit for old theorems can be contentious, as different eras (and different 
mathematicians) have differing standards of rigour and proof, as well as differing styles of 
exposition. So, some credit Lambert with proving the irrationality of e because he explicitly 
considered the convergence of the continued fraction for e_- : others argue that Euler could 
have done this without trouble if he had felt it necessary. Similarly, Adrien-Marie Legendre 
is often assigned some credit for proving the irrationality of r, the claim being that his 
systematic treatment of continued fractions (1794) is more rigorous than Lambert's analysis 
of the fraction above: others claim that Lambert's argument, though less elegant, is in fact 
more rigorous than Legendre's. Claude Brezinski (see [3]) discusses these historical issues 
in some detail. 
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zero contribution at an endpoint, either xN or (1 - x)N has to be 
differentiated at least N times, which implies there is a factor of N! in that 
term. On the other hand, degp = 2N, so p will be differentiated out 
completely after 2N integrations. Combining these two observations, we 
must have 

kiN! kN + 1N! 
I - + + 2N+1 kl ... , kN+ 1 integers. 

There's no contradiction in that, but now suppose n is rational, 
m 

7r = -. 
n 

Multiplying both sides by m2N +1 / N!, 

m2N+ 1 
I = k, k an integer. (8) 

N! 
And now we have a contradiction. For 0 < I < 1 (since each term in 

the integral is between 0 and 1). And, if N is chosen large enough, 
m2N 

+ 1 

0< < 1. 
N! 

Thus the left side of (8) is between 0 and 1, whereas the right side is 
supposedly an integer. 

The above is a variation of an argument by Charles Hermite, and other 
numbers can be proved irrational by similar means. In particular, integer 
powers em of e can thus be proved irrational. As for 7r, taking a little more 
care, the proof above actually shows 7r2 is irrational; further, with a similar 
argument one can show that 7r is not the solution of any quadratic equation 
with rational coefficients. (The latter is a stronger statement: for example, 
(1 + 2)2 is irrational but 1 + V is a root of the equation 
x2 - 2x - 1 = 0. Here, when asking whether numbers are the solutions of 

polynomial equations, we are edging into the much more difficult question 
of the transcendental nature of numbers). However, though higher powers 
of n are indeed irrational, this is significantly more difficult to prove. 

We close by introducing a few numbers which are presumed to be 
irrational but for which this has yet to be proved. 

There are zillions of ways to combine numbers artificially, and 
essentially all the outcomes of all of these combinations are not known to be 
irrational. For example, the character of 

zr + e re 7te 

is unknown. One might be tempted to throw eX in with this lot, but in 1929 
Alexandr Gel'fond showed this number to be irrational (e' = (-1)-', which 
is natural enough in the world of complex numbers). Also, though r + e 
and nre are not known to be irrational, it is easy to show at least one of them 
must be irrational. To see this, consider the quadratic equation 

x2 - (t + e)x + nre = 0, 
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whose solutions are r and e. Now we know that Jr is not the solution of any 
such equation with rational coefficients, thus one of n + e or n + e must 
be irrational. 

More interesting are values of the Riemann zeta function, 
o 1 1 

(s)= +-+ +.... s = 2, 3, 4,.... 
k=l ks 25 3s 

We have seen a special case of this above, Euler's result that 
Jr2 

(2) = 6 

Jr4 
As well, Euler showed 5 (4) = 90 90 
and in general 2 (2n) = ar2n an rational. 

(The an can be written in terms of the so-called Bernoulli numbers). As a 
consequence, all the 5 (2n) are known to be irrational. 

The values t (2n + 1) are much more mysterious. For a long time, no 
one had any idea how to approach these numbers. It was a complete shock 
when, in 1978, an unknown mathematician named Roger Apery proved that 
5 (3) is irrational. The irrationality of r (5) and the values beyond are still 
unproved. 

To explain our last example, first note that one cannot define (1) 
except to be oo, since the Harmonic Series, 

1 1 
1+ I+ + .. 

2 3 
does not converge. However, if we subtract log k in the correct way, we do 
get a finite quantity y, known as Euler's constant: 

lm o( + +1 + logk 
oo 2 3 k 

As with all the numbers we have considered, it makes absolutely no 
practical difference whether y is rational or not. But mathematicians want to 
know, simply for the sake of knowing. Euler's constant is the grand prize for 
current hunters of the irrational. 
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